
Max-Plan
k-Institut
für Mathematik

in den Naturwissenschaften

Leipzig

Tensor Structured Iterative Solution of Elliptic

Problems with Jumping Coefficients

by

Sergey Dolgov, Boris N. Khoromskij, Ivan V. Oseledets, and

Eugene E. Tyrtyshnikov

Preprint no.: 55 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24066785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tensor Structured Iterative Solution of Elliptic

Problems with Jumping Coefficients

Sergey Dolgov ∗

Moscow Institute of Physics and Technology, Russia; dc1988@mail.ru

Boris N. Khoromskij

Max-Planck-Institut für Mathematik in den Naturwissenschaften,
Inselstr. 22-26, D-04103 Leipzig, Germany; bokh@mis.mpg.de

Ivan Oseledets, Eugene E. Tyrtyshnikov ∗

Institute of Numerical Mathematics, Russian Academy of Sciences,
Gubkina 8, 119991 Moscow, Russia;

{ivan.oseledets@gmail.com, tee@inm.ras.ru}

September 28, 2010

Abstract

We study separability properties of solutions of elliptic equations with piecewise
constant coefficients in R

d, d ≥ 2. Besides that, we develop efficient tensor-structured
preconditioner for the diffusion equation with variable coefficients. It is based only
on rank structured decomposition of the tensor of reciprocal coefficient and on the
decomposition of the inverse of the Laplacian operator. It can be applied to full vector
with linear-logarithmic complexity in the number of unknowns N . It also allows low-
rank tensor representation, which has linear complexity in dimension d, hence, it gets
rid of the “curse of dimensionality” and can be used for large values of d. Extensive
numerical tests are presented.

AMS Subject Classification: 65F30, 65F50, 65N35, 65F10
Key words: structured matrices, elliptic operators, Poisson equation, matrix approximations,
low-rank matrices, preconditioners, multi-dimensional matrices, tensors, finite elements, nu-
merical methods

1 Introduction

In recent years, the numerical methods based on tensor product formats were applied for
solving different classes of multi-dimensional problems related to the elliptic PDEs [11]. An

∗Supported by the RFBR grants 08-01-00115, 09-01-12058, RFBR/DFG grant 09-01-91332, the Govern-
ment Contracts Π940, Π1112 and Priority Research Grant of the Department of Mathematical Sciences of
the Russian Academy of Sciences.

1

important ingredient for the efficient iterative solver is the construction of low-rank spectrally
close preconditioners for the arising discrete elliptic systems [9, 7, 12].

In this paper, we study separability properties of solutions of elliptic equations with
piecewise constant coefficients in R

d, d ≥ 2. Besides that, we develop efficient tensor-
structured preconditioner for the diffusion equation with variable coefficients.

First consider a model elliptic boundary value problem in two dimensions,

−∇(a∇u) = f in Ω = [0, 1]2,
u|∂Ω = 0,

(1.1)

with an assumption that f is represented by a piecewise smooth tensor decomposition

f(x, y) =

rf
∑

k=1

f
(1)
k (x) f

(2)
k (y), (1.2)

and the diffusion coefficient a(x, y) is a piecewise constant function on cells of a tensor grid
in Ω. In the case of an M ×M tensor tiling, reciprocals 1/a on these cells comprise a matrix
of form

B =







1/a11 · · · 1/a1M
...

. . .
...

1/aM1 · · · 1/aMM






(1.3)

with the notation
r1/a = rankB

(see Figure 1.1). Clearly, the function 1/a has the same separable form,

Figure 1.1: Cell structure of jumping coefficient

1/a(x, y) =

r1/a
∑

l=1

b
(1)
l (x) · b

(2)
l (y) =

r1/a
∑

l=1

1

a
(1)
l (x)

·
1

a
(2)
l (y)

, (1.4)

which can be shown by a constant spline interpolation. Given ε > 0, we approximate u by
a separable decomposition

uru =
ru
∑

k=1

u
(1)
k (x) u

(2)
k (y), (1.5)

so that ||u− uru|| ≤ ε.

2

In this paper we first investigate how ru depends on ε, r1/a and rf . Straightforward
analysis in the continuous case gives the following rank estimate:

ru = O(Mrv),

where rv is a maximal rank of the solution in each domain, generated by M×M tiling. Note
that rv does not depend on a, as in each domain solution satisfies Poisson equation with
constant coefficient: −a∆u = f .

In 3D or higher dimensional case we formulate the problem in a similar way. Consider

−∇(a∇u) = f in Ω = [0, 1]d,
u|∂Ω = 0,

(1.6)

and assume a separability property for the right-hand side,

f(x) =

rf
∑

k=1

f
(1)
k (x1) · · · f

(d)
k (xd), (1.7)

and the reciprocal diffusion coefficient,

1/a(x) =

r1/a
∑

l=1

b
(1)
l (x1) · · · b

(d)
l (xd) =

r1/a
∑

l=1

1

a
(1)
l (x1)

· · ·
1

a
(d)
l (xd)

. (1.8)

Now for a given ε > 0, we approximate u by a separable decomposition

uru =

ru
∑

k=1

u
(1)
k (x1) · · ·u

(d)
k (xd), (1.9)

so that ||u− uru|| ≤ ε.
The main result is that we can obtain an approximate discrete solution, with the rank

bound
r1/arv

uniformly in d. In the general case, the accuracy might be not sufficient to take this approx-
imate solution as a final solution of the problem, but the corresponding solver is quite fast,
and we can use it as a black box preconditioner on each iteration of, e.g., GMRES solver.

The rest of the paper is organized as follows. In the section 2 we introduce the equiv-
alent formulation of the initial problem, and the related gradient equations, which are the
start point of our work. Then we present numerical examples of separability properties of
the solution of finite element method in 2D. In section 3 we introduce the discretization
scheme, quasi-optimal preconditioner and estimate the condition number and eigenvalues of
the preconditioned problem in general case, and in some particular cases, in which we are
able to prove the better bounds. In section 4 we test the preconditioning properties of the
proposed algorithm and also test the compression properties of the new QTT tensor format
(see [15, 10, 12]) for coefficients, matrices and solutions.

3

2 Gradient equations

2.1 Approximate solution of the operator equation

An approximate discrete solution, with rank only r1/arv, but not Mαrv is based on the
following equivalent formulation of the initial problem:

−∇(a∇u) = f = −∆v
u|∂Ω = v|∂Ω = 0.

