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Abstract: A novel approach to speech-music discrimination based on rhythm (or beat) detection is introduced. 
Rhythmic pulses are detected by applying a long-term autocorrelation method on band-passed signals. This approach is 
combined with another, in which the features describe the energy peaks of the signal. The discriminator uses just three 
features that are computed from data directly taken from an MPEG-1 bitstream. The discriminator was tested on more 
than 3 hours of audio data. Average recognition rate is 97.7%.
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1.  INTRODUCTION

Audio content classification is a very important task for 
the browsing, indexing and retrieval of audio/video 
databases. The development of standards for high-
quality audio and video compression such as the family 
of MPEG standards, coupled with increased computing 
performance enables easy recording, storage and 
manipulation of multimedia content. The aim of the 
research presented in this paper is to extend the 
capabilities of the web-based digital video system 
developed by the Centre for Digital Video Processing at 
Dublin City University [1], [2].

The problem of distinguishing speech signals from 
music signals is a first step in audio segmentation and 
classification. Several different approaches to 
speech/music discrimination have been reported 
recently. Some of them use only a few features 
calculated in the time and/or the frequency domain, 
followed by a thresholding procedure [3], [4]. Zero-
crossing rate (ZCR), short-time energy, and 
fundamental frequency are the most commonly used 
features. Other approaches use many more complicated 
features, several of which are motivated by perceptual 
properties of audio, and they apply more sophisticated 
procedures for classification (e.g. Gaussian mixture 
model, k-nearest neighbour) [5], [6]. Hidden Markov 
models (HMM) [7] and Artificial Neural Networks [4], 
[8] have also been investigated for classification. 

For example, Bugatti et al. [4] compared two 
different algorithms. They used 30 minutes of labelled 
audio signal for their experiments, and obtained a 
performance of 82% using the simple method (ZCR + 
Bayesian Classifier), and 94% for ANN classifier (8 
features + MLP). Scheirer and Slaney [5] evaluated 13 
features using various classification frameworks (multi-
dimensional Gaussian MAP estimator, GMM, k-d tree, 
and k-NN). They used 40 minutes of audio for their 

experiments and they obtained similar results for all the 
methods. The best classifier achieved 94.2% 
performance on a frame-by-frame basis, and 98.6% 
when integrating 2.4 seconds segments of sound.

All the above approaches [3]-[8] have been conducted 
for PCM data. In  [9] [10], audio classification on the 
MPEG-1 subband domain has been proposed. Both used 
short–term energy based features, which were computed 
from subband encoded audio samples. This approach 
has the following advantages:� It can deal with long audio and video files, which 

are mostly stored in MPEG 1 format [11]; � It has small storage and computational 
requirements, because the computationally difficult 
decoding process is not required; � The audio signal analysis carried out during the 
encoding process can be utilized (e.g. subband 
filtering, volume estimation).

In this paper, we introduce the new feature Rhythm 
metric that quantifies the strength of rhythm in audio 
signals. We believe that this kind of feature could be 
very useful for the speech-music discrimination task. 
Results presented in this paper prove this hypothesis and 
show that the rhythm metric has good discriminative 
properties. The proposed discriminator processes the 
signal in the MPEG-1 compressed domain.

2.  SPEECH-MUSIC DISCRIMINATION

In [12], we presented a simple method for distinguishing 
speech signals from music signals. The method is based 
on the observation of the modulation envelope (or 
contour) of the band-limited signal. From the envelope, 
high-volume peaks are extracted. The width of the 
widest peak and average rate of peaks within a time 
interval of 4 seconds are chosen as features for the 
discriminator. 



This approach gives satisfactory results for many of 
the audio signals tested. However, poor results were 
obtained for music signals with strong rhythms, where 
the average rate of peaks was often confused with the 
syllabic rate of speech, which is around 4 Hz. The same
problem arose in [10] where the authors reported only 
88% correct detection of music signals due to the fact 
that segments with intermittent sound (e.g. drums) were 
often classified as speech. Therefore, we decided to 
improve the performance of the discriminator by 
incorporating rhythm detection. 

