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Abstract  

Graphics researchers have long studied real-time caustic rendering. The state-of-the-

art technique Adaptive Caustic Maps provides a novel way to avoid densely sampling 

photons during a rasterization pass, and instead adaptively emits photons using a deferred 

shading pass. In this project, we present a variation of adaptive caustic maps for real-

time rendering of caustics. Our algorithm is conceptually similar to Adaptive Caustic 

Maps but has a different implementation based on the general-purpose computing 

pipeline provided by OpenGL version 4.3. Our approach accelerates the photon splitting 

process using compute shaders and bypasses various other performance overheads, 

ultimately speeding up photon generation considerably.  
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Introduction 

Video games have become increasingly popular. “The industry is at around $22 

billion for 2008 (conservative estimate) in the US1 and $30 to $40 billion globally,” 

while “The movie industry is at $9.5 billion (US)2 and $27 billion globally3.” Due to the 

inter-disciplinary nature of video game development, video games have also brought 

benefits to the concept art, 3d modeling, and music industries. 

 

Computer graphics plays a key role in the presentation of video games. It is the sole 

source of stimuli to the players’ visual perception. As a result, many game developers 

continuously seek to improve the visual realism in their games. Due to the interactive 

nature of video games, graphics must be presented at an interactive frame rate (25 FPS 

minimum). Therefore rendering speed is highly valued for any rendering technique in 

the field of real-time computer graphics. 

 

Burdened with its firm requirement of high rendering speed and the limited 

processing speed of current rendering hardware, real-time rendering forces graphics 

researchers to seek rendering techniques that provide both high image quality and fast 

                                                           
1 Frank Caron, June 18 2008. Ars Technica. http://arstechnica.com/news.ars/post/20080618-gaming-expected-to-be-

a-68-billion-business-by-2012.html 
2 Thomas Mennecke, March 6, 2007. Slyck. 

http://www.slyck.com/story1436_MPAA_Reports_Record_Movie_Sales_in_2006 
3 Reuters, March 5 2008. ABC News. http://www.abc.net.au/news/stories/2008/03/06/2181568.htm 
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rendering speed. Nonetheless, real-time rendering is steadily heading towards 

photorealism with interactivity. For example, with Enlighten4, a Global Illumination (GI) 

plug-in developed by Geomerics, it is now possible to simulate highly realistic first-

bounce reflective light in real-time. Enlighten can make dynamic lights look highly 

realistic, however, as an example of commercial GI solution, Enlighten is limited to 

computing GI for diffuse transport 5 . The rendering of curved refractive, reflective 

surfaces with global illumination remains unsolved. 

 

One key component of rendering curved refractive, reflective surfaces is caustics. 

In Optics, a caustic or caustic network is the envelope of light rays reflected or refracted 

by a curved surface or object6. Figure. 1 shows 4 glass spheres rendered with various 

refraction indices. Clearly caustics contributes a lot to differentiating refractive and 

opaque objects, as well as improving the realism of the rendering. 

 

Figure 1: Example of caustics formed by refractive objects 

                                                           
4 Geomeric, an ARM company, 2014. http://www.geomerics.com/enlighten/ 
5 Jesper Mortensen. September 18, 2014. Technology in Unity 5, http://blogs.unity3d.com/2014/09/18/global-

illumination-in-unity-5/ 
6 Lynch DK and Livingston W, 2001. Color and Light in Nature. Cambridge University Press. ISBN 978-0-521-

77504-5. Chapter 3.16 The caustic network, Google books preview 
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Figure. 2 is a photograph of an underwater scene; again clearly shows caustics is 

essential for the rendering of photorealistic computer images. 

 

Figure 2: Photograph of an underwater scene 

Many existing techniques provide rendering of caustics in real-time. There are 

techniques that use "image-space approximations [OB07, Wym05], object-space 

approximations [EMDT06, RH06], and ray-based [KBW06, SZS*08] approaches to 

allow applications to quickly simulate simple reflections and refractions, though fully 

accurate renderings generally remain too costly.” 

 

Adaptive caustic maps [Wym09], provides a novel technique for adaptively 

sampling photons, allowing dynamic quality control for applications and at the same 

time improving rendering speed. It uses a hierarchical sampling method to avoid 

processing extraneous photons, thus greatly reduces the amount of unnecessary 

computation required when compared to basic caustic maps at the same image quality. 