(2.1)

The main reason of this formulation is that it has similar objects in right and left parts:

−
∂

∂x
a
∂

∂x
u−

∂

∂y
a
∂

∂y
u = −

∂2

∂x2
v −

∂2

∂y2
v (2.2)

The main idea is to cancel some portion of information in these equations, which pro-
vides sufficiently good accuracy or preconditioning properties, but allows efficient algorithmic
implementation.

Consider the equation in the following form:

−∇T (a∇u) = −∇T∇v

This holds under the following condition:

−a∇u = −∇v + ~ψ,

where ∇T ~ψ = 0. This is similar to the orthogonal Helmholtz decomposition [2]: any vector

field ~V can be decomposed to the following orthogonal parts:

~V = ~Vdiv + ~Vcurl,

where div ~Vdiv = ∇T ~Vdiv = 0, and curl ~Vcurl = ∇ ∧ ~Vcurl = 0. In our case ~ψ = ~Vdiv. Then
we just omit ~ψ, that is, consider the problem only on curl subspace. Then,

−∇u ≈ −∇ũ = −
1

a
∇v. (2.3)

In terms of continuous functions we can integrate this gradient equation using the
Newton-Leibniz formula:

ũ(x, y) − ũ(0, y) + ũ(0, y)− ũ(0, 0) =

y
∫

0

∂ũ(0, η)

∂y
dη +

x
∫

0

∂ũ(ξ, y)

∂x
dξ.

Due to the Dirichlet boundary condition u|∂Ω = 0, the first term is equal to 0. From the
equation (2.3) we obtain:

ũ(x, y) =

x
∫

0

1

a(ξ, y)

∂v(ξ, y)

∂x
dξ

4

As v = (−∆)−1f , it can be approximated by the canonical decomposition:

v ≈ vrv =

C| log ε|
∑

k=1

rf
∑

p=1

(D
(1)
k f (1)

p) ⊗ (D
(2)
k f (2)

p) =
rv
∑

k=1

v
(1)
k ⊗ v

(2)
k ,

where D
(q)
k are canonical factors of ∆−1, providing the ε-accuracy of separation approxima-

tion. Using also the decomposition for 1/a (1.8), we can write:

ũ ≈ ũru(x, y) =

C| log ε|rf
∑

k=1

r1/a
∑

l=1

b
(2)
l (y)v

(2)
k (y)

x
∫

0

b
(1)
l (ξ)

∂v
(1)
k (ξ)

∂x
dξ,

from which we can easily estimate the rank ru ≤ C| log ε|rfr1/a.

To obtain a symmetric resolving operator we should use some other approach, than the
Newton-Leibniz integration of the gradient equation. Multiply both parts of the gradient
equation (2.3) by −∆−1∇T :

∆−1∇T∇ũ = ∆−1∆ũ = ũ = −∆−1∇T 1

a
∇v.

From the equation f = −∆v we get v = −∆−1f . Then

u ≈ ũ = ∆−1

(

∇T 1

a
∇

)

∆−1f,

i.e., we have the following operator, which we consider in discrete case as a candidate for
preconditioner:

(

∇Ta∇
)−1

≈ P = ∆−1

(

∇T 1

a
∇

)

∆−1. (2.4)

The same result can be obtained as a solution of the minimization problem

J =

∥

∥

∥

∥

∇u−
1

a
∇v

∥

∥

∥

∥

2

→ min,

i.e. the solution of gradient equation (2.3) in the least-squares formulation. In the case of a
low-rank reciprocal coefficient, we have the following approximation for this operator:

P = ∆−1

(

∇T 1

a
∇

)

∆−1 ≈

rP
∑

k=1

A
(1)
k ⊗A

(2)
k ,

where
rP ≤ rank(∆−1)2 · d r1/a ≤ O(dr1/a| log(ε)|2),

as approximation of ∆−1 can be obtained from the ε-approximation of corresponding poten-
tial with O(| log(ε)|) rank. If we apply this operator to the right-hand side f with the rank
rf , we obtain the rank of u

ru ≤ O(d r1/a| log(ε)|2 rf). (2.5)

We see, that its separation rank is bounded by | log(ε)|2, but the separation rank in the case
of functions, obtained by a Newton-Leibniz integration grows linearly with | log(ε)|.

In the next subsection we present some numerical examples (see Tables 2.1-2.3), that
shows, that the last rank bound holds in many practical cases.

5

2.2 Numerical separability properties in 2D

We can solve the equation (1.1) using Galerkin method: choose appropriate basis functions
ϕ1(x), . . . , ϕn(x) and seek the solution as a linear combination

uh(x, y) =
n
∑

i1,i2=1

u(i1, i2)ϕi1(x)ϕi2(y),

with unknown coefficients u(i1, i2) to be obtained from the linear system

n
∑

i1,i2=1

u(i1, i2) (a∇ϕi1(x)ϕi2(y),∇ϕj1(x)ϕj2(y))L2(Ω) = (f, ϕj1(x)ϕj2(y))L2(Ω) ,

j1, j2 = 1, . . . , n.
(2.6)

Remark 2.1 Although we denote basis functions by ϕ both for x and y directions (for the
ease of presentation), in fact, number of grid points and grid cell size can be different for
different directions, hence, in such case there will be different sets of basis functions ϕi1(x)
and ψi2(y).

We can write (2.6) in the following form:

AU = F,

where
A =

[

(a∇ϕi1(x)ϕi2(y),∇ϕj1(x)ϕj2(y))L2(Ω)

]

,

F =
[

(f, ϕj1(x)ϕj2(y))L2(Ω)

]

=

rf
∑

k=1

[

(

f
(1)
k , ϕj1(x)

)

L2(0,1)

]

⊗

[

(

f
(2)
k , ϕj2(y)

)

L2(0,1)

]

Let us gather coefficients u(i1, i2) into a matrix U = [u(i1, i2)] ∈ Rnxn and decompose it
using the SVD:

u(i1, i2) =
n
∑

k=1

σkU
(1)
i1,kU

(2)
i2,k,

where σ1 ≥ σ2 ≥ . . . ≥ σn are the singular values, and U
(1)
i1,k, U

(2)
i2,k are the k-th singular

vectors. In order to obtain a reduced representation for the solution, we can truncate this
sum keeping only summands with a certain number of senior singular values and neglecting
summands with smaller singular values. In this way approximation to U of a lower rank
Uru = [uru(i1, i2)] is obtained:

uru(i1, i2) =

ru
∑

k=1

σk U
(1)
i1,k U

(2)
i2,k.

