189 research outputs found

    Towards a High Quality Real-Time Graphics Pipeline

    Get PDF
    Modern graphics hardware pipelines create photorealistic images with high geometric complexity in real time. The quality is constantly improving and advanced techniques from feature film visual effects, such as high dynamic range images and support for higher-order surface primitives, have recently been adopted. Visual effect techniques have large computational costs and significant memory bandwidth usage. In this thesis, we identify three problem areas and propose new algorithms that increase the performance of a set of computer graphics techniques. Our main focus is on efficient algorithms for the real-time graphics pipeline, but parts of our research are equally applicable to offline rendering. Our first focus is texture compression, which is a technique to reduce the memory bandwidth usage. The core idea is to store images in small compressed blocks which are sent over the memory bus and are decompressed on-the-fly when accessed. We present compression algorithms for two types of texture formats. High dynamic range images capture environment lighting with luminance differences over a wide intensity range. Normal maps store perturbation vectors for local surface normals, and give the illusion of high geometric surface detail. Our compression formats are tailored to these texture types and have compression ratios of 6:1, high visual fidelity, and low-cost decompression logic. Our second focus is tessellation culling. Culling is a commonly used technique in computer graphics for removing work that does not contribute to the final image, such as completely hidden geometry. By discarding rendering primitives from further processing, substantial arithmetic computations and memory bandwidth can be saved. Modern graphics processing units include flexible tessellation stages, where rendering primitives are subdivided for increased geometric detail. Images with highly detailed models can be synthesized, but the incurred cost is significant. We have devised a simple remapping technique that allowsfor better tessellation distribution in screen space. Furthermore, we present programmable tessellation culling, where bounding volumes for displaced geometry are computed and used to conservatively test if a primitive can be discarded before tessellation. We introduce a general tessellation culling framework, and an optimized algorithm for rendering of displaced BĂ©zier patches, which is expected to be a common use case for graphics hardware tessellation. Our third and final focus is forward-looking, and relates to efficient algorithms for stochastic rasterization, a rendering technique where camera effects such as depth of field and motion blur can be faithfully simulated. We extend a graphics pipeline with stochastic rasterization in spatio-temporal space and show that stochastic motion blur can be rendered with rather modest pipeline modifications. Furthermore, backface culling algorithms for motion blur and depth of field rendering are presented, which are directly applicable to stochastic rasterization. Hopefully, our work in this field brings us closer to high quality real-time stochastic rendering

    Sparse Volumetric Deformation

    Get PDF
    Volume rendering is becoming increasingly popular as applications require realistic solid shape representations with seamless texture mapping and accurate filtering. However rendering sparse volumetric data is difficult because of the limited memory and processing capabilities of current hardware. To address these limitations, the volumetric information can be stored at progressive resolutions in the hierarchical branches of a tree structure, and sampled according to the region of interest. This means that only a partial region of the full dataset is processed, and therefore massive volumetric scenes can be rendered efficiently. The problem with this approach is that it currently only supports static scenes. This is because it is difficult to accurately deform massive amounts of volume elements and reconstruct the scene hierarchy in real-time. Another problem is that deformation operations distort the shape where more than one volume element tries to occupy the same location, and similarly gaps occur where deformation stretches the elements further than one discrete location. It is also challenging to efficiently support sophisticated deformations at hierarchical resolutions, such as character skinning or physically based animation. These types of deformation are expensive and require a control structure (for example a cage or skeleton) that maps to a set of features to accelerate the deformation process. The problems with this technique are that the varying volume hierarchy reflects different feature sizes, and manipulating the features at the original resolution is too expensive; therefore the control structure must also hierarchically capture features according to the varying volumetric resolution. This thesis investigates the area of deforming and rendering massive amounts of dynamic volumetric content. The proposed approach efficiently deforms hierarchical volume elements without introducing artifacts and supports both ray casting and rasterization renderers. This enables light transport to be modeled both accurately and efficiently with applications in the fields of real-time rendering and computer animation. Sophisticated volumetric deformation, including character animation, is also supported in real-time. This is achieved by automatically generating a control skeleton which is mapped to the varying feature resolution of the volume hierarchy. The output deformations are demonstrated in massive dynamic volumetric scenes

    Faster data structures and graphics hardware techniques for high performance rendering