The proposed discriminator does not use an audio 
signal waveform as the input data, rather it utilizes 
information taken directly from an MPEG-1 encoded 
bitstream. Unlike the methods introduced in [9] [10], we 
use only scalefactors for audio signal analysis. 
Advantages of using scalefactors instead of coded 
samples are as follow:� It is much easier to find the position of the 

scalefactors in the MPEG frame and decode them 
than to find and decode audio samples.� The scalefactors are a very small part of the MPEG 
bitstream.� Detecting and processing the scalefactors is very 
straightforward and fast.

3.  RHYTHM DETECTION AND FEATURE 
EXTRACTION

The approach presented in this paper is based on the 
assumption that the majority of musical signals have 
periodic regular structure or “rhythm”. Therefore, the 
strength of rhythm could be a good discriminative 
feature. A similar kind of feature (called Pulse metric) 
was also used in [5]. We use the expression “rhythm 
detection” in the sense of the automatic extraction of 
rhythmic pulses from an audio signal. Other more 
complex approaches to beat and rhythm analysis for 
musical signals are presented in [13], [14].

Our proposed approach is based on the 
autocorrelation method. An example of rhythm analysis 
based on long-term autocorrelation of band-passed 
signals is shown in Figure 1. As can be seen from 
Figure 1a, musical signals have periodic structure in 
some frequency subbands. The music character 
determines which subband exhibits periodicity. Beats 
are mainly detected in low frequencies (bass 
instruments) or high frequencies (percussions). Speech 
signals have no long-time periodic structure (Figure 1b).

3.1  Feature extraction procedure 

Tested audio signals are sampled with sample frequency 
fs= 44100 Hz, and stored in MPEG-1 Layer II audio 
format (MP2) [11]. A layer-II frame consists of 1152 
samples: 3 groups of 12 samples from each of 32 
subbands. A group of 12 samples in each subband 
receives a bit allocation and, if this is not zero, a 
scalefactor. Scalefactors are weights that rescale 
samples so that they fully use the range of the quantiser. 
The encoder only uses a different scalefactor for each of 
the three groups of 12 samples if it is necessary. 

Subbands are uniformly spaced and their width is 
approx. 690 Hz. By definition, the scalefactors in the 
MPEG-1 encoded bitstream carry information about the 
maximum level of the signal in each subband.

We estimate a time envelope or contour of the 
frequency-limited audio signal from the scalefactors for 
each subband. For analysis, a sliding window is used 
with a window length of 4 seconds and 50% overlap. 
The window length corresponds to 460 scalefactors in 
each subband (time resolution is 32*12/ fs= 8.7 ms). 
Only the first 15 subbands are used for computation (up 
to 10 kHz). 
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Figure 1. Examples of long-term autocorrelation of band-
passed audio signals

The mean value of the set of scalefactors s(t,k), where 
s(t,k) is a value of the t-th scalefactor in the k-th 
subband, is calculated as:
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If E is less than determined threshold, the frame is 
considered as a silence and no further analysis is 
performed, otherwise the envelope curve for each 
subband is smoothed by following method:
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Since such a high frequency resolution is not necessary 
in the higher subbands, the subbands 11-15 are merged 
together by summing the relevant scalefactors.

For each subband, the normalized autocorrelation 
function Rn is computed.
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where e
�

means envelope e without its DC component.
We search Rn over the interval corresponding to time 

0.2s - 1.75s to find peaks. We set p(k) to the value of the 
highest peak in the k-th subband. Then we define the 
feature rhythm metric Pm as 

{ } 11,...2,1,)(max == kkpPm (5)

where 0<Pm<1. The higher the value of Pm , the greater 
amount of rhythmicality in the signal.

4.  EXPERIMENT

4.1  Test Audio Database

We collected approx. 40 min. of speech from Irish radio 
and television (RTÉ) news programs. The first part 
contains only clean speech (e.g. anchor person, indoor 
interview). The second part contains clean speech and 
also speech with high background noise (e.g. outdoor 
reporting, traffic noise, blowing wind, background 
voices etc.). 