Given an accuracy parameter ε, we can choose ru so that the estimate ||U − Uru|| ≤ ε is
guaranteed to hold with a minimal possible ru. Then, it is easy to derive that

ûru(x, y) =

n
∑

i1,i2=1

uru(i1, i2)ϕi1(x)ϕi2(y) =

ru
∑

k=1

σk

(

n
∑

i1=1

U
(1)
i1,kϕi1(x)

)(

n
∑

i2=1

U
(2)
i2,kϕi2(y)

)

6

approximates uh(x, y) with accuracy O(ε).
In numerical examples below, we are interested to find relations between ru and ε, r1/a,

rf , and their dependence on n. In the following we assume that a has constant values on
M ×M cells. We take piecewise linear hat elements as basis functions ϕi(x).

1. Dependence on ε and n (table 2.1). We can deduce that practical dependence

Table 2.1: ru versus ε and n; r1/a = 1; M = 8.

log10(1/ε)

n 4 5 6 7 8 9 10

16 2 4 5 5 6 7 7
32 3 5 5 7 7 9 9
64 2 4 4 6 6 9 9
128 2 4 5 6 8 10 11
256 2 4 5 6 8 10 12
512 3 4 5 7 8 11 13
1024 3 4 6 8 9 12 14

is of the form
ru(ε) = C · log(1/ε). (2.7)

If we make a linear fit of ru(| log(ε)|) for n = 1024, using the least squares method, the
dependence is ru = 1.86 · log(1/ε)− 5. Also we can see that if the approximation tolerance ε
is greater than the discretization error O(1/n2), then ru does not depend on n (e.g., see the
column with ε = 10−5).

2. Dependence on r1/a (table 2.2). Now the least squares linear fitting gives a

Table 2.2: ru versus ε and r1/a; M = 8; n = 256.

log10(1/ε)

r1/a 4 5 6 7 8 9 10

1 3 4 6 8 9 12 14
2 5 8 14 21 28 34 41
3 5 8 14 20 30 37 47
4 7 13 22 35 45 56 67
5 8 17 31 46 60 73 85
6 8 17 30 46 65 80 93
7 11 19 34 54 72 91 107
8 11 23 41 60 81 96 112

dependence ru = 13.95 · r1/a + 7.96
(for ε = 10−10). Thus,

ru(r1/a) = C · r1/a. (2.8)

7

3. Dependence on M (table 2.3). In this example we have used randomly generated

Table 2.3: ru versus ε and M ; r1/a = 1; n = 256.

log10(1/ε)

M 4 5 8 11

2 2 3 7 12
3 2 4 9 16
4 3 4 11 17
8 3 5 12 18
12 4 5 12 19
16 3 5 11 18
32 3 5 11 18

values in the closed interval [1, 7] for a with rank 1. We see that for sufficiently large M
(M > 4), the rank ru does not depend on M . As a matter of fact, if the rank r1/a is fixed,
then ru becomes a constant, no matter whatever big jumps and high oscillations in a might
occur (see Fig. 2.1). In this examples we have taken a separable function f with rf = 1, but

Figure 2.1: Randomly filled coefficient a with rank 1 and 16x16 domain splitting

the same results are observed as well with rf > 1. Consequently, from equations (2.7)-(2.8)
we observe an estimate of the form

r ≤ C · r1/a · log(1/ε).

3 On the construction of quasi-optimal preconditioner

3.1 Discretization scheme

First, we present more detailed description of the discretization scheme of the diffusion
equation. We prove that the spectrum preconditioned matrix, which arises from the

8

discretization of the diffusion operator with the constants, does not depend on the grid size,
so, the number of iterations does not depend on a grid size. Moreover, we prove in some
simple cases, that eigenvalues of the preconditioned matrix form a finite amount of separate
clusters. As in previous sections, two and higher dimensional problems differ only in some
technical details, but the whole concept is the same. So, we show full proofs only for the
2D case, and make remarks, how to generalize them to the higher dimensional case.

For brevity, denote the matrix of discretized operator ∇Ta∇ as Γ(a):

Γ(a) = ∇T
hah∇h, (3.1)

where ∇h and ah are matrices of discretized operator ∇ and the coefficient a (see (3.3)).
Consider the finite-difference discretization scheme on the uniform grid:

∂huh

∂hx
=
ui+1,j − ui,j

h
,

where ui,j is the value of the function uh in the grid point (i, j) with coordinates

(xi, xj) = (ih, jh), h = 1/(n+ 1), i, j = 1, ..., n.

We also require, that interface points (points of jumps in coefficient) belong to the set of nodes
of the grid. Since a is not defined on interfaces, we choose shifted grid for the discretized
coefficient:

a(i, j) = ai−1/2,j−1/2 = a(xi − h/2, yj − h/2) = a((i− 1/2)h, (j − 1/2)h),

i.e. we consider the coefficient a in the grid point (i − 1/2, j − 1/2), which is the center of
cell, corresponding to the following values of uh: ui−1,j−1, ui−1,j, ui,j−1, ui,j (see Fig. 3.1).
Then

Figure 3.1: Discretization grids for a and u

∂h

∂hx
ah
∂huh

∂hx
=
ai+1/2,j

ui+1,j − ui,j

h
− ai−1/2,j

ui,j − ui−1,j

h
h

,

9

where as ai−1/2,j we take the averaged value in the direction j:

ai−1/2,j =
ai−1/2,j−1/2 + ai−1/2,j+1/2

2
. (3.2)

In the same way we formulate discrete derivatives for another variable j, and, for the whole
gradient:

∇huh =





ui+1,j − ui,j

h
ui,j+1 − ui,j

h



 , (3.3)

∇h =
1

h





































∇1
h

∇1
h

. . .
. . .

∇1
h

−I I
−I I

. . .
. . .

−I I
−I





































∈ R
2n2×n2

, where ∇1
h =















−1 1
−1 1

. . .
. . .

−1 1
−1















∈ R
n×n

is a 1D gradient (derivative), I ∈ R
n×n is identity matrix. Introduce also the averaged value

in the direction i:

ai,j−1/2 =
ai−1/2,j−1/2 + ai+1/2,j−1/2

2
. (3.4)

Define matrix ah in the following way:

ah =



























A11

A12

. . .

A1n

A21/2

A23/2

. . .

