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Abstract Important matrix-valued functions f (A) are, e.g., the inverse A−1, the
square root

√
A and the sign function. Their evaluation for large matrices arising from

pdes is not an easy task and needs techniques exploiting appropriate structures of
the matrices A and f (A) (often f (A) possesses this structure only approximately).
However, intermediate matrices arising during the evaluation may lose the structure
of the initial matrix. This would make the computations inefficient and even infea-
sible. However, the main result of this paper is that an iterative fixed-point like process
for the evaluation of f (A) can be transformed, under certain general assumptions,
into another process which preserves the convergence rate and benefits from the un-
derlying structure. It is shown how this result applies to matrices in a tensor format
with a bounded tensor rank and to the structure of the hierarchical matrix technique.
We demonstrate our results by verifying all requirements in the case of the iterative
computation of A−1 and

√
A.
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1 Introduction

We consider important matrix-valued functions f (A) as, e.g., the inverse A−1 and
the square root

√
A [3,10,28–30,41]. In particular, we are interested in evaluations

of f (A) for matrices A arising from partial differential equations. Obviously, the
computation of f (A) for large-scale matrices A is not an easy task. In the numerical
treatment one has to avoid the full-matrix representation. Instead one should use special
representations (i.e., special data structures) which, on the other hand, correspond to
special properties of the argument A, of the result f (A) and of the auxiliary matrices
arising during the computation process.

Examples for such a representation are Toeplitz-like structures or a sparse-matrix
format. The latter format is not successful for our examples, since sparse matrices A
produce results A−1,

√
A, sign(A), which are usually non-sparse and which, more-

over, cannot be approximated by sparse matrices. This is different for the format
of hierarchical matrices (cf. [19,21–23]), the hierarchical Kronecker-tensor product
(HKT) representation (cf. [24,25,27]) and standard Kronecker representation [36,37].

The matrices belonging to a particular representation are characterised by a subset
S of the vector space of matrices. The letter S abbreviates “structured matrices”. In the
simplest case, A ∈ S implies f (A) ∈ S. If also all intermediate results belong to S, the
whole computational process can be performed using the special data structures of S.

The purpose of this paper is the analysis of a more complicated situation, when A ∈ S
does not imply f (A) ∈ S, but f (A) has a good approximation in S. We illustrate this
situation by the following example.

We consider a discrete two-dimensional Laplacian

A = T ⊗ I + I ⊗ T, T =

⎡
⎢⎢⎢⎣

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎤
⎥⎥⎥⎦ , (1.1)

where T and the identity I are n × n matrices. Obviously, A is a matrix of size
n2 × n2 with a very special structure: it is exactly the sum of two terms, each being
the Kronecker (tensor) product of two n × n matrices. It is remarkable that A−1 is
approximately of the same structure but with a greater number of terms. This number
is called the tensor rank; the way the rank depends on the approximation accuracy ε

and n can be seen from Table 1. Similar results for the square root of A are presented
in Table 2.

We observe a logarithmic growth of the tensor rank upon ε and as well upon n.
More precisely, the rank estimate r = O(| log ε| log n) can be proven (cf. [26]) based
on approximation by exponential sums also for Kronecker products involving more
than two factors (cf. [18,24,25]). Thus, A−1 and

√
A can be approximated by a matrix

defined by a reasonably small number of parameters in the tensor format.
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Approximate iterations for structured matrices 367

Table 1 Tensor ranks for ε-approximations to A−1

n ε

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9

20 4 5 6 7 8 9 10 10

40 4 6 7 8 10 11 12 13

80 4 6 8 10 11 13 14 15

160 4 7 9 11 13 14 16 18

320 5 7 10 12 14 16 18 20

Table 2 Tensor ranks for ε-approximations to
√

A

n ε

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9

80 2 3 5 7 8 10 11 13

160 2 3 5 7 9 11 13 15

320 2 3 5 7 9 12 14 16

Table 3 Tensor ranks for ε-approximations to Xk (n = 160)

ε k

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10−3 2 3 4 4 5 5 6 6 5 6 6 6 7 7 7 7

10−6 2 4 7 8 8 9 10 10 11 12 12 13 14 14 13 13

So far the existence of an approximation B̃ ≈ A−1 with B̃ ∈ S is ensured (here,
the set S of structured matrices is given by sums of Kronecker products with a certain
limited number of terms). It remains to design an algorithm for computing f (A) =
A−1. A possible choice is the Newton iteration

X0 = α I, Xk = Xk−1(2I − AXk−1) (k = 1, 2, . . .).