Though much faster than before, adaptive caustic maps remains too costly for video 

games. 
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The Goal of this Major Qualifying Project (MQP)In this project, we 

present a variation of adaptive caustic maps for real-time rendering of caustics. Our 

algorithm is conceptually similar to adaptive caustic maps: traversing through a buffer 

of sample points, splitting them into more photons, and finally splatting photons onto a 

caustics texture. However, by using the general-purpose computing pipeline provided by 

OpenGL version 4.3, our approach uses compute shaders to perform the traversal process, 

and drawing indirectly using indirect command buffer to avoid CPU-side overheads. 

 

The goal of this project is to use graphics hardware to solve the “poor parallelism 

during early traversal steps, and high memory consumption for photon storage” [Wym09] 

and to reduce the CPU-side overhead of Adaptive Caustic Maps. At the end our approach 

achieved great parallelism through compute shaders and removed CPU-side overhead 

completely. 
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Background 

Graphics researchers have long studied Global Illumination algorithms. “The earliest 

path tracing techniques [Kaj86] demonstrated caustics from reflective and refractive 

objects.” Unfortunately, computational costs prohibit real time use of path tracing for 

interactive media and games, and most fast global illumination algorithms restrict scenes 

to diffuse materials. 

 

A number of researchers have already come up with advanced techniques to allow 

interactive rasterization of non-diffuse materials. For the purpose of this project, basic 

Caustic Mapping and Adaptive Caustic Maps will be illustrated to help provide a 

comparison to our project. For both techniques, when rendering caustics, scene geometry 

generally is separated into two categories, receiver geometry and refractor geometry. The 

receiver geometry receives the computed photon texture, e.g. floors, walls, and other 

background objects. The refractor geometry refract the photons that hit the geometry to 

create photon density map, e.g. glass spheres, metallic rings. 

 

Basic Caustic Mapping 

Below is the most basic, 3-step Caustic Mapping, taken from Caustics Mapping: An 

Image-Space Technique for Real-Time Caustics by Musawir et al. [Mus07]: 

1. Obtain position texture of the receiver geometry from light’s point of view. 
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2. Obtain position and front and back normal textures of the refractor geometry from 

light’s point of view. 

3. Construct caustic map texture based on the three textures obtained above. 

 

Figure 3: The caustic mapping process 

Figure 3 illustrates the procedure of caustic mapping. There are always 2 refractions 

per light ray, because when light ray hits the refractive object, it is conceptually the same 

as entering the object. Every ray that enters a refractive object must also exit the refractive 

object to be captured by the receiver object. Therefore when rendering caustics with high 

fidelity, both front and back normal textures are needed for the correct calculation of 

refraction. 

 

 Musawir et al. also provide detailed explanation of the mathematics behind caustic 

mapping. Let v be the direction of the light ray, we can then access the light-view front 
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normal texture to obtain the normal vector n. After refraction, the light ray r is produced. 

The direction of point P from the light is thus: 

 

Equation 1: Point of intersection of refracted ray [Mus07] 

Although it is possible to render refractor position textures to find the root of the 

intersection, the depth values from normal textures can be utilized for obtaining a much 

finer result. This method is also inherently fast because depth textures can be added to the 

normal textures and handled by OpenGL: 

 

 

 

 

Equation 2: Calculating front and back face intersection with depth values 

In order to calculate the final exiting ray, one more refraction is needed. We repeat 

the process of calculating P, but instead use the new ray r as the incident ray direction 

and n’ as the new normal vector to obtain r’. The back face refraction in the Caustic 

Mapping algorithm uses an iterative method derived from the Newton-Raphson algorithm 

for calculating the intersection with the receiver object, thus the distance d’ can be derived 

as follows: [Mus07] 

 

Equation 3: The Newton-Raphson algorithm [Mus07] 

Equation 3 shows the Newton-Raphson algorithm for iteratively calculating the 
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distance between two surfaces. We can thus obtain P’ through plugging in r’, and d’ to 

Equation 1.  

 

Musawir et al. pointed out that “frustum limitation and aliasing” [Mus07] are the 2 

main problems with this technique. Specifically the first issue pertaining to the algorithm 

is the view frustum limitation during rasterization of the caustic-map. Musawir et al. 

mentioned that this problem is “exactly like that of shadow mapping with point lights.” 