A2n−1/2



























∈ R
2n2×2n2

,

where

A1j =











a1/2,j

a3/2,j

. . .

an−1/2,j











, andA2j−1/2 =











a1,j−1/2

a2,j−1/2

. . .

an,j−1/2











∈ R
n×n

are diagonal matrices with averaged values (3.2)) and (3.4) on the diagonal. Then the matrix
representation (3.1) Γ(a) = ∇T

hah∇h holds in terms of usual matrix multiplication for the

10

case of Dirichlet-Neumann boundary conditions. In case of Dirichlet-Dirichlet conditions,
there also will be the following additional term:

Γ(a) = ∇T
hah∇h + LT

e ahLe, (3.5)

where

Le =
1

h2

[

L1
e ⊗ I

I ⊗ L1
e

]

∈ R
2n2×n2

, L1
e =











0
. . .

0
1











∈ R
n×n (3.6)

Then we obtain the following discretization scheme:

[Γ(a)uh](ij) =
−ai−1/2,jui−1,j + (ai−1/2,j + ai+1/2,j)ui,j − ai+1/2,jui+1,j

h2
+

+
−ai,j−1/2ui,j−1 + (ai,j−1/2 + ai,j+1/2)ui,j − ai,j+1/2ui,j+1

h2
,

(3.7)

where (ij) is a joint 2D index: (ij) = i + (j − 1)n. So, the matrix Γ has the following
elements:

Γ(a)(ij)(km) =
1

h2































−ai,j−1/2, k = i, m = j − 1,
−ai−1/2,j , k = i− 1, m = j,
ai−1/2,j−1/2 + ai+1/2,j−1/2 + ai−1/2,j+1/2 + ai+1/2,j+1/2, k = i, m = j,
−ai+1/2,j , k = i+ 1, m = j,
−ai,j+1/2, k = i, m = j + 1,
0, otherwise,

i, j, k,m = 1, ..., n. In full representation the matrix Γ(a) has the following symmetric form:

Γ(a) =

















A0
1 A1

3

2

A1
3

2

A0
2 A1

5

2

.
A1

n− 3

2

A0
n−1 A1

n− 1

2

A1
n− 1

2

A0
n

















∈ R
n2×n2

,

where A0
j , A

1
j are the following matrices:

A0
j =















4a1,j −a 3

2
,j

−a 3

2
,j 4a2,j −a 5

2
,j

.
−an− 3

2
,j 4an−1,j −an− 1

2
,j

−an− 1

2
,j 4an,j















∈ R
n×n,

A1
j−1/2 =















−a1,j−1/2

−a2,j−1/2

. . .

−an−1,j−1/2

−an,j−1/2















∈ R
n×n,

11

where ai,j is the averaged value in both directions:

ai,j = 1/4(ai−1/2,j−1/2 + ai+1/2,j−1/2 + ai−1/2,j+1/2 + ai+1/2,j+1/2).

This scheme is known to have the approximation property

|u(xi, yj) − ui,j| = O(h2)

for smooth enough data, where u(xi, yj) is the exact solution u at the grid node with the
index (i, j). Notice, that

Γ(1) = ∆h = ∇T
h∇h + LT

e Le

is just a discretized Dirichlet-Dirichlet Laplace operator.

3.2 Spectral equivalence and condition number of preconditioner

First, prove the spectral equivalence of Γ(a) and Γ(1) = ∆h.

Lemma 3.1

min a ∆h ≤ Γ(a) ≤ max a ∆h,
1

max a
∆h ≤ Γ(

1

a
) ≤

1

min a
∆h, (3.8)

where min and max are taken by the indices (ij) from the array ai−1/2,j−1/2.

Proof. Consider the application of Γ to a vector u:

(Γ(a)u, u) =
1

h2

n
∑

i,j=1

−ai−1/2,jui−1,jui,j − ai,j−1/2ui,j−1ui,j+

+ (ai−1/2,j + ai,j−1/2 + ai+1/2,j + ai,j+1/2)ui,jui,j−
− ai+1/2,jui+1,jui,j − ai,j+1/2ui,j+1ui,j.

By shifting indices of ai−1/2,j , ai,j−1/2 to i+ 1/2, j + 1/2, with the corresponding shift of an
index of u in the sum, we obtain:

(Γ(a)u, u) =
1

h2

n−1
∑

i,j=1

ai+1/2,jui,jui,j + ai+1/2,jui+1,jui+1,j − 2ai+1/2,jui,jui+1,j+

+ ai,j+1/2ui,jui,j + ai,j+1/2ui,j+1ui,j+1 − 2ai,j+1/2ui,jui,j+1

=
1

h2

n−1
∑

i,j=1

ai+1/2,j(ui+1,j − ui,j)
2 + ai,j+1/2(ui,j+1 − ui,j)

2.

Indices in sums vary in the range 1, ..., n− 1, since terms with indices 0 and n+ 1 are equal
to zero due to the Dirichlet boundary conditions. We see, that (Γ(a)u, u) depends linearly
on a. By choosing a = 1 we obtain the similar representation of (∆hu, u):

(∆hu, u) =
1

h2

n−1
∑

i,j=1

(ui+1,j − ui,j)
2 + (ui,j+1 − ui,j)

2.

12

So, we can make the following estimate:

(min a)(∆hu, u) ≤ (Γ(a)u, u) ≤ (max a)(∆hu, u),

Also, using the same considerations to Γ(1/a), and noting that min(
1

a
) =

1

max a
, max(

1

a
) =

1

min a
, we obtain the statement of lemma.

Remark 3.2 Spectral equivalence estimate (3.8) is valid for the wide class of Galerkin and
finite difference types of discretization of elliptic problems in R

d:

min a(∇φ,∇ψ) ≤ (a∇φ,∇ψ) ≤ max a(∇φ,∇ψ), ∀φ, ψ ∈ H1
0 (Ω),

where (a∇φ,∇ψ) is a Galerkin discretization of the diffusion operator on basis functions φ
and test functions ψ.

Now we prove our main

Theorem 3.3 Suppose we have a problem (1.1), discretized using the scheme (3.7), and
the preconditioner (2.4) is used. Then the preconditioned matrix has the following spectral
equivalence:

min a

max a
I ≤ ∆−1

h Γ(1/a)∆−1
h Γ(a) ≤

max a

min a
I.

Proof. Using the Lemma 3.1, estimate Γ(1/a) and Γ(a):

min a∆h ≤ Γ(a) ≤ max a∆h,

1

max a
∆h ≤ Γ(1/a) ≤

1

min a
∆h.

Then for the preconditioned matrix:

∆−1
h Γ(1/a)∆−1

h Γ(a) ≥ ∆−1
h (

1

max a
∆h)∆

−1
h (min a∆h) = min a

1

max a
I.