For this iteration it can be proved that if 0 < α ≤ 1/4 then Xk → A−1, and the
convergence is quadratic.

Here the important question arises, whether the intermediate matrices Xk belong
to the subset S or can be well approximated by X̃k ∈ S. In the following numerical
experiment each Xk admits a suitable approximation of low tensor rank as can be seen
from Table 3.

Thus, a natural idea is to substitute Xk by its approximation in the tensor format.
Such a substitution is called truncation. Assume that the truncation is performed at
every iteration. Then the following questions arise: How will this affect the conver-
gence rate of the Newton-Schulz method? Will the convergence remain quadratic? The
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368 W. Hackbusch et al.

answers are positive. Moreover, the same answer is valid not only for the Laplacian but
typical for the truncation based on the tensor or hierarchical formats [20,24,25,32].

It is worthy to mention that the truncation error may vary during iterations. It makes
sense to take it not very small during the first iterations and then tighten it gradually
towards the end. This strategy really helps to compress the intermediates [32].

The very idea of iterations with truncation has been already advocated in several
papers, chiefly for Toeplitz-like matrices [8,9,31–33], rank-structured matrices [4,
5,12,13,21,27,32] (see also [22–26]) and wavelet-based sparsification [1,6,12,13].
However, the proofs provided so far only for some particular cases of structures have
appeared as different individual proofs. Now we realise that many cases of previous
works can be covered by a single common proof.

The main result of this paper is that an iterative fixed-point process for the evaluation
of f (A) can be transformed, under certain general assumptions, into another process
which preserves the convergence rate and benefits from the underlying structure. It is
shown how this result applies to matrices in a tensor format with a bounded tensor
rank and to the structure of the hierarchical matrix technique. We demonstrate our
results by verifying all requirements in the case of the iterative computation of A−1

and
√

A.
In this paper we propose a general framework in which the above-mentioned results

appear as particular cases. Our main results are two theorems (Sect. 2) that turn out
to be both entirely general and quite elementary. Despite the latter, they do not seem
to be well-known in the community of numerical analysis and structured matrices.
Our results clearly amplify the role of non-linear iterative schemes in computations
with structured matrices. It is especially gainful that they apply to many interesting
iterative scheme and various classes of structured matrices including those already in
work and those that may appear yet in application contexts.

Nevertheless, there are iterations which do not satisfy the requirements of our
theorems. For instance, our theory does not apply when the success of the iteration
depends on the fact that the iterates Xk stay in some sub-manifold.

The rest of the paper is organised as follows.
In Sect. 2 we consider an iteration Xk = �k(Xk−1), which starting with X0 :=

�0(A) is assumed to converge to f (A). The quadratic convergence is described in
detail in Lemma 2.1. Next we introduce a so-called truncation operator R which maps
into a subset S (which we call the set of “structured” elements). The combination of
the iteration with the truncation operator yields the iteration with truncation Yk =
R(�k(Yk−1)). In Theorem 2.2 we describe the characteristic requirements on R so
that the iteration with truncation has similar convergence properties as the original
iteration. The final Theorem 2.4 considers the important case that the desired result
f (A) does not belong to S but is close to S.

It remains to verify that the assumptions on the truncation operator R can be satisfied
in practically relevant cases. In Sect. 3 we describe a general framework which is later
applied (i) to the structure used in the hierarchical matrix technique and (ii) to low
Kronecker rank matrices.

Section 4 is devoted to the convergence analysis of certain matrix iterations resulting
in A−1 and

√
A (note that the latter case is closely related to the computation of sign(A)
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Approximate iterations for structured matrices 369

[29]). In particular, the general theory from Sects. 2 and 3 ensures the quadratic
convergence of the truncated Newton iterations to compute A−1 and

√
A.