[Mus07] If the caustics are formed outside the light’s view frustum, they will not be 

captured on the caustic-map texture. Using an environment caustic map solves this 

problem at an overhead cost of rendering extra textures. However, Musawir et al. 

suggested that the dual paraboloid mapping technique proposed by Heidrich [Hei98], 

which has been applied to shadow mapping for omnidirectional light sources by Brabec 

et al. [Bra02], can also be utilized. 

 

The second issue with Caustic Mapping is aliasing. Since “aliasing is inherent in all 

image-space algorithms,” [Mus07], “the gaps between the point splats give a non-

continuous appearance to the caustics.” [Mus07] However, according to the author, “if 

there is a sufficient number of vertices in the refractive vertex grid, the gaps are 

significantly reduced.” [Mus07] 

 

Though unmentioned by Musawir et al., we found Caustic Mapping inherently 
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suffers from another problem. Since photons are first computed at some fixed sampling 

rate and either processed or discarded after determining photon irrelevancy, depending 

on the scene geometry, unused photons can waste a lot of memory. As illustrated by 

Figure 4, though the red photons are unused and will be discarded after creating the 

caustic map, the algorithm still have to first create a fixed-size photon buffer than contains 

lots of unused photons: 

  

 

Figure 4: Photon buffer at resolution of 162 with many unused photons 

Based on our estimation, if the light-view textures are rendered at 10242 resolution, 

considering the frustum limitation, rendering the dragon model from the view shown in 

Figure 4 will produce around 200,000 ~ 500,000 photons. Considering the image-space 

traversal of all texels in a 10242 resolution texture requires 1,048,576 iterations, about 

50% ~ 80% of the samples will be discarded. As a result, more than half of the sampling 

time will be wasted and not reflected in the final image. 
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Temporal incoherency is another problem that we found with Caustic Mapping in 

interactive applications. The conclusion was that because Caustic Mapping only uses 2 

layers of normal textures, the initial sample obtained from rendering the refractor 

geometry is crucial to the image quality. We noticed that fidelity of the image decreases 

if there are many overlapping faces. When the dragon model is rendered from its side, we 

can obtain normal textures similar to Figure 5: 

     

Figure 5: Normal textures of the dragon model rendered from the side 

The side view camera helps minimizing the number of overlapping faces in the normal 

textures, therefore it helps converge the rendered result to ground truth. As shown in 

Figure 5, the result texture contains noticeable amount of caustics: 
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Figure 6: Result of rendering the dragon from the side 

On the other hand, certain camera views can increase the number of overlapping faces, 

and reduce the surface area of valid normal texels. Figure 7 shows the dragon rendered 

from the back. In this case, the normal textures contain many overlapping faces that 

cannot be accurately captured by 2 normal textures. This would not only impact the 

photon traversal process, but also reduce the number of samples to start with. 

     

Figure 7: Normal textures of the dragon model rendered from the back  

Figure 8 shows the result from using normal textures rendered from the back. Clearly the 
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head and neck part of the normal textures cannot not provide the number of samples 

required to generate enough valid photons for a satisfying caustic texture. 

     

Figure 8: Result of rendering the dragon from the back 

 

Adaptive Caustic Maps 

The state-of-the-art Adaptive Caustic Maps [Wym09] overcomes the aliasing 

problem and the fix-sized photon buffer problem of Caustic Mapping through “emitting 

a few photons, and adaptively refining with additional photons until the desired quality is 

attained.” [Wym09] Algorithmically, since Wyman el al. propose to adaptively splitting 

photons, “instead of first creating a photon buffer and then processing it to generate a 

caustic map, these two steps become coupled.” [Wym09] Adaptive Caustic Maps “never 

creates an explicit photon buffer. Instead, an adaptive deferred shading pass that point-

samples the geometry buffers allows us to emit photons adaptively.” [Wym09] 
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Figure 9: Workflow of Adaptive Caustic Maps 

There is only one step in generating photons with Adaptive Caustic Maps. However 

it is up to the application how many times it would like to run the same step to increase 

the number of photons in the photon buffer. Figure 9 illustrates the basic workflow of 

executing the photon splitting of Adaptive Caustic Maps three times with a 42 kernel to 

start with. Since only the valid photons from the previous pass will be used to split 

photons in a later iteration, the amount of unused photons generated is much less than 

basic Caustic Mapping. Also because Adaptive Caustic Maps does not process all normal 

texels in one shader pass, it requires the refractor normal textures to have hardware 

accelerated mip-maps enabled. The mip-map enabled refractor normal textures are used 
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so the normal texels can be traversed as a quadtree, allowing the algorithm to greatly 

reduce extraneous photons. 