The musical recordings (about 2.5 hours) are obtained 
from several sources (including television broadcast and 
Internet MP3 files). They contain a variety of 
instrumental and vocal music (classical, rock, pop, 
dance, jazz). The music database is divided into three 
groups. The recordings are stored in PCM and MPEG-
1 Layer-II formats. The sample frequency is 44.1 kHz. 
The database is summarised in Table 1. 

Table 1. Audio database description.

Name Description Duration

s1 clean speech 00:19:10
s2 clean and noisy speech 00:18:32

cla instrumental music, loose tempo 
(classic, jazz)

00:43:18

rhy instrumental music, strong rhythm 
(rock, pop, jazz, dance)

00:51:00

voc vocal music, songs (classic, rock, 
pop, rap)

00:53:55

4.2  Rhythm analysis results

We evaluated the rhythm metric Pm (Eq. 5) for all 
signals from the database. We found the following 
important properties of Pm:

(i) For 99.73% of speech signals (s1 + s2), Pm< 0.6; 

(ii) for 97.43 % of speech, Pm< 0.5;
(iii) in the case of music signals (cla, voc, rhy), 
values of Pm are not so well bounded, Pm³ 0.5 for only 
42.33% of music signals, and Pm<0.5 for 57.67% of 
music signals.

Thus, we can say that if Pm³ 0.5, we detect music 
signal (if an error of 2.5% is tolerated), but if Pm< 0.5, it 
is not clear if the signal is speech or music.
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Figure 2. Flowchart of the classification procedure

4.3  Classification

We incorporated the rhythm metric feature into the 
model described in [12]. As mentioned in the chapter 2, 
the discriminator now uses three features:

- Width of the widest peak (Lm) in the modulation 
envelope of the band-limited signal 690-4800 Hz. 
The modulation envelope was estimated by 
summing scalefactors corresponding to the 2nd-7th

subbands.
- Rate of peaks (R) in this envelope (i.e. the number 

of peaks per second) 
- Rhythm metric (Pm)

For evaluation, a simple rule-based threshold classifier 
is used. The procedure is depicted in Figure 2. The 
thresholds were set at:

11 5.5,5.2,7.0,5.0 21
−− ==== shshshh RRLP .

5. TEST RESULTS

The discriminator was tested separately for all signal 
groups from the audio database. The results are shown 
in Table 2. The results taken from [12] are in the third 
column in Table 2, where just two features Lm (max. 
peak width) and R (rate of peaks) were used for 
discrimination. The results obtained by also 
incorporating the rhythm metric P are shown in the 
fourth column. We can see improvement of 
discrimination in all five groups of audio, but the most 
significant improvement is for rhythmic music (rhy) –
12%.

Finally, performance is improved by post-processing.
The output from the discriminator is a sequence of ‘0’ 
and ‘1’, where each digit represents a character of the 
sound in one frame (frame length is 2 sec). Digits ‘0’



and ‘1’ are used for music and speech signals 
respectively (only non-silent sections are considered). 
Median filtering of the 3-rd order is applied on this 
output sequence. This corrects single errors due to the 
fact that a single speech frame wouldn’t normally be 
between music frames and vice versa. From the last 
column of the table, we can see a further increase in 
recognition (around 2%).

Table 2. Recognition rate of the speech/music 
discriminator

Correct recognition %

Features
Name Frames

Lm+R Lm+R+ Pm

Lm+R+ Pm
+ 

Postprocess.

s1 573 96.34 98.25 99.30

Sp
ee

ch

s2 554 83.39 90.75 94.40

cla 1279 97.03 97.53 100.0

rhy 1514 84.54 95.89 97.15

M
us

ic

voc 1598 93.18 95.18 97.02

Total 95.81% 97.71%

6.  CONCLUSIONS

In the paper, a novel feature for speech-music 
discrimination, which determines the strength of 
rhythm, is introduced. By including this feature into the 
model developed by our research group [12], the 
performance of the discriminator increases significantly 
for certain types of audio signals. 