    Get PDF
    Computer generated imagery is used in a wide range of disciplines, each with different requirements. As an example, real-time applications such as computer games have completely different restrictions and demands than offline rendering of feature films. A game has to render quickly using only limited resources, yet present visually adequate images. Film and visual effects rendering may not have strict time requirements but are still required to render efficiently utilizing huge render systems with hundreds or even thousands of CPU cores. In real-time rendering, with limited time and hardware resources, it is always important to produce as high rendering quality as possible given the constraints available. The first paper in this thesis presents an analytical hardware model together with a feed-back system that guarantees the highest level of image quality subject to a limited time budget. As graphics processing units grow more powerful, power consumption becomes a critical issue. Smaller handheld devices have only a limited source of energy, their battery, and both small devices and high-end hardware are required to minimize energy consumption not to overheat. The second paper presents experiments and analysis which consider power usage across a range of real-time rendering algorithms and shadow algorithms executed on high-end, integrated and handheld hardware. Computing accurate reflections and refractions effects has long been considered available only in offline rendering where time isn’t a constraint. The third paper presents a hybrid approach, utilizing the speed of real-time rendering algorithms and hardware with the quality of offline methods to render high quality reflections and refractions in real-time. The fourth and fifth paper present improvements in construction time and quality of Bounding Volume Hierarchies (BVH). Building BVHs faster reduces rendering time in offline rendering and brings ray tracing a step closer towards a feasible real-time approach. Bonsai, presented in the fourth paper, constructs BVHs on CPUs faster than contemporary competing algorithms and produces BVHs of a very high quality. Following Bonsai, the fifth paper presents an algorithm that refines BVH construction by allowing triangles to be split. Although splitting triangles increases construction time, it generally allows for higher quality BVHs. The fifth paper introduces a triangle splitting BVH construction approach that builds BVHs with quality on a par with an earlier high quality splitting algorithm. However, the method presented in paper five is several times faster in construction time

    Point based graphics rendering with unified scalability solutions.

    Get PDF
    Standard real-time 3D graphics rendering algorithms use brute force polygon rendering, with complexity linear in the number of polygons and little regard for limiting processing to data that contributes to the image. Modern hardware can now render smaller scenes to pixel levels of detail, relaxing surface connectivity requirements. Sub-linear scalability optimizations are typically self-contained, requiring specific data structures, without shared functions and data. A new point based rendering algorithm 'Canopy' is investigated that combines multiple typically sub-linear scalability solutions, using a small core of data structures. Specifically, locale management, hierarchical view volume culling, backface culling, occlusion culling, level of detail and depth ordering are addressed. To demonstrate versatility further, shadows and collision detection are examined. Polygon models are voxelized with interpolated attributes to provide points. A scene tree is constructed, based on a BSP tree of points, with compressed attributes. The scene tree is embedded in a compressed, partitioned, procedurally based scene graph architecture that mimics conventional systems with groups, instancing, inlines and basic read on demand rendering from backing store. Hierarchical scene tree refinement constructs an image tree image space equivalent, with object space scene node points projected, forming image node equivalents. An image graph of image nodes is maintained, describing image and object space occlusion relationships, hierarchically refined with front to back ordering to a specified threshold whilst occlusion culling with occluder fusion. Visible nodes at medium levels of detail are refined further to rasterization scales. Occlusion culling defines a set of visible nodes that can support caching for temporal coherence. Occlusion culling is approximate, possibly not suiting critical applications. Qualities and performance are tested against standard rendering. Although the algorithm has a 0(f) upper bound in the scene sizef, it is shown to practically scale sub-linearly. Scenes with several hundred billion polygons conventionally, are rendered at interactive frame rates with minimal graphics hardware support

    Visualization of Industrial Structures with Implicit GPU Primitives

    Get PDF
    International audienceWe present a method to interactively visualize large industrial models by replacing most triangles with implicit GPU primitives: cylinders, cone and torus slices. After a reverse-engineering process that recovers these primitives from triangle meshes, we encode their implicit parameters in a texture that is sent to the GPU. In rendering time, the implicit primitives are visualized seamlessly with other triangles in the scene. The method was tested on two massive industrial models, achieving better performance and image quality while reducing memory use

    Efficient and High-Quality Rendering of Higher-Order Geometric Data Representations