 

 As a result, Adaptive caustic maps reduces the overhead from processing extraneous 

photons and also allows applications to dynamically control of the level of detail for 

caustic map, ultimately making basic Caustic Mapping obsolete. While this technique 

made caustic mapping practical in real-time, it is still not fast enough for interactive media 

and games. 

 

Problems with Adaptive Caustic Maps 

There are three main points of concern with Adaptive Caustic Maps that this project 

addresses. Wyman et al. mentioned the first two in the paper: 1) “poor parallelism during 

early traversal steps, and 2) high memory consumption for photon storage provided 

challenges”[Wym09]. In addition, we also found an extant CPU-side overhead that was 

inevitable when Adaptive Caustic Maps was published. 

 

Adaptive Caustic Maps makes heavy use of OpenGL “with the transform feedback 

and geometry shader extensions.”[Wym09] Wyman et al. mentioned that “characteristics 

of the GPU stream processing model affected numerous design choices for Adaptive 

Caustic Maps as well as performance.”[Wym09]. Clearly the GPU stream processing 

model with transform feedback suffers from poor parallelism and is imperfect for photon 
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generation, which results in an impact on the performance of the algorithm. 

 

Figure 10: OpenGL rendering stages with transform feedback 

Figure 10 illustrates the rendering stages of OpenGL with transform feedback 

enabled. Transform feedback is “the process of capturing Primitives generated by the 

Vertex Processing step(s), recording data from those primitives into Buffer Objects.”7 

Transform feedback allows an application to “preserve the post-transform rendering state 

of an object and resubmit this data multiple times.”8 It made the use of vertex and 

geometry shader more flexible, allowing vertex and geometry shader to output data 

without a-priori knowledge of the output buffer size. 

 

Since the number of output photons for Adaptive Caustic Maps is determined during 

                                                           
7 The Khronos Group, 2010-2014. OpenGL Wiki. https://www.opengl.org/wiki/Transform_Feedback 
8 The Khronos Group, 2010-2014. OpenGL Wiki. https://www.opengl.org/wiki/Transform_Feedback 
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rendering, transform feedback comes in play where after executing the geometry shading 

stage, it gives the application a message containing the number of primitives generated 

during transform feedback. With this information, the application can perform a new 

photon traversal iteration with the output from the last iteration.  

 

Due to the implementation of the GPU stream processing model of OpenGL, 

transform feedback requires that the application always binds input and output buffers to 

different buffer targets. As shown in Figure 9, Adaptive Caustic Maps must flip-flop 

between 2 buffers during photon splitting. This not only introduces increasingly heavy 

CPU-side overheads, but also requires two large buffers that are big enough to contain all 

information generated from the last iteration. Before each new iteration, the application 

must bind input and output buffers to new buffer targets, therefore the more iterations of 

traversal the application decides to perform, the heavier the CPU-side overhead becomes. 

 

Poor parallelism also occurs because when sampling a photon, Adaptive Caustic 

Maps must use the vertex shader to pass a point primitive to the geometry shader. 

OpenGL strictly requires that a vertex shader can only process one vertex at a time, 

making loop unroll impossible to perform. 

 

In addition, Adaptive Caustic Maps requires the application to pass in new drawing 

arguments and setting appropriate uniforms for sampling, which also becomes an 
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increasingly expensive CPU-side overhead as the number of iteration increases. 

 

Our approach is conceptually similar to Adaptive Caustic Maps; in fact the math 

involved is nearly identical. We also use hardware accelerated mip-maps on normal 

textures and perform quad-tree traversal to reduce extraneous photons as Adaptive 

Caustic Maps. However, instead of using the geometry shader and transform feedback, 

we use the new general-purpose processing pipeline of OpenGL to perform the most 

expensive photon traversal process instead of using geometry shader with transform 

feedback. Our approach solves two main problems of Adaptive Caustic Maps with great 

parallelism and zero CPU-side overhead. 