2 Main result

2.1 Exact iteration

Let V be a normed space V and consider a function f : V → V and A ∈ V . Assume
that B := f (A) can be obtained by an iteration of the form

Xk = �k(Xk−1), k = 1, 2, . . . , (2.1)

where �k is a one-step operator. Further, assume that for any initial guess X0 suffi-
ciently close to B, the process converges:

lim
k→∞ Xk = B. (2.2)

If �k = � does not depend on k, (2.1) represents the important fixed-point iteration.

Lemma 2.1 Let B and �k be as above and assume that there are constants c�, ε� > 0
and α > 1 such that

‖�k(X) − B‖ ≤ c� ‖X − B‖α for all X ∈ V with ‖X − B‖
≤ ε� and all k ∈ N, (2.3)

and set

ε := min (ε�, 1/c) , c := α−1
√

c�. (2.4)

Then (2.2) holds for any initial guess X0 satisfying ||X0 − B|| < ε, and, moreover,

‖Xk − B‖ ≤ c−1 (c ‖X0 − B‖ )α
k

(k = 0, 1, 2, . . .) . (2.5)

Proof Let ek := ‖Xk − B‖. Then, due to (2.3),

ek ≤ c�eα
k−1, provided that ek−1 ≤ ε�. (2.6)

Because of (2.6), the inequalities ek−1 ≤ ε ≤ ε� imply ek ≤ c�εα = cα−1εα =
ε (cε)α−1 ≤ ε. Hence, all iterates stay in the ε-neighbourhood of B. (2.5) is proved
by induction:

ek ≤
(2.6)

c�eα
k−1 =

induction hypothesis
c� ·

(
c−1 (ce0)

αk−1
)α

=
c�=cα−1

cα−1 · c−α (ce0)
αk = c−1 (ce0)

αk
.

Whenever e0 < ε, (2.5) shows ek → 0. 	
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370 W. Hackbusch et al.

We remark that (2.6) together with e0 ≤ ε implies monotonicity:

‖Xk − B‖ ≤ ‖Xk−1 − B‖ . (2.7)

2.2 Iteration with truncation

Let S ⊂ V be a subset (not necessarily a subspace) considered as a class of certain
structured elements (e.g., matrices of a certain data structure) and suppose that R :
V → S is an operator from V onto S. We call R a truncation operator. It is assumed
that R(X) = X for any X ∈ S (i.e., all elements in S are fixed points of R). Note
that, in general, R is a non-linear mapping. The truncation of real numbers to machine
numbers is a common example for V = R.

Now, instead of (2.1), consider an iterative process with truncation defined as
follows:

Y0 := R(X0),

Yk := R(�k(Yk−1)) (k = 1, 2, . . .).
(2.8)

The next theorem needs the assumption that the desired result B := f (A) belongs
(exactly) to the subset S. Later, in Theorem 2.4, this requirement will be relaxed.

Theorem 2.2 Under the premises of Lemma 2.1, assume that

‖X − R(X)‖ ≤ cR ‖X − B‖ for all X ∈ V with ‖X − B‖ ≤ ε�. (2.9)

Then there exists δ > 0 such that the truncated iterative process (2.8) converges to B
so that

‖Yk − B‖ ≤ cR� ‖Yk−1 − B‖α with cR� := (cR + 1)c� (k = 1, 2, . . .)

(2.10)

for any starting value Y0 = R(Y0) satisfying ‖Y0 − B‖ < δ.

Proof Let ε as in (2.4) and define Zk := �k(Yk−1). By (2.7) we have ‖Zk − B‖ ≤
‖Yk−1 − B‖, provided that ‖Yk−1 − B‖ ≤ ε. Then

‖Yk − B‖ = ‖(R(Zk) − Zk) + (Zk − B)‖ ≤ (cR + 1) ‖Zk − B‖ . (2.11a)

Assuming ‖Yk−1 − B‖ ≤ ε, the inequalities ε ≤ ε� and (2.3) ensure

‖Zk − B‖ = ‖�k(Yk−1) − B‖ ≤ c� ‖Yk−1 − B‖α . (2.11b)

Combining (2.11a) and (2.11b), we obtain (2.10) for any k, provided that
‖Yk−1 − B‖ ≤ ε.
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Approximate iterations for structured matrices 371

Similar to the proof of Lemma 2.1 and (2.7), the choice

δ := min (ε, 1/C) , C := α−1
√

cR� (2.11c)

guarantees that ‖Y0 − B‖ ≤ δ implies ‖Yk − B‖ ≤ δ ≤ ε for all k ∈ N. 	