The discriminator was tested on more than 3 hours of 
audio data. Average recognition rate is 97.71%. 
Although the discriminator uses just three features and a 
simple classification procedure, results are comparable 
to the results of other more complicated systems. 
However, to prove this, further evaluation of the system 
on a much larger amount of audio data must be carried 
out.  A full comparison between the approach presented 
in this paper and other approaches is to be completed in 
future work.  

REFERENCES

[1] N. O’Connor, et al., “Físchlár: An On-line System 
for Indexing and Browsing of Broadcast 
Television Content”, Proc. ICASSP’01, Salt Lake 
City, UT, pp. 418-421, May 2001.

[2] http://www.cdvp.dcu.ie
[3] J. Saunders, “Real-Time Discrimination of 

Broadcast Speech/Music”, Proc ICASSP’96, 
Vol.II, Atlanta, pp. 993-996, May 1996.

[4] A. Bugatti, et al., “Audio Classification in Speech 
and Music: A Comparison of Different 
Approaches”, Proc. COST Workshop on Image 
Analysis for Multimedia Services, WIAMIS ’01, 
Tampere, Finland, pp. 153-158, May 2001.

[5] E. Scheirer and M. Slaney, “Construction and 
Evaluation of a Robust Multifeature Speech/Music 
Discriminator”, Proc. ICASSP’97, Vol.II, Munich, 
Germany, pp. 1331-1334, April 1997.

[6] J. Panttilä, J. Peltola, and T. Seppänen, “A 
Speech/Music Discriminator – Based Audio 
Browser with a degree of certainity Measure”, 
Proc. Int. Workshop on Inform. Retrieval, IR’01, 
Oulu, Finland, pp. 125-131, Sept. 2001.

[7] T. Zhang, and C.-C. J. Kuo, “Hierarchical 
classification of audio data for archiving and 
retrieving”, Proc. ICASSP’99, Vol. 6, Phoenix, pp. 
3001-3004, Mar. 1999. 

[8] Z. Liu, J. Huang, Y. Wang, and T. Chen, “Audio 
Feature Extraction and Analysis for Scene 
Classification”, Electr. Proc. of IEEE Workshop 
on Multimedia Signal Processing, Princeton, NJ, 
pp.1-6, June 1997.

[9] N. Patel and I. Sethi, Audio Characterization for 
Video Indexing, Proc. SPIE in Storage and 
Retrieval for Still Image and Video Databases, 
Vol.2670, San Jose, 1996, pp. 373-384.

[10] Nakajima Y. et al: “A Fast Audio Classification 
from MPEG Coded Data”, Proc. ICASSP’99, 
Phoenix, Arizona, May 1999.

[11] ISO/IEC 11172-3, Coding of Moving Pictures and 
Associated Audio for Digital Storage Media a up 
to about 1.5 Mbit/s, Part 3: Audio, 1992.

[12] R. Jarina, N. Murphy, N. O’Connor, S. Marlow, 
“Speech-Music Discrimination from MPEG-1 
Bitstream”, In V.V. Kluev, N.E. Mastorakis (Ed.), 
Advances in Signal Processing, Robotics and 
Communications, WSES Press, pp. 174-178, 
2001.

[13] E. Scheirer, “Tempo and Beat Analysis of 
Acoustic Musical Signals”, J. Acoust. Soc. Am. 
103(1), pp. 588-601, Jan. 1998.

[14] J. Foote, and S. Uchihasshi, “The Beat Spectrum: 
A New Approach to Rhythm Analysis”, Electr.
Proc. Int. Conf. on Multimedia & Expo, ICME 
2001, Tokyo, Aug. 2001.

Acknowledgments

This research is supported by the Research Institute for 
Networks and Communications Engineering (RINCE) 
at Dublin City University, and EU Marie Curie 
Development Host funding.


	0-7803-7503-3/02/$17: 
	00 ©2002 IEEE: 0-7803-7503-3/02/$17.00 ©2002 IEEE