 

Compute Shader 

In order to understand the new traversal process, it is crucial to have a basic 

understanding of the compute shader. In 2012, OpenGL 4.3 introduced arbitrary compute 

shaders. It is revolutionary to performing general-purpose computation on the GPU, 

allowing highly optimized, parallel tasking for caustic photon traversal. It allows 

applications to smoothly pass the data from general-purpose computing pipeline to the 

drawing pipeline, ultimately benefiting any real-time rendering algorithm that can make 

use of general-purpose computation. In the case of caustic mapping, photon splitting is a 

perfect example of a general-purpose computation task that can become highly parallel 

through the use of compute shader.  
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Compute shaders operate differently from other shader stages and is completely 

separate from the drawing pipeline. While all of the other shaders have a well-defined set 

of input and output values, though some build-in and some user-defined, compute shader 

does not. When an application executes a compute shader, it provides the compute shader 

with a set of parameters specifying the number of invocations to execute the program. 

 

In its most basic form, if a very simple compute shader, such as one that increments 

a variable atomically by 1, is asked by the application to execute with 240 invocations, 

the variable will be incremented by 240. However a real compute shader is slightly 

different. A real compute shader has the concept of a work group (a grouping of GPU 

threads); and an application can specify the number of work groups to execute. 

 

While the number of work groups that a compute shader is executed is defined by the 

application, the work groups are actually organized in three dimensional space. Therefore 

the application must provide the X, Y, and Z values specifying the “compute space” for 

the compute shader. An example would be splitting 240 into X=24, Y=10, and Z = 1. As 

a result, an application can specify the number work groups of a compute space, a 

compute shader can define the number of “workers” in a work group. In addition, every 

compute shader has a three-dimensional local size, again customizable via X, Y, and Z 

values, specifying the number of invocations triggered by a work group. As a result, the 
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total invocation count must take into account the number of work groups and the size of 

work groups. 

 

Figure 11: Compute shader work groups9 

Figure. 11 illustrates an example of a compute space specification. There are 4 by 5, a 

total of 20 work groups. In addition, the compute shader defines that each work group 

has a size of 4 by 3 by 1, a total of 12 invocations. Therefore each time this compute 

task is dispatched, the program will be run a total of 240 times. 

 

 Since the application can freely control how many times a compute shader is 

executed, it should be simple to imagine how to traverse through a 642 sampling kernel. 

One may choose to distribute the 642 sampling invocations by any appropriate work 

                                                           
9The Khronos Group, 2010-2014. http://www.slideshare.net/Khronos_Group/how-to-use-and-teach-opengl-
compute-shaders 
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group specification, for the purpose of this project, we chose to keep the Z size at 1 for 

ease of visualization. 

 

 One potential problem with working with compute shaders is the compute space 

might end up dispatching more invocations than needed. If the application needs to 

iterate through a total of 17 elements in a buffer, there is no value of integer X such that 

X2 = 17, because 17 is a prime number. The least possible resolution for a texture that 

contains more than 17 pixels is 52 = 25. Since the application only requires 17 

computations, the extra 8 invocations must return immediately and not change any data. 

One way to accomplish this is to use the OpenGL compute shader built-in inputs to 

calculate the global invocation ID prior to performing a task, thereby giving the 25 

invocations IDs from 0 to 24 respectively. With a globally unique ID for each 

invocation, to achieve a total of 17 invocations, the compute shader can set any 

invocation with an ID equal to or higher than 17 to immediately return. 

 

Indirect Dispatch 

 Before stepping into the implementation, it is also crucial to know about the indirect 

compute dispatch feature. As described above, the application can specify the size of the 

compute workspace, which means the CPU must calculate the number of work groups 

needed and send this data to the GPU. However during its calculation and data transfer, 

the GPU stands completely idle, as a result making this time period a CPU-side overhead. 
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To combat this issue, OpenGL provides a feature to let the GPU autonomously dispatch 

a compute task, in which case the application need not to specify the number of work 

groups to execute. To use this feature, the application must bind a buffer containing 3 

unsigned integers to the indirect command buffer target. Once the buffer is created, it is 

up to the shaders to decide how to change the data in the buffer, therefore making it 

possible to autonomously use the GPU to determine the workspace size for a compute 

shader. 

 

Indirect Draw 

 Similar to indirect dispatch, the indirect draw feature allows the GPU to 

autonomously draw without passing arguments from the CPU. Our approach uses indirect 

draw to further reduce the CPU-size overhead. To use this feature, the application must 

bind a buffer containing 4 unsigned integers to the indirect command buffer target. Once 

the buffer is created, the GPU can dynamically change the vertex count to correspond to 

the current drawing settings.  
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Methodology 

In summary, our approach uses compute shaders and indirect draw to replace 

geometry shader and transform feedback used by Adaptive Caustic Maps. We reckon that 

the repetitive task of computing millions of photons through Adaptive Caustic Maps 

renders the OpenGL drawing pipeline unfit. The iterative photon splitting of the original 

Adaptive Caustic Maps, on the other hand, is a perfect example of a general-purpose 

computation task that can be accelerated with compute shaders. In addition, with compute 

shaders, it is possible to read and write from the same buffer using atomic operations, 

avoiding flip-flopping between buffers. In the end, our approach solves two main 

problems of Adaptive Caustic Maps with great parallelism and zero CPU-side overhead. 
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Figure 12: Workflow of our approach with compute shaders 

Figure 12 illustrates the workflow of our approach. As opposed to the original Adaptive 

Caustic Maps, our approach uses only one photon buffer. It is made possible because 

with proper synchronization, compute shaders can read and write to the same buffer. As 

a result, our approach does not have flip-flopping between input and output buffers like 

the original implementation, thus removes the CPU-side overhead from re-binding 

buffers completely. 

 

 We also use the compute shader work groups to achieve parallelism during photon 
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traversal. Since a compute shader dispatch can specify the number of work groups and 

the size of a work group, it inherently allows the shader to perform loop unroll on the 

repetitive sampling operation. 

 

Figure 13: Traversing a 42 kernel with 4 work groups 

 Figure 13 illustrates traversing a 42 photon buffer with 4 work groups. Instead of 

dispatching 16 work groups, we can choose to increase the size of the work group to 

obtain high parallelism. It is important to notices that with the work group size being 

2x2x1, the number of work groups to dispatch is 2x2 instead of 4x4. In the end, we 

found parallelism through compute shader work groups provides a major performance 

increase. We also provide performance analysis on different work group sizes in the 

results section. 

 

Synchronization of invocations in the compute shader is conceptually similar to 
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multi-threaded programming. OpenGL provides an atomic counter feature that can be 

used to coordinate between different invocations. Upon validation of a photon, the 

invocation handling that photon will increment the atomic counter, so that no other 

invocation will use the old atomic counter value for calculating the write index. 
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Implementation 

 With a basic understanding of the compute shader and indirect dispatch, it is possible 

to go through the caustic map generation process. 

 

Pre-Traversal Initialization 

First, the application must create a structure containing 3 unsigned integers that can be 

used as an indirect command buffer, as shown in Figure 14: 

 

Figure 14: Structure of the indirect command buffer  

Then, the application must create a sampling kernel on initialization. Figure 15 shows an 

example of creating a two-dimensional sampling kernel with the x and y values 

representing the u and v coordinates for texture sampling: 
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Figure 15: Sampling kernel initialization  

After generating the sampling kernel, we immediately copy the data to a photon buffer as 

if these sampling points are actual photons. The photon buffer is a 1-demensional array 

used to store sampling points that will be used in the splatting process, as shown in Figure 

16: 

 

Figure 16: Photon buffer layout 

 The actual photon traversal process is broken up into 3 stages, each representing a 

complete compute shader program: initialization, traversal, and post-traversal statistics. 

 

 The initialization shader is run once per frame; its sole purpose is to initialize data 

buffers such as the indirect command buffer and various other parameters required for 

photon traversal completely on the GPU to minimize CPU-size overhead. For example, 

if the application decides to deploy a 642 sampling kernel, the initialization shader can set 

the primitive count to 4096, and use this number to set the values in the indirect command 

buffer to X=64, Y=64, Z=1, so that the traversal shader can be dispatched, again without 

sending any uniform data from the CPU to the GPU. Figure. 17 shows a code snippet of 

the initialization shader used in the demo program: 
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Figure 17: The initialization shader 

Notice the num_groups_x and num_groups_y in the ACMIndirectCommandBuffer are 

set to 8 and 8, which seems to not produce the right amount of photons. It is because the 

traversal shader uses a work group of size 8 by 8 by 1, therefore ultimately the number of 

invocations is 84=4096. 