Corollary 2.3 Under the assumptions of Theorem 2.2, any starting value Y0 with
‖Y0 − B‖ ≤ δ leads to

‖Yk − B‖ ≤ C−1 (C ‖Y0 − B‖)αk
(k = 1, 2, . . .), (2.12)

where C and δ are defined in (2.11c).

2.3 The case of B �∈ S

In most of the practical applications, the desired result B will not belong to the subset
S, but may be close to S. The following requirement (2.14) states that ‖B − R(B)‖ ≤
εR B . Then the iteration with truncation cannot converge to B, but it comes sufficiently
close to B. In fact, in a first phase the iteration with truncation is described by (2.12)
with C replaced by C ′ := α−1

√
2cR� until it reaches the 2εR B-neighbourhood of B.

The quantity εR B must be sufficiently small:

εR B <
η

2
, where η := min

(
ε, 1/

α−1
√

2cR�

)
(2.13)

with cR� = (cR + 1)c� as defined above.

Theorem 2.4 Under the premises of Lemma 2.1, suppose

‖X − R(X)‖ ≤ cR ‖X − B‖ + εR B for all X ∈ V with ‖X − B‖ ≤ ε�,

(2.14)

where εR B satisfies (2.13). Further, assume ‖Y0 − B‖ < η and define Yk by the
iteration with truncation (2.8). Let m be the minimal k ∈ N such that

‖Yk−1 − B‖α ≤ εR B

cR�

. (2.15)

Then the errors ‖Yk − B‖ strictly decrease for 1 ≤ k < m, while for k ≥ m the
iterates stagnate in a 2εR B-neighbourhood of the true result:

‖Yk − B‖ ≤
{

2cR� ‖Yk−1 − B‖α for k ≤ m − 1,

2εR B for k ≥ m.
(2.16)

Proof Instead of (2.11a) we now have

‖Yk − B‖ ≤ ‖Yk − Zk‖ + ‖Zk − B‖ ≤ (cR + 1) ‖Zk − B‖ + εR B,
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372 W. Hackbusch et al.

which obviously implies

‖Yk − B‖ ≤ cR� ‖Yk−1 − B‖α + εR B . (2.17)

If k < m, the inequality εR B ≤ cR� ‖Yk−1 − B‖α holds and implies ‖Yk − B‖ ≤
2cR� ‖Yk−1 − B‖α . Hence, (2.10) holds with cR� replaced by 2cR� giving rise to
(2.12) with C replaced by C ′ := α−1

√
2cR�. The initial error estimate ‖Y0 − B‖ < η

implies the strict decrease of ‖Yk − B‖ until (2.15) holds.
If k = m, (2.17) shows‖Ym − B‖ ≤ 2εR B .For k ≥ m, the estimate cR� (2εR B)α+

εR B ≤ 2εR B derived from (2.13) proves the second case in (2.16). 	


Corollary 2.5 Theorems 2.2 and 2.4 can be generalised by replacing the conditions
(2.9) and (2.14) with the respective inequalities

‖(I − R)(X)‖ ≤ cR ‖X − B‖β (2.18)

and

‖(I − R)(X)‖ ≤ cR ‖X − B‖β + εB, (2.19)

provided that αβ > 1. Then, the order of convergence of the truncated iterative process
(2.8) becomes αβ. However, all truncation operators used in this paper satisfy the
conditions with β = 1.

Note that condition (2.9) has a clear geometrical background. If

R(X) := argmin {‖X − Y‖ : Y ∈ S}

is a best approximation to X in the given norm, inequality (2.9) holds with cR = 1,

since B ∈ S. Therefore, (2.9) with cR ≥ 1 can be viewed as a quasi-optimality
condition. If the norm is defined by a scalar product, then S is a subspace, R(X) is the
orthogonal projection onto S and (2.9) is obviously fulfilled with cR = 1.