    Get PDF
    Computer-Aided Design (CAD) bezeichnet den Entwurf industrieller Produkte mit Hilfe von virtuellen 3D Modellen. Ein CAD-Modell besteht aus parametrischen Kurven und Flächen, in den meisten Fällen non-uniform rational B-Splines (NURBS). Diese mathematische Beschreibung wird ebenfalls zur Analyse, Optimierung und Präsentation des Modells verwendet. In jeder dieser Entwicklungsphasen wird eine unterschiedliche visuelle Darstellung benötigt, um den entsprechenden Nutzern ein geeignetes Feedback zu geben. Designer bevorzugen beispielsweise illustrative oder realistische Darstellungen, Ingenieure benötigen eine verständliche Visualisierung der Simulationsergebnisse, während eine immersive 3D Darstellung bei einer Benutzbarkeitsanalyse oder der Designauswahl hilfreich sein kann. Die interaktive Darstellung von NURBS-Modellen und -Simulationsdaten ist jedoch aufgrund des hohen Rechenaufwandes und der eingeschränkten Hardwareunterstützung eine große Herausforderung. Diese Arbeit stellt vier neuartige Verfahren vor, welche sich mit der interaktiven Darstellung von NURBS-Modellen und Simulationensdaten befassen. Die vorgestellten Algorithmen nutzen neue Fähigkeiten aktueller Grafikkarten aus, um den Stand der Technik bezüglich Qualität, Effizienz und Darstellungsgeschwindigkeit zu verbessern. Zwei dieser Verfahren befassen sich mit der direkten Darstellung der parametrischen Beschreibung ohne Approximationen oder zeitaufwändige Vorberechnungen. Die dabei vorgestellten Datenstrukturen und Algorithmen ermöglichen die effiziente Unterteilung, Klassifizierung, Tessellierung und Darstellung getrimmter NURBS-Flächen und einen interaktiven Ray-Casting-Algorithmus für die Isoflächenvisualisierung von NURBSbasierten isogeometrischen Analysen. Die weiteren zwei Verfahren beschreiben zum einen das vielseitige Konzept der programmierbaren Transparenz für illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle und zum anderen eine neue hybride Methode zur Reprojektion halbtransparenter und undurchsichtiger Bildinformation für die Beschleunigung der Erzeugung von stereoskopischen Bildpaaren. Die beiden letztgenannten Ansätze basieren auf rasterisierter Geometrie und sind somit ebenfalls für normale Dreiecksmodelle anwendbar, wodurch die Arbeiten auch einen wichtigen Beitrag in den Bereichen der Computergrafik und der virtuellen Realität darstellen. Die Auswertung der Arbeit wurde mit großen, realen NURBS-Datensätzen durchgeführt. Die Resultate zeigen, dass die direkte Darstellung auf Grundlage der parametrischen Beschreibung mit interaktiven Bildwiederholraten und in subpixelgenauer Qualität möglich ist. Die Einführung programmierbarer Transparenz ermöglicht zudem die Umsetzung kollaborativer 3D Interaktionstechniken für die Exploration der Modelle in virtuellenUmgebungen sowie illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle. Die Erzeugung stereoskopischer Bildpaare für die interaktive Visualisierung auf 3D Displays konnte beschleunigt werden. Diese messbare Verbesserung wurde zudem im Rahmen einer Nutzerstudie als wahrnehmbar und vorteilhaft befunden.In computer-aided design (CAD), industrial products are designed using a virtual 3D model. A CAD model typically consists of curves and surfaces in a parametric representation, in most cases, non-uniform rational B-splines (NURBS). The same representation is also used for the analysis, optimization and presentation of the model. In each phase of this process, different visualizations are required to provide an appropriate user feedback. Designers work with illustrative and realistic renderings, engineers need a comprehensible visualization of the simulation results, and usability studies or product presentations benefit from using a 3D display. However, the interactive visualization of NURBS models and corresponding physical simulations is a challenging task because of the computational complexity and the limited graphics hardware support. This thesis proposes four novel rendering approaches that improve the interactive visualization of CAD models and their analysis. The presented algorithms exploit latest graphics hardware capabilities to advance the state-of-the-art in terms of quality, efficiency and performance. In particular, two approaches describe the direct rendering of the parametric representation without precomputed approximations and timeconsuming pre-processing steps. New data structures and algorithms are presented for the efficient partition, classification, tessellation, and rendering of trimmed NURBS surfaces as well as the first direct isosurface ray-casting approach for NURBS-based isogeometric analysis. The other two approaches introduce the versatile concept of programmable order-independent semi-transparency for the illustrative and comprehensible visualization of depth-complex CAD models, and a novel method for the hybrid reprojection of opaque and semi-transparent image information to accelerate stereoscopic rendering. Both approaches are also applicable to standard polygonal geometry which contributes to the computer graphics and virtual reality research communities. The evaluation is based on real-world NURBS-based models and simulation data. The results show that rendering can be performed directly on the underlying parametric representation with interactive frame rates and subpixel-precise image results. The computational costs of additional visualization effects, such as semi-transparency and stereoscopic rendering, are reduced to maintain interactive frame rates. The benefit of this performance gain was confirmed by quantitative measurements and a pilot user study

    Advanced 3D Rendering : Adaptive Caustic Maps with GPGPU

    Get PDF
    Graphics researchers have long studied real-time caustic rendering. The state-of-the-art technique Adaptive Caustic Maps provides a novel way to avoid densely sampling photons during a rasterization pass, and instead adaptively emits photons using a deferred shading pass. In this project, we present a variation of adaptive caustic maps for real-time rendering of caustics. Our algorithm is conceptually similar to Adaptive Caustic Maps but has a different implementation based on the general-purpose computing pipeline provided by OpenGL version 4.3. Our approach accelerates the photon splitting process using compute shaders and bypasses various other performance overheads, ultimately speeding up photon generation considerably

    Efficient From-Point Visibility for Global Illumination in Virtual Scenes with Participating Media

    Get PDF
    Sichtbarkeitsbestimmung ist einer der fundamentalen Bausteine fotorealistischer Bildsynthese. Da die Berechnung der Sichtbarkeit allerdings äußerst kostspielig zu berechnen ist, wird nahezu die gesamte Berechnungszeit darauf verwendet. In dieser Arbeit stellen wir neue Methoden zur Speicherung, Berechnung und Approximation von Sichtbarkeit in Szenen mit streuenden Medien vor, die die Berechnung erheblich beschleunigen, dabei trotzdem qualitativ hochwertige und artefaktfreie Ergebnisse liefern
    • …
    corecore