 

 Since our approach uses one photon buffer for all iterations, read and write offsets 

are required to into the 1-dimensional photon buffer correctly. In the first traversal, the 

read offset is 0 because the traversal shader should read the sampling points defined by 

the kernel generated during application initialization. The write offset is 4096 because the 

application stores the 642 sampling point grid into a 1-dimensional array, and in order to 
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utilize all sampling points in the kernel, none should ever be over-written. To achieve so 

we append new data to the end of the buffer instead of overwriting previous data. 

Effectively, a read offset of 0 and read count of 4096 provides traversal shader the input 

indices, and a write offset of 4096 tells the shader where to append the new photons. 

Without going into much detail, the post-traversal statistics shader is used to update these 

parameters to prepare for the next traversal. 

 

Traversal 

After initialization, it is now possible to run the traversal shader. Writing the data to the 

photon buffer is tricky, because the compute shader is highly parallel, buffer access must 

be manually synchronized with the atomic counter. An atomic counter can be declared in 

a compute shader, as shown in Figure 18: 

 

Figure 18: Declaring an atomic counter in GLSL 

Each time a valid photon is read, the traversal shader increments the write count counter 

by 1. Combined with the write offset, the shader can obtain the next available buffer index 

for writing photon data. Figure 19 illustrates the process of incrementing the atomic 

counter, calculating the new write index, calculating the new sample points and finally 

writing the data to the buffer: 
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Figure 19: Writing new photons to the photon buffer 

Post-Traversal Statistics 

After each traversal, post-traversal statistics shader will update the parameters to the 

appropriate values for another traversal. It uses the write count counter from the traversal 

shader to update the number of work groups for the indirect command buffer, as shown 

in Figure. 20: 

 

Figure 20: Code snippet of post-traversal statistics shader 

The statistics shader also needs to update the read and write offset and the read count, as 

shown in Figure 21: 
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Figure 21: Update read and write parameters in the statistics shader  

Because the statistics shader does not know whether or not the application would like to 

perform another iteration of photon traversal, it must also update the indirect command 

buffer for splatting the photons, as shown in Figure 22: 

 

Figure 22: Update draw count in the statistics shader  

 

Splatting with Indirect Draw 

The application can decide how many iterations of traversal it would like to perform 

easily because nearly all data used for photon traversal is self-contained on the GPU. 

After a satisfying number of traversals, the application can use the indirect draw 

command buffer to splat the photons onto a texture. Figure. 23 illustrates the structure of 

indirect draw command buffer used by OpenGL: 

 

Figure 23: Structure of indirect draw command buffer 

We can visualize the photons as a point cloud with lots of vertices, so the instance count 

is always set to 1. First and base instance are set to 0; they are offset variables unneeded 
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for the purpose of this project. 

This concludes the caustics traversal and splat process with compute shader. We 

found out that cache optimizations within compute work groups impacts the sampling 

speed, and different work group sizes can impact performance significantly, so we tested 

various work group sizes and found a work group size of 8 by 8 by 1 to be the most 

optimal in our situation. One may find it different depending on her hardware and shader 

implementation.  
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Results and Discussions 

Results presented below were benchmarked on an 8-core Intel Xeon processor at 

3.0GHz with a GeForce GTX 980. Adaptive Caustic Maps using transform feedback: 

98,000 photons/ms (40962, 3,300,000 photons / 35FPS) 

Our implementation using compute shaders: 

410,000 photons/ms (81922, 19,000,000 photons / 25FPS) 

 