The requirement α > 1 for the order of convergence implies convergence in a sui-
table neighbourhood of B. For linear convergence (α = 1) the additional requirement
c� < 1 is essential.

Remark 2.6 In the case of α = 1 (i.e., linear convergence), the truncated process
retains linear convergence, provided that (cR + 1)c� < 1.

3 Truncation operators

Theorems 2.2 and 2.4 can be applied to various classes of structured matrices. When
constructing a truncation operator for a particular class, we should take care that
condition (2.9) is satisfied.
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Approximate iterations for structured matrices 373

3.1 General framework

Next we describe a general framework which seems to cover all important cases.

Lemma 3.1 Let B = R(B) be fixed and assume that R is Lipschitz at B. Then the
inequality (2.9) holds.

Proof The Lipschitz property of R means that ‖R(X) − R(B)‖ ≤ c ‖X − B‖ for
some constant c > 0 independent of X . The estimate

‖X − R(X)‖ =
B=R(B)

‖(X − B) + (R(B) − R(X))‖ ≤ (1 + c) ‖X − B‖

shows (2.9) with cR = 1 + c.

Corollary 3.2 Condition (2.9) is fulfilled as soon as B = R(B) and R is a bounded
linear operator.

Let V = R
I×I be the space of square matrices with respect to the index set I and

S ⊂ V a subspace with a prescribed sparsity pattern P ⊂ I × I , i.e., X ∈ S if and
only if Xi j = 0 for all (i, j) /∈ P. A familiar example of a truncation in this case is
R(X) defined entry-wise by

R(X)i j :=
{

Xi j for (i, j) ∈ P,

0 for (i, j) /∈ P.
(3.1)

This R is linear, and hence, satisfies the hypotheses of Lemma 3.1 via Corollary 3.2.
There are only rare examples, for which A and B = f (A) can simultaneously be

approximated by sparse matrices from S := {X ∈ R
I×I : R(X) = X}. However, it is

well-known that after a discrete wavelet transform X �→ L(X) := T −1 XT one can
apply a matrix compression (see [12,13,31,32]). Such a matrix compression is of the
form (3.1) and will be denoted by � instead of R. Then, the trunction R applied to the
original matrix X is the composition of the wavelet transform L , the pattern projection
� and the back-transformation L−1:

R := L−1 ◦ � ◦ L . (3.2)

The same product form of R is typical as well for many other choices of L and �.
In the following lemmata the operator � may be non-linear.

Lemma 3.3 Let V and W be normed spaces and L : V → W a bounded linear
operator with a bounded inverse. Given B ∈ V , assume that � : W → W satisfies

‖Z − �(Z)‖ ≤ c� ‖Z − L(B)‖ for all Z ∈ W with
∥∥∥L−1(Z) − B

∥∥∥ ≤ ε�.

(3.3)

Then the truncation operator R of the form (3.2) satisfies condition (2.9) with

cR := c� ‖L‖ ‖L−1‖. (3.4)
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Proof Let Z = L(X). Then, obviously,

‖R(X) − X‖ =
∥∥∥L−1(�(Z) − Z)

∥∥∥ ≤ c�‖L−1‖ ‖Z − L(B)‖ ,

and it remains to observe that ‖Z − L(B)‖ = ‖L(X) − L(B)‖ ≤ ‖L‖ ‖X − B‖. 	

Applications of Lemma 3.3 (especially in the case of hierarchical block matrices)

are facilitated by the following construction. Define a suitable system of normed spaces
W1, . . . , WN and set

W := W1 × · · · × WN = {H = (H1, . . . , HN ) : Hi ∈ Wi }

with ‖H‖ =
√√√√ N∑

i=1

‖Hi‖2. (3.5)

Let each Wi be associated with a truncation operator �i : Wi → Wi satisfying

‖Hi − �i (Hi )‖ ≤ ci ‖Hi − Zi‖ for all Hi ∈ Wi and 1 ≤ i ≤ N , (3.6)

where Zi ∈ Wi are some fixed elements.