Similar upper bound holds:

∆−1
h Γ(1/a)∆−1

h Γ(a) ≤ ∆−1
h (

1

min a
∆h)∆

−1
h (max a∆h) = max a

1

min a
I.

Corollary 3.4

cond(∆−1
h Γ(1/a)∆−1

h Γ(a)) = O

(

(max a

min a

)2
)

Remark 3.5 The numerical examples show, that lower spectral bound is sufficiently better:

λmin(∆−1
h Γ(1/a)∆−1

h Γ(a)) ≥ 1,

hence, the condition number in fact is bounded by O
(max a

min a

)

. Although we have no proof

of this statement in the general case, in some special cases, such as 1D or the case of one
interface (see below) it can be proved.

13

3.3 Refined condition number estimate for 1D and 2D problems

In this subsection we present more detailed spectral analysis of the preconditioner in some
special cases.

In 1D problem the matrix Γ (3.1) has the following form:

Γ(a) =
1

h2













a1/2 + a3/2 −a3/2

−a3/2 a3/2 + a5/2 −a5/2

.
−an−3/2 an−3/2 + an−1/2 −an−1/2

−an−1/2 an−1/2 + an+1/2













.

In terms of the shift matrix it can be represented in the following way:

Γ(a) =
1

h2
(diag(a) + S diag(a)ST + L1T

e diag(a)L1
e − S diag(a) − diag(a)ST),

where the shift matrix S is specified by:

S =













0 1 0
0 0 1

.
0 0 1
0 0 0













∈ R
n×n,

and

diag(a) =















a1/2

a3/2

. . .

an−3/2

an−1/2















∈ R
n×n

is just the matrix with values of a in appropriate places on the diagonal (one dimensional
analog of ah), and L1

e = L1T
e is a matrix with 1 at position (n, n), see (3.6). One-dimensional

gradient ∇h can be represented in the following way: ∇h =
I − ST

h
. Then one can easily

show, that this representation is equivalent to ∇T
hah∇h up to the one element:

Γ(a) =
1

h2
((I − S) diag(a) + (S − I) diag(a)ST + L1T

e diag(a)L1
e)

=
I − S

h
diag(a)

I − ST

h
+
L1T

e diag(a)L1
e

h2

= ∇T
h diag(a)∇h +

L1T
e diag(a)L1

e

h2
.

This representation is useful for some tensor formats, such as QTT format (see [15, 10]),
which may sufficiently reduce the amount of memory and computational cost, if the tensor
ranks of vectors and matrices are not large. The shift matrix has QTT rank 2, and the diago-
nal matrix has rank 1, so if we have the diffusion coefficient in low QTT-rank representation,
the QTT-rank of Γ(a) is also bounded:

QTT-rank(Γ(a)) ≤ 7 QTT-rank(a).

14

In 1D case, the elements of ∆−1
h can be written explicitlly:

[∆−1
h]ij = (n+ 1) ·

{

xi yj, i ≥ j,
yi xj , i < j,

where

xi = 1 −
i

n+ 1
, yj =

j

n + 1
.

Consider the application of matrices Γ(1/a)∆−1
h and Γ(a)∆−1

h Γ(1/a)∆−1
h to an arbitrary

vector f :
g = Γ(1/a)∆−1

h f, v = Γ(a)∆−1
h g = Γ(a)∆−1

h Γ(1/a)∆−1
h f.

Then straightforward calculations gives the following

Lemma 3.6

gi =
1

ai−1/2

fi − (
1

ai+1/2

−
1

ai−1/2

)
n
∑

j=i+1

fj + (
1

ai+1/2

−
1

ai−1/2

)c(f),

where

c(f) =
n
∑

j=1

yjfj ,

and

vi = fi − (ai+1/2 − ai−1/2)(
1

an−1/2

c(f) − c(g(f)).

The formula 1
an−1/2

c(f) − c(g(f)) is a linear functional of f . So,

Γ(a)∆−1
h Γ(1/a)∆−1

h = I +R,

where rank(R) = 1. That gives the convergence of iterative solvers like PCG or GMRES in
2 iterations.

Remark 3.7 In this Lemma we used the conception of right preconditioning:

Γ(a)u = f → (Γ(a)P) (P−1u) = f,

but in numerical examples below we use P = ∆−1
h Γ(1/a)∆−1

h as a left preconditioner. But, as
the matrices Γ(a) and P are symmetric, it can be easily shown, that the left preconditioner
has the same spectral properties:

PΓ(a) = P T Γ(a)T = (Γ(a)P)T = (I +R)T = I +RT ,

and RT also has rank 1. Eigenvalues of the preconditioned matrix are also the same for left
and right preconditioning. So, we consider later only right preconditioning.

15

Now consider 2D case. In the particular case of one interface in 2D, i.e. the coefficient
has only one jump:

a(x, y) =

{

a1, y ≤ y0,
a2, y > y0.

,

we can prove, that eigenvalues of the preconditioned matrix form a finite amount of clusters.
Introduce the following matrix Dl:

Dl =
1

h2





















0 0
.

0 0 0
0 D0

j0 D1
j0

D1
j0 0 0

.
0 0





















∈ R
n2×n2

,

where D0
j0

and D1
j0

are the following matrices:

D0
j0 =













2 −1/2
−1/2 2 −1/2

.
−1/2 2 −1/2

−1/2 2













∈ R
n×n,

D1
j0

=















−1
−1

. . .

−1
−1















∈ R
n×n,

and block D0
j0

is in j0, j0 position in matrix Dl. Using this notation we can write the following

Lemma 3.8 In the case of one interface the matrix Γ has the following representation:

Γ(a) = diag [a] ∆h + (a2 − a1)Dl,

where diag [a] is a diagonal matrix with values ai−1/2,j−1/2 on (ij), (ij) place, and zeros oth-
erwise.

Proof. Since a has one interface, all rows (and columns) in Γ(a), with indices (ij), j < j0
are equal to

1

h2

(

−a1 · · · −a1 4a1 −a1 · · · −a1

)

,

which is equal to the corresponding row of ∆h, multiplied by a1. In the same way we obtain
rows with j > j0. As for the interface rows, they can be represented in the following way
(here we write only nonzero elements for brevity):

1

h2

(

−a1 −
a1 + a2

2
4
a1 + a2

2
−
a1 + a2

2
−a2

)

= a1 [∆h](ij) +
1

h2

(

0 −
a2 − a1

2
4
a2 − a1

2
−
a2 − a1

2
−(a2 − a1)

)

= a1 [∆h](ij) + (a2 − a1) [Dl](ij)

16

From this Lemma one can obviously deduce

Corollary 3.9 In the case of one interface

Γ(a) ∆−1
h = diag [a] + (a2 − a1)Dl∆

−1
h .

