2,141 research outputs found

    Musical instrument classification using non-negative matrix factorization algorithms

    No full text
    In this paper, a class of algorithms for automatic classification of individual musical instrument sounds is presented. Several perceptual features used in general sound classification applications were measured for 300 sound recordings consisting of 6 different musical instrument classes (piano, violin, cello, flute, bassoon and soprano saxophone). In addition, MPEG-7 basic spectral and spectral basis descriptors were considered, providing an effective combination for accurately describing the spectral and timbrai audio characteristics. The audio flies were split using 70% of the available data for training and the remaining 30% for testing. A classifier was developed based on non-negative matrix factorization (NMF) techniques, thus introducing a novel application of NMF. The standard NMF method was examined, as well as its modifications: the local, the sparse, and the discriminant NMF. Experimental results are presented to compare MPEG-7 spectral basis representations with MPEG-7 basic spectral features alongside the various NMF algorithms. The results indicate that the use of the spectrum projection coefficients for feature extraction and the standard NMF classifier yields an accuracy exceeding 95%. ©2006 IEEE

    Rhythm detection for speech-music discrimination in MPEG compressed domain

    Get PDF
    A novel approach to speech-music discrimination based on rhythm (or beat) detection is introduced. Rhythmic pulses are detected by applying a long-term autocorrelation method on band-passed signals. This approach is combined with another, in which the features describe the energy peaks of the signal. The discriminator uses just three features that are computed from data directly taken from an MPEG-1 bitstream. The discriminator was tested on more than 3 hours of audio data. Average recognition rate is 97.7%

    Speaker segmentation and clustering

    Get PDF
    This survey focuses on two challenging speech processing topics, namely: speaker segmentation and speaker clustering. Speaker segmentation aims at finding speaker change points in an audio stream, whereas speaker clustering aims at grouping speech segments based on speaker characteristics. Model-based, metric-based, and hybrid speaker segmentation algorithms are reviewed. Concerning speaker clustering, deterministic and probabilistic algorithms are examined. A comparative assessment of the reviewed algorithms is undertaken, the algorithm advantages and disadvantages are indicated, insight to the algorithms is offered, and deductions as well as recommendations are given. Rich transcription and movie analysis are candidate applications that benefit from combined speaker segmentation and clustering. © 2007 Elsevier B.V. All rights reserved

    K-Space at TRECVid 2007

    Get PDF
    In this paper we describe K-Space participation in TRECVid 2007. K-Space participated in two tasks, high-level feature extraction and interactive search. We present our approaches for each of these activities and provide a brief analysis of our results. Our high-level feature submission utilized multi-modal low-level features which included visual, audio and temporal elements. Specific concept detectors (such as Face detectors) developed by K-Space partners were also used. We experimented with different machine learning approaches including logistic regression and support vector machines (SVM). Finally we also experimented with both early and late fusion for feature combination. This year we also participated in interactive search, submitting 6 runs. We developed two interfaces which both utilized the same retrieval functionality. Our objective was to measure the effect of context, which was supported to different degrees in each interface, on user performance. The first of the two systems was a ‘shot’ based interface, where the results from a query were presented as a ranked list of shots. The second interface was ‘broadcast’ based, where results were presented as a ranked list of broadcasts. Both systems made use of the outputs of our high-level feature submission as well as low-level visual features

    Speaker-independent negative emotion recognition

    Get PDF
    This work aims to provide a method able to distinguish between negative and non-negative emotions in vocal interaction. A large pool of 1418 features is extracted for that purpose. Several of those features are tested in emotion recognition for the first time. Next, feature selection is applied separately to male and female utterances. In particular, a bidirectional Best First search with backtracking is applied. The first contribution is the demonstration that a significant number of features, first tested here, are retained after feature selection. The selected features are then fed as input to support vector machines with various kernel functions as well as to the K nearest neighbors classifier. The second contribution is in the speaker-independent experiments conducted in order to cope with the limited number of speakers present in the commonly used emotion speech corpora. Speaker-independent systems are known to be more robust and present a better generalization ability than the speaker-dependent ones. Experimental results are reported for the Berlin emotional speech database. The best performing classifier is found to be the support vector machine with the Gaussian radial basis function kernel. Correctly classified utterances are 86.73%±3.95% for male subjects and 91.73%±4.18% for female subjects. The last contribution is in the statistical analysis of the performance of the support vector machine classifier against the K nearest neighbors classifier as well as the statistical analysis of the various support vector machine kernels impact. © 2010 IEEE
    corecore