Lemma 3.4 Let W be the normed space from (3.5) and let the truncation operators
�i satisfy (3.6), where the elements Zi ∈ Wi are defined by

L(B) = (Z1, . . . , Z N ).

The product of the truncation operators �i defines � : W → W via

�(H) := (�1(H1), . . . ,�N (HN )) for H = (H1, . . . , HN ), Hi ∈ Wi .

Then R from (3.2) satisfies (2.9).

Proof Let L(X) = H = (H1, . . . , HN ). Then, according to the definitions of L and �,

‖H − �(H)‖ ≤
√∑N

i=1
c2

i ‖Hi − Zi‖2 ≤
(

max
1≤i≤N

ci

) √∑N

i=1
‖Hi − Zi‖2,

which proves (3.3) and allows us to use Lemma 3.3. 	

An important example of � in the case of a matrix space W is given by optimal

low-rank approximations.

Lemma 3.5 Let W be a normed space of all matrices of a fixed size and let S ⊂ W
consist of all matrices whose rank does not exceed r. Then for any H ∈ W there exists
a matrix T ∈ S such that ‖H − T ‖ = min

rank Z≤r
‖H − Z‖ .
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Approximate iterations for structured matrices 375

Proof Consider a minimising sequence Zk ∈ S, i.e., lim
k→∞ ‖H − Zk‖ = δ := inf

rank Z≤r
‖H − Z‖ . Obviously, the sequence Zk is bounded. Therefore, a convergent subse-
quence Zki → T exists. Its limit satisfies ‖H − T ‖ = δ.

The assertion T ∈ S is due to the fact that a matrix of rank equal to p > r possesses
a vicinity wherein any matrix is of rank ≥ p. 	


The optimal approximant T is not necessarily unique. For the mathematical defi-
nition of �(H) we choose any of the optimal approximants. In practice, the result
depends on the implementation.

Corollary 3.6 For any norm, the optimal truncation operator � defined in Lemma 3.3
satisfies (3.3) with c� = 1.

Proof In the given norm, no matrix in S can be closer to H than �(H). 	

Matrix theory provides well-developed tools for the construction of low-rank

approximations in the case of any unitarily invariant norm. For an arbitrary matrix
H ∈ W , denote its singular values by σ1(H) ≥ σ2(H) ≥ . . . and let 	(H) :=
diag {σ1(H), σ2(H), . . .}. Let 	r (H) be obtained from 	(H) by retaining all σk(H)

for 1 ≤ k ≤ r and changing the other entries into zeroes. Let H = Q1	(H)Q2 be
the singular value decomposition of H (with unitary Q1 and Q2). Then

�(H) := Q1	r (H)Q2 (3.7)

is the best possible approximant to H in the set S of matrices of rank ≤ r , where the
norm is arbitrary but unitarily invariant. It can be readily deduced from the Mirsky
theorem (cf. [7,35]) claiming that

‖	(H) − 	(Z)‖ ≤ ‖H − Z‖ (3.8)

for all matrices H and Z of the same size and any unitarily invariant norm. If Z ∈ S,
then, clearly, σi (Z) = 0 for i ≥ r + 1. Using this together with the monotonicity of
unitarily invariant norms (cf. [35]), we obtain

‖H − �(H)‖ = ‖	(H) − 	r (H)‖ ≤ ‖	(H) − 	(Z)‖ ,

and, due to the Mirsky theorem, the latter norm is estimated from above by ‖H − Z‖.
For the most familiar unitarily invariant norms such as the spectral and the Frobenius

norm, the above facts can be established through simpler arguments. In particular, it
is well-known that

min
rank Z≤r

‖H − Z‖2 = σr+1(H), min
rank Z≤r

‖H − Z‖F =
√ ∑

i≥r+1

σ 2
i (H).

Thus, the truncation property (2.9) is easy to achieve when a best approximation
element is existing. Sometimes (e.g., for three-way approximations of bounded tensor

123



376 W. Hackbusch et al.

Fig. 1 Standard and weakly admissible H-partitionings

rank) this is not the case. Nevertheless, all cases are supported by Theorem 2.4 as we
can always capitalise on a quasi-optