492 research outputs found

    A parallel progressive radiosity algorithm based on patch data circulation

    Get PDF
    Cataloged from PDF version of article.Current research on radiosity has concentrated on increasing the accuracy and the speed of the solution. Although algorithmic and meshing techniques decrease the execution time, still excessive computational power is required for complex scenes. Hence, parallelism can be exploited for speeding up the method further. This paper aims at providing a thorough examination of parallelism in the basic progressive refinement radiosity, and investigates its parallelization on distributed-memory parallel architectures. A synchronous scheme, based on static task assignment, is proposed to achieve better coherence for shooting patch selections. An efficient global circulation scheme is proposed for the parallel light distribution computations, which reduces the total volume of concurrent communication by an asymptotical factor. The proposed parallel algorithm is implemented on an Intel's iPSC/2 hypercube multicomputer. Load balance qualities of the proposed static assignment schemes are evaluated experimentally. The effect of coherence in the parallel light distribution computations on the shooting patch selection sequence is also investigated. Theoretical and experimental evaluation is also presented to verify that the proposed parallelization scheme yields equally good performance on multicomputers implementing the simplest (e.g. ring) as well as the richest (e.g. hypercube) interconnection topologies. This paper also proposes and presents a parallel load re-balancing scheme which enhances our basic parallel radiosity algorithm to be usable in the parallelization of radiosity methods adopting adaptive subdivision and meshing techniques. (C) 1996 Elsevier Science Lt

    A Gathering and Shooting Progressive Refinement Radiosity Method

    Get PDF
    This paper presents a gathering and shooting progressive refinement radiosity method. Our method integrates the iterative process of light energy gathering used in the standard full matrix method and the iterative process of light energy shooting used in the conventional progressive refinement method. As usual, in each iteration, the algorithm first selects the patch which holds the maximum unprocessed light energy in the environment as the shooting patch. But before the shooting process is activated, a light energy gathering process takes place. In this gathering process, the amount of the unprocessed light energy which is supposed to be shot to the current shooting patch from the rest of the environment in later iterations is pre-accumulated. In general, this extra amount of gathered light energy is far from trivial since it comes from every patch in the environment from which the current shooting patch can be seen. However, with the reciprocity relationship for form-factors, still only one hemi-cube of the form-factors is needed in each iteration step. Based on a concise record of the history of the unprocessed light energy distribution in the environment, a new progressive refinement algorithm with revised gathering and shooting procedures is then proposed. With little additional computation and memory usage compared to the conventional progressive refinement radiosity method, a solid convergence speedup is achieved. This gathering and shooting approach extends the capability of the radiosity method in accurate and efficient simulation of the global illuminations of complex environments

    Parallel Hierarchical Radiosity on Hybrid Platforms

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11227-011-0592-6[Abstract] Achieving an efficient realistic illumination is an important aim of research in computer graphics. In this paper a new parallel global illumination method for hybrid systems based on the hierarchical radiosity method is presented. Our solution allows the exploitation of systems that combine independent nodes with multiple cores per node. Thus, multiple nodes work in parallel in the computation of the global illumination for the same scene. Within each node, all the available computational cores are used through a shared-memory multithreading approach. The good results obtained in terms of speedup on several distributed-memory and shared-memory configurations show the versatility of our hybrid proposal.[Resumo] Acadar unha eficiente iluminación realista é un importante obxectivo no campo dos gráficos por computadora. Neste traballo preséntase un novo método de iluminación global paralelo para sistemas híbridos baseado no modelo de radiosidade jerárquica. A nosa solución permite a explotación de sistemas que combinen nodos de cómputo independentes con múltiples núcleos de execución en cada nodo. Deste xeito, varios nodos traballan en paralelo na computación da iluminación global dunha mesma escea. Dentro de cada nodo, todos os núcleos computacionais dispoñibles son aproveitados mediante unha aproximación multifío en memoria compartida. Os bos resultados obtidos en canto a aceleración en distintas configuracións de memoria compartida e distribuída dan mostra da versatilidade da nosa proposta híbrida.Xunta de Galicia; INCITE08PXIB105161PRMinisterio de Educación y Ciencia; MEC TIN 2010-16735Xunta de Galicia; 08TIC001206P

    Parallel hierarchical radiosity rendering

    Get PDF
    The radiosity equation is examined, and is found to contain a previously unexploited symmetry. This symmetry is formalized, and a solution method previously unusable in the field of computer graphics (conjugate gradients) is shown to be superior to all methods currently in use. A detailed analysis of all solution techniques previously applied to the radiosity problem is conducted, and results presented;So-called hierarchical methods have reduced the operational complexity of the N-body problem from O(N[superscript]2) to O(N log N) assuming a pre-set error tolerance. An algorithm following the same basic tenets has been applied to radiosity rendering by other researchers, and has reduced the operational complexity from O(N[superscript]2) to (arguably) O(N);Shortcomings in the state-of-the-art hierarchical radiosity method are pointed out, and enhancements are offered. A consistent treatment of various types of error is found to be absent from present methods. Catastrophic error is possible in the visibility assessment between two polygons. A self-consistency check is possible during the solution process, but never exploited;Until now, supercomputer-class computers have not been used to solve radiosity problems at a production-quality level even though realistic image synthesis has always been a prodigious consumer of computer time. A state-of-the-art hierarchical radiosity code is implemented on an nCUBE-2 parallel computer, and discussed in detail. The algorithm is found to have ample sources of parallelism, in both data- and operational modes. Its performance is analyzed in detail;The hierarchical method has only been applied to realistic image synthesis since 1991. Not surprisingly, many avenues of further research are open. Some are pointed out, and include: analytic determination of coupling factors, quantifying discretization error, incorporating specular light reflection modes into the hierarchical treatment, and exploring what other important physical problems might benefit from the hierarchical approach

    An Integral geometry based method for fast form-factor computation

    Get PDF
    Monte Carlo techniques have been widely used in rendering algorithms for local integration. For example, to compute the contribution of a patch to the luminance of another. In the present paper we propose an algorithm based on Integral geometry where Monte Carlo is applied globally. We give some results of the implementation to validate the proposition and we study the error of the technique, as well as its complexity.Postprint (published version

    A New Mathematical Development for Radiosity Animation with Galerkin

    Get PDF
    International audienceCombining animation and global illumination constitutes, at present, a true challenge in computer graphics, especially when light sources move in a complex scene because the entire illumination has to be recomputed. This paper introduces a new algorithm, based on the Galerkin method, which can efficiently manage any moving surface -even light source- to compute animation sequences. For each new frame of a sequence, we take into account the continuous property of the moves to determine the necessary energy differences between the previous global illumination solution and the new one. Based on a mathematical development of the form factor, this new approach leads to an efficient and simple algorithm, similar to the classical progressive refinement algorithm, and which computes animated sequence about three times faster

    Fast hierarchical low-rank view factor matrices for thermal irradiance on planetary surfaces

    Full text link
    We present an algorithm for compressing the radiosity view factor model commonly used in radiation heat transfer and computer graphics. We use a format inspired by the hierarchical off-diagonal low rank format, where elements are recursively partitioned using a quadtree or octree and blocks are compressed using a sparse singular value decomposition -- the hierarchical matrix is assembled using dynamic programming. The motivating application is time-dependent thermal modeling on vast planetary surfaces, with a focus on permanently shadowed craters which receive energy through indirect irradiance. In this setting, shape models are comprised of a large number of triangular facets which conform to a rough surface. At each time step, a quadratic number of triangle-to-triangle scattered fluxes must be summed; that is, as the sun moves through the sky, we must solve the same view factor system of equations for a potentially unlimited number of time-varying righthand sides. We first conduct numerical experiments with a synthetic spherical cap-shaped crater, where the equilibrium temperature is analytically available. We also test our implementation with triangle meshes of planetary surfaces derived from digital elevation models recovered by orbiting spacecrafts. Our results indicate that the compressed view factor matrix can be assembled in quadratic time, which is comparable to the time it takes to assemble the full view matrix itself. Memory requirements during assembly are reduced by a large factor. Finally, for a range of compression tolerances, the size of the compressed view factor matrix and the speed of the resulting matrix vector product both scale linearly (as opposed to quadratically for the full matrix), resulting in orders of magnitude savings in processing time and memory space.Comment: 21 pages, 10 figure
    corecore