18 research outputs found

    Matrix-equation-based strategies for convection-diffusion equations

    Full text link
    We are interested in the numerical solution of nonsymmetric linear systems arising from the discretization of convection-diffusion partial differential equations with separable coefficients and dominant convection. Preconditioners based on the matrix equation formulation of the problem are proposed, which naturally approximate the original discretized problem. For certain types of convection coefficients, we show that the explicit solution of the matrix equation can effectively replace the linear system solution. Numerical experiments with data stemming from two and three dimensional problems are reported, illustrating the potential of the proposed methodology

    A constructive arbitrary-degree Kronecker product decomposition of tensors

    Get PDF
    We propose the tensor Kronecker product singular value decomposition~(TKPSVD) that decomposes a real kk-way tensor A\mathcal{A} into a linear combination of tensor Kronecker products with an arbitrary number of dd factors A=j=1RσjAj(d)Aj(1)\mathcal{A} = \sum_{j=1}^R \sigma_j\, \mathcal{A}^{(d)}_j \otimes \cdots \otimes \mathcal{A}^{(1)}_j. We generalize the matrix Kronecker product to tensors such that each factor Aj(i)\mathcal{A}^{(i)}_j in the TKPSVD is a kk-way tensor. The algorithm relies on reshaping and permuting the original tensor into a dd-way tensor, after which a polyadic decomposition with orthogonal rank-1 terms is computed. We prove that for many different structured tensors, the Kronecker product factors Aj(1),,Aj(d)\mathcal{A}^{(1)}_j,\ldots,\mathcal{A}^{(d)}_j are guaranteed to inherit this structure. In addition, we introduce the new notion of general symmetric tensors, which includes many different structures such as symmetric, persymmetric, centrosymmetric, Toeplitz and Hankel tensors.Comment: Rewrote the paper completely and generalized everything to tensor

    Problems with Jumping Coefficients

    Get PDF
    We study separability properties of solutions of elliptic equations with piecewise constant coefficients in R d, d ≥ 2. Besides that, we develop efficient tensor-structured preconditioner for the diffusion equation with variable coefficients. It is based only on rank structured decomposition of the tensor of reciprocal coefficient and on the decomposition of the inverse of the Laplacian operator. It can be applied to full vector with linear-logarithmic complexity in the number of unknowns N. It also allows lowrank tensor representation, which has linear complexity in dimension d, hence, it gets rid of the “curse of dimensionality ” and can be used for large values of d. Extensive numerical tests are presented. AMS Subject Classification: 65F30, 65F50, 65N35, 65F10 Key words: structured matrices, elliptic operators, Poisson equation, matrix approximations

    Tensor network simulation of multi-environmental open quantum dynamics via machine learning and entanglement renormalisation

    Get PDF
    The simulation of open quantum dynamics is a critical tool for understanding how the non-classical properties of matter might be functionalised in future devices. However, unlocking the enormous potential of molecular quantum processes is highly challenging due to the very strong and non-Markovian coupling of ‘environmental’ molecular vibrations to the electronic ‘system’ degrees of freedom. Here, we present an advanced but general computational strategy that allows tensor network methods to effectively compute the non-perturbative, real-time dynamics of exponentially large vibronic wave functions of real molecules. We demonstrate how ab initio modelling, machine learning and entanglement analysis can enable simulations which provide real-time insight and direct visualisation of dissipative photophysics, and illustrate this with an example based on the ultrafast process known as singlet fission

    Tensor rank of the direct sum of two copies of 2×22 \times 2 matrix multiplication tensor is 14

    Full text link
    The article is concerned with the problem of the additivity of the tensor rank. That is for two independent tensors we study when the rank of their direct sum is equal to the sum of their individual ranks. The statement saying that additivity always holds was previously known as Strassen's conjecture (1969) until Shitov proposed counterexamples (2019). They are not explicit and only known to exist asymptotically for very large tensor spaces. In this article, we show that for some small three-way tensors the additivity holds. For instance, we give a proof that another conjecture stated by Strassen (1969) is true. It is the particular case of the general Strassen's additivity conjecture where tensors are a pair of 2×22 \times 2 matrix multiplication tensors. In addition, we show that the Alexeev-Forbes-Tsimerman substitution method preserves the structure of a direct sum of tensors.Comment: 24 pages, 4 figures. arXiv admin note: text overlap with arXiv:1902.0658

    Approximate iterations for structured matrices

    Get PDF
    Important matrix-valued functions f (A) are, e.g., the inverse A −1 , the square root √ A and the sign function. Their evaluation for large matrices arising from pdes is not an easy task and needs techniques exploiting appropriate structures of the matrices A and f (A) (often f (A) possesses this structure only approximately). However, intermediate matrices arising during the evaluation may lose the structure of the initial matrix. This would make the computations inefficient and even infeasible. However, the main result of this paper is that an iterative fixed-point like process for the evaluation of f (A) can be transformed, under certain general assumptions, into another process which preserves the convergence rate and benefits from the underlying structure. It is shown how this result applies to matrices in a tensor format with a bounded tensor rank and to the structure of the hierarchical matrix technique. We demonstrate our results by verifying all requirements in the case of the iterative computation of A −1 and √ A
    corecore