Now we consider preconditioned matrix Γ(a) in the terms of right preconditioning:

Γ(a)P = Γ(a)∆−1
h Γ(

1

a
)∆−1

h . We are to investigate the spectral properties of this matrix.

Lemma 3.10 In the case of one interface

Γ(a)P = I +

(

a1

a2
+
a2

a1
− 2

)

(Dl∆
−1
h) −

(

a1

a2
+
a2

a1
− 2

)

(Dl∆
−1
h)2.

Proof. Using Corollary 3.9 we write the preconditioned matrix in the following way:

Γ(a)P =
(

diag [a] + (a2 − a1)Dl∆
−1
h

)

(

diag

[

1

a

]

+

(

1

a2
−

1

a1

)

Dl∆
−1
h

)

= I +

(

1

a2
−

1

a1

)

diag [a]Dl∆
−1
h + (a2 − a1)Dl∆

−1
h diag

[

1

a

]

+

+ (a2 − a1)

(

1

a2
−

1

a1

)

(Dl∆
−1
h)2.

diag [a] multiplies rows or columns of the matrix Dl∆
−1
h , depending on its respective position

in matrix multiplication, by the corresponding values of a. However, nonzero elements in
Dl∆

−1
h stay only in positions, corresponding to (ij0), where a = a1 (by the definition of

diag [a], it has ai−1/2,j0−1/2 = a1 in (ij0), (ij0) place). Hence, matrices diag [a] and diag

[

1

a

]

in

the second and third terms of Γ(a)P produce just multiplication by a1 and 1/a1, respectively.
Then we obtain the statement of Lemma.

Using the last Lemma, we can easily deduce, that if Dl∆
−1
h has an eigenvector x and

the corresponding eigenvalue λ, then the preconditioned matrix has the same vector x as an
eigenvector, and the eigenvalue

µ = 1 +

(

a1

a2
+
a2

a1
− 2

)

λ−

(

a1

a2
+
a2

a1
− 2

)

λ2.

So, now we are to proof, that Dl∆
−1
h has only a few different eigenvalues, hence, eigenvalues

of preconditioned matrix form a cluster.

Lemma 3.11 The matrix Dl∆
−1
h has just two different eigenvalues: 0 and 1/2.

Proof. To prove the statement, we are to show, that the minimal characteristic polynomial
of matrix Dl∆

−1
h has the following form:

(Dl∆
−1
h)2 −

1

2
Dl∆

−1
h = 0,

17

that is, for any vector x the following holds:

(Dl∆
−1
h)2x−

1

2
Dl∆

−1
h x = 0. (3.9)

Using the discrete sine Fourier transform, one can easily deduce, that any vector x can be
decomposed as follows:

x =
∑

k,m

αk,mFkFm + βk,mGkFm + γk,mFkGm + δk,mGkGm,

with some constants α, β, γ, δ, and basis functions

Fk i = sin(πhki), Gk i = cos(πhki).

It is known, that the set {sin(πhki)} is an orthogonal basis of eigenvectors of ∆−1
h . Moreover,

it is orthogonal to the corresponding cos-set:

n
∑

i=1

sin(πhki) cos(πhmi) = 0, for any k,m, (3.10)

and
n
∑

i=1

sin(πhki) sin(πhmi) = 0, if k 6= m.

Since the characteristic polynomial has matrix ∆−1
h in it, it eliminates all cos-functions in x:

∆−1
h x =

∑

k,m

αk,mλk,m(∆−1
h)FkFm.

So, we should check the equation (3.9) only on the following basis functions:

x = {xi,j} = {sin(πhki) sin(πhmj)},

where i, j, k,m vary in the range 1, ..., n. If it holds for all these functions, then it holds for
any vector x.

First of all, consider the application of ∆h to a vector from this set:

[h2∆hx](ij) = − sin(πhki) sin(πhm(j − 1)) − sin(πhk(i− 1)) sin(πhmj)+
+ 4 sin(πhki) sin(πhmj)−
− sin(πhk(i+ 1)) sin(πhmj) − sin(πhki) sin(πhm(j + 1)).

After the summation of the first and the last terms, and of the second and the fourth, and
so on, we obtain:

∆hx =
1

h2
(4 − 2 cos(πhk) − 2 cos(πhm))x.

Denote
1

h2
(4 − 2 cos(πhk) − 2 cos(πhm)) = λ(∆h). Then the application of ∆−1

h on test

functions is:
∆−1

h x = λ−1(∆h)x.

18

Now, consider the application of Dl to the test functions:

[h2Dlx](ij) = −1/2 sin(πhk(i− 1)) sin(πhmj) + 2 sin(πhki) sin(πhmj)−
− 1/2 sin(πhk(i+ 1)) sin(πhmj) − sin(πhki) sin(πhm(j + 1))
= − sin(πhki) sin(πhmj) cos(πhk) + 2 sin(πhki) sin(πhmj)−
− sin(πhki) sin(πhmj) cos(πhm) − sin(πhki) cos(πhmj) sin(πhm).

Recalling the eigenvalues of ∆h:

[Dlx](ij) = 1/2 λ(∆h)x(ij) −
1

h2
sin(πhki) cos(πhmj) sin(πhm).

Since the sin-set of functions is orthogonal to the cos-set (3.10),

∆−1
h {sin(πhki) cos(πhmj)} = 0.

Then

[Dl∆
−1
h x](ij) = 1/2 x(ij) −

λ−1(∆h)

h2
sin(πhki) cos(πhmj) sin(πhm),

∆−1
h Dl∆

−1
h x = ∆−1

h (1/2 x−
λ−1(∆h)

h2
{sin(πhki) cos(πhmj)} sin(πhm)) = 1/2 λ−1(∆h)x,

and

(Dl∆
−1
h)2x = 1/4 x− 1/2

λ−1(∆h)

h2
{sin(πhki) cos(πhmj)} sin(πhm) = 1/2 Dl∆

−1
h x.

So, the characteristic equation holds on the set which forms a basis, and, hence, on any
vector.