Best cases             

  FPS/Workgroup Size         

Iterations resolution 1 x 1 2 x 2 4 x 4 8 x 8 16 x 16 

6 64 122 117 123 123 120 

7 128 118 113 118 119 118 

8 256 113 110 115 116 115 

9 512 106 107 112 111 110 

10 1024 85 97 102 101 99 

11 2048 50 65 72 73 72 

12 4096 20 33 36 37 37 

Table 1: Best case scenario framerate with different workgroup sizes 

Worst cases             

  FPS/Workgroup Size         

Iterations resolution 1 x 1 2 x 2 4 x 4 8 x 8 16 x 16 

6 64 113 108 114 113 112 

7 128 109 105 110 111 109 

8 256 104 102 108 108 107 

9 512 96 98 104 102 103 

10 1024 73 85 90 88 87 

11 2048 35 49 54 54 54 

12 4096 11 18 21 22 21 

Table 2: Worst case scenario framerate with different workgroup sizes 
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Figure 24: Render result with a 40962 photon buffer. 

As shown in Figure 24, our result contains more noise than the original implementation. 

It is due to the texture sampling operation on mip-map enabled textures unable to 

perform linear interpolation correctly. It is perhaps due to a bug with the graphics driver 

of our development hardware. We are still investigating this issue during the writing of 

this paper. 
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Figure 25 – Figure 31 presented below illustrate an example of 7 levels of caustic detail 

that may be adopted by interactive media and games: 

      

Figure 25: Caustic map rendered at 642 

     

Figure 26: Caustic map rendered at 1282 
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Figure 27: Caustic map rendered at 2562 

     

Figure 28: Caustic map rendered at 5122 
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Figure 29: Caustic map rendered at 10242 

     

Figure 30: Caustic map rendered at 20482 
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Figure 31: Caustic Map rendered at 40962 
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Figure 32 shows the best case scenarios of rendering caustics at different caustic map 

resolutions. Best case scenarios are when objects are rendered at such an angle so that it 

happens to generate the least amount of valid pixels in the normal textures.  

Figure 32: Chart of best case scenario frame rate vs. work group size 
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Worst case scenarios are when objects are rendered at such an angle so that it happens 

to generate the most amount of valid pixels in the normal textures. 

 

Figure 33: Chart of worst case scenario framerate vs. work group size 

Both Figure 32 and Figure 33 demonstrate great performance increase with parallelism 

through compute shaders. We find 8x8x1 to be the most optimal work group size for 

caustic maps with 20482 or higher resolutions. 
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Without loss of generality, we think any previously expensive real-time rendering 

algorithm that requires massive general-purpose computation can greatly benefit from 

using the compute shader. The compute pipeline is highly optimized for parallel 

computations and is very flexible because there are no input or output constraints like 

the traditional drawing pipeline. No doubt there are still many optimizations that can be 

done to push this boundary even further. 
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Conclusions and Recommendations 

In this project, we have presented an implementation of the Adaptive Caustics Maps 

algorithm that uses compute shaders and indirect draw to eliminate previously occurring 

bottlenecks. Though the performance increase turned out to be higher than expected, we 

think there is still room for improvement. Perhaps there will be a major performance 

increase by optimizing the compute shader instructions and also performing loop unroll 

within the compute shader in addition to our utilization of work group based parallelism. 

 

We also think reusing part of the photon buffer that will not be used anymore is a 

possible direction for reducing memory consumption for high quality caustic maps. For 

example, after 3 photon traversal iterations, photons from the first and second iterations 

have expired and can perhaps be managed for reuse. Perhaps one can implement the 

compute shader to not only append to the end of the buffer, but also write to expired areas. 
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Appendix 

Complete shader code: 

RenderEyeSpacePosition.vert 
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RenderEyeSpacePosition.frag 
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RenderFrontAndBackNormals.vert 
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RenderFrontAndBackNormals.geom 
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RenderFrontAndBackNormals.frag 
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AdaptiveCausticsPreTraversalProcess.comp 
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AdaptiveCausticsTraversal.comp 

Part 1: 
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AdaptiveCausticsTraversal.comp 

Part 2: 
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AdaptiveCausticsPostTraversalProcess.comp 

Part 1: 
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AdaptiveCausticsPostTraversalProcess.comp 

Part 2: 
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AdaptiveCausitcsDrawDebug.comp 
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CausticsSplat.vert 

Part 1: 
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CausticsSplat.vert 

Part 2: 
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CausticsSplat.vert 

Part 3: 
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CausticsSplat.vert 

Part 4: 
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CausticsSplat.frag 

Part 1: 
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CausticsSplat.frag 

Part 2: 
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