Summarizing the Lemmas 3.10 and 3.11 we obtain the main

Theorem 3.12 The preconditioned matrix Γ(a)P has two clusters of eigenvalues: in

λ1 = 1,

and

λ2 = 1 + 1/4

(

a1

a2
+
a2

a1
− 2

)

.

This leads to the convergence of GMRES in 2, or maybe 3 iterations.

The proposed proofs in 2D can be easily generalized to the higher dimensional case. The
discretization scheme (3.7) will contain also derivatives in the other directions, the spectral
equivalence will still be the same (in the proof of Lemma 3.1 terms like ai,j,k+1/2(ui,j,k+1 −
ui,j,k)

2 will arise, and so on). The clustering of eigenvalues in the case of one interface will
also hold, as the set of separable test functions {sin(πhki) sin(πhmj)} can be generalized
obviously. There will be other eigenvalues, not just 0, 1/2 in 2D, but they also form clusters.

19

4 Numerical tests on preconditioning and rank bounds

Example 1. First of all, we investigate the spectral properties of the proposed precondi-
tioner on the 1-interface case in 2D. We choose the following coefficient

a(x, y) =

{

α, if y ≤ 0.5,
1, if y > 0.5.

The PCG and GMRES solvers converge in 2 iterations to the accuracy in the order of
machine precision with any α and random right-hand side. The distribution of spectrum
of preconditioned matrix is shown on Fig. 4.1 We see, that eigenvalues form two separate

Figure 4.1: The distribution of eigenvalues along the real axis (left), and the eigenvalue
versus its number (right) in the case of 1 interface

clusters, confirming Theorem 3.12.

In next examples we check the convergence of PCG iterations for preconditioned problems
with various coefficients. In each case, the several runs of program with random right-hand
sides were made. It shows the same number of iterations to achieve the desired relative
accuracy in each run, that confirms the clustering structure of eigenvalues. In each case, the
full representation of the matrix and the vectors is used, so, the timings scale as nd. All
computations are done using the MATLAB 7.9 (R2009b) and Intel C Compiler (icc) (for
MATLAB MEX-functions) on a Linux Dual Core AMD Opteron machine with clock-speed
2.6 GHz, and cache size 1Mb.

Example 2 (Table 4.1, 4.2). 2D Dirichlet problem, 1/a(x, y) = chk(x) + chk(y),
where

chk(x) =

{

1, if [x · 16] is odd,
α, if [x · 16] is even

(see Fig. 4.2).
Example 3 (Table 4.3, 4.4). 3D Neumann problem, the projection of a on each of

planes xy, yz, xz is shown on Fig. 4.4, the dark regions has a(x, y, z) = α, the others a = 1,
f = cos(πx) cos(πy) cos(πz).

20

Figure 4.2: Diffusion coefficient a(x, y) (left) and 1/a(x, y) (right) in the example 2

Table 4.1: Number of iterations to ||Au − f ||/||f || < 10−8, and CPU time of the solution
versus the number of grid points in each direction n, α = 10, example 2.

n2 iterations CPU time , s

322 11 0.015
642 11 0.036
1282 12 0.116
2562 12 0.433
5122 12 1.935
10242 12 7.754
20482 12 29.53

Table 4.2: Number of iterations to ||Au− f ||/||f || < 10−8, versus jumps in the coefficient α,
n = 256, example 2.

α iterations

0.01 21
0.1 13
2 6
10 12
100 21
1000 27
104 31
105 64

We can also see, that, despite of the Neumann boundary conditions, the preconditioned
problem is solvable by CG.

Example 4 (Table 4.5). The coefficient in this example was taken from [4]: 2D

21

0 5 10 15 20 25 30
−8

−6

−4

−2

0

2

4

Figure 4.3: Convergence history in example 2: log10 ||Au−f || vs iteration, α = 103, n = 256.

Figure 4.4: The projection of the coefficient a(x, y, z) on each of planes xy,yz,zx in example
3

Table 4.3: Number of iterations to ||Au − f ||/||f || < 10−8 and CPU time of the solution
versus the number of grid points in each direction n, α = 103, example 3.

n3 iterations CPU Time, sec

643 15 2.877
1283 16 32.6
2563 16 325

Dirichlet problem,

a(x, y) =

{

1, 0.125 ≤
√

(x− 0.5)2 + (y − 0.5)2 ≤ 0.25,
10, otherwise.

We show here also the convergence results of AMG from the work [4].
Example 5 (Table 4.6, 4.7). In the last example, we test ranks of the QTT tensor

approximation (see [15, 10]) of the reciprocal coefficient 1/a and the operator Γ(1/a). As
∆−1

h is known to have good QTT-compression properties, we are to study Γ(1/a). In future
work we are going to formulate our preconditioner in QTT format. As here we use the
compression from the full representation of vector and matrix, we are limited in the grid
size. Below we use 32 and (in 2D) 64 grid points in each direction. As the QTT-rank we

22

Table 4.4: Number of iterations to ||Au− f ||/||f || < 10−8 versus jumps in the coefficient α,
n = 128, example 3.

α iterations

0.01 15
0.1 10
10 10
100 15
1000 16
104 18
105 24

Table 4.5: Number of iterations to ||Au − f ||/||f || < 10−8 and CPU time of the solution
versus the number of grid points in each direction n, example 4.

n2 iters(AMG) iters(∆−1
h Γ(1/a)∆−1

h) CPU Time(∆−1
h Γ(1/a)∆−1

h), s

1282 10 6 0.089
2562 11 6 0.337

denote the maximum rank of QTT cores.

Table 4.6: QTT ranks of 1/a and Γ(1/a) in previous examples. Results are the same for
approximation tolerances ε = 10−2, ..., 10−12.

example, n QTT-rank(1/a) QTT-rank(Γ(1/a))

1, n = 32 2 4
1, n = 64 2 4
2, n = 32 5 9
2, n = 64 5 9
3, n = 32 9 22
4, n = 32 14 30
4, n = 64 26 54

We can see, that the QTT-ranks of matrix Γ(1/a) is proportional to the ranks of 1/a.
Moreover, if the pattern of a has the rectangle structure, the ranks do not depend on grid
size n. In Example 4 the interface has the circle shape, so, its QTT-compression properties
are worse.

Example 6 (Table 4.8). Now we test the preconditioner for the coefficient a which
tends to zero near the boundary (degenerate coefficients):

a(x, y) = x(1 − x)y(1 − y),

23

Table 4.7: QTT ranks of discrete solution uh in previous examples vs approx. tolerance ε.

example, n ε = 10−2 ε = 10−4 ε = 10−6 ε = 10−8 ε = 10−10

1, n = 32 4 8 11 13 16
1, n = 64 4 8 12 15 26
2, n = 32 7 16 24 30 32
2, n = 64 7 22 34 49 59
3, n = 32 12 40 85 120 128
4, n = 32 12 16 22 26 29
4, n = 64 14 30 33 43 48

and random right-hand side. As the condition number of the preconditioned matrix is
limited by max a/min a, this preconditioner works sufficiently worse, than in the previous
examples. We see, that the number of iterations is sufficiently large, and depends on a grid

Table 4.8: Number of iterations to ||Au − f ||/||f || < 10−8, CPU time of the solution and
QTT ranks versus the number of grid points in each direction n, example 6.

n2 iterations CPU time , s QTT-rank(1/a) QTT-rank(uh)

322 16 0.04 10 17
642 24 0.126 14 21
1282 35 0.597 16 25
2562 51 6.87 17 29
5122 73 23.96 19 33
10242 105 282.12 19 36

size. Nevertheless, this preconditioner can be used for moderate grid sizes. Another way to
achieve good convergence (and, also, approximation of the discretization scheme) is to use
the adaptive grids, which increase the grid-points density near the boundaries (boundary
layer).

QTT ranks of the diffusion coefficient are about 3 for any compression accuracy ε and
grid size n. But one can see, that the ranks of the reciprocal coefficient and the solution (in
this example we set the compression accuracy to 10−10) are quite large and depend on a grid
size.

5 Conclusion

We studied the schemes for the solution of multidimensional elliptic problem. We described
the quasi-optimal preconditioner for the elliptic equation in operator and discrete forms. The
preconditioned matrix of the discrete problem is spectrally equivalent to the identity matrix
with constants depending only on jumps in the diffusion coefficient. We tested the proposed

24

preconditioner on 2D and 3D problems with Dirichlet and Neumann boundary conditions.
In the case of non-degenerate coefficient the preconditioner provides the convergence of the
PCG or GMRES type methods in at most of several tens iterations independently on the
grid size. In many cases, the proposed method can be applied as a black-box solver and
it provides better convergence and timings, than multigrid methods [4]. Our approach is
suitable for a wide class of the coefficients, in comparison with more special preconditioners
[1].

Another important part of the work is the study of low-rank tensor approximations to
the solutions of elliptic problems and of the proposed preconditioner. We obtained, that the
finite element/finite difference matrix and the respective preconditioner can be approximated
with low-rank tensor structures such as canonical or TT/QTT tensor formats. Although,
most statements are proved in 2D case, their generalization to the higher dimensional case is
straightforward. In this paper we tested the tensor properties of full solutions, obtained with-
out tensor approximations. The implementation of the proposed preconditioned iteration in
the compressed tensor formats will be considered in the forthcoming paper.

References

[1] B. Aksoylu, I. G. Graham, H. Klie and R. Scheichl: Towards a rigorously justified alge-
braic preconditioner for high-contrast diffusion problems, Computing and Visualization
in Science, v. 11, no. 4-6 (2008), pp. 319-331.

[2] G. B. Arfken, H. J. Weber: Mathematical Methods for Physicists, 6th edition, Academic
Press, San Diego (2005), pp. 95101.

[3] G. Beylkin, M. M. Mohlenkamp: Algorithms for numerical analysis in high dimensions,
SIAM J. Sci. Comput., v. 26, no. 6 (2005), 2133–2159.

[4] A. J. Cleary, R. D. Falgout, V. E. Henson, and others: Robustness and scalability of
algebraic multigrid, SIAM J. Sci. Comput., v. 21, no. 5 (2000), pp. 1886-1908.

[5] I.P. Gavrilyuk, W. Hackbusch, and B.N. Khoromskij: Tensor-product approximation to
the inverse and related operators in high-dimensional elliptic problems. Computing 74

(2005), 131-157.

[6] L. Grasedyck: Existence and computation of a low Kronecker-rank approximation to the
solution of a tensor system with tensor right-hand side. Computing 72 (2004), 247–265.

[7] W. Hackbusch, B.N. Khoromskij, S. Sauter and E. Tyrtyshnikov: Use of Tensor Formats
in Elliptic Eigenvalue Problems. Preprint 78, MPI MiS, Leipzig 2008 (submitted).

[8] W. Hackbusch, B.N. Khoromskij and E.E. Tyrtyshnikov: Hierarchical Kronecker tensor-
product approximations. J. Numer. Math. 13 (2005), 119–156.

[9] B.N. Khoromskij: Tensor-Structured Preconditioners and Approximate Inverse of El-
liptic Operators in R

d. J. Constructive Approx., 30: 599-620 (2009).

25

[10] B. N. Khoromskij: O(d logN)-Quantics Approximation of N − d Tensors in High-
Dimensional Numerical Modeling. Preprint 55/2009. Max-Plank-Institut für Mathe-
matik in den Naturwissenschaften. Leipzig 2009 (submitted).

[11] B.N. Khoromskij: Tensors-structured Numerical Methods in Scientific Computing: Sur-
vey on Recent Advances. Preprint 21/2010, MPI MiS Leipzig 2010 (submitted).

[12] B. N. Khoromskij, and I. V. Oseledets: Quantics-TT Approximation of Elliptic Solution
Operators in Higher Dimensions. Preprint 79/2009. Max-Plank-Institut für Mathematik
in den Naturwissenschaften. Leipzig 2009 (submitted).

[13] I.V. Oseledets: A new tensor decomposition. Doklady Mathematics, Vol. 80, No. 1
(2009), pp. 495-496.

[14] I.V. Oseledets, E.E. Tyrtyshnikov: Breaking the curse of dimensionality, or how to use
SVD in many dimensions. SIAM J. Sci. Comput. Vol. 31, No. 5 (2009), pp. 3744-3759.

[15] I.V. Oseledets, E.E.: Approximation of 2d × 2d matrices using tensor decomposition.
SIAM J. Matrix Anal. Appl., Vol. 31, No. 4 (2010), pp. 2130-2145.

[16] E.E. Tyrtyshnikov: Tensor approximations of matrices generated by asymptotically
smooth functions. Sbornik: Mathematics 194, No. 5-6 (2003), 941–954 (translated from
Mat. Sb. 194, No. 6 (2003), 146–160).

[17] E.E. Tyrtyshnikov: Kronecker-product approximations for some function-related matri-
ces. Linear Algebra Appl. 379 (2004), 423–437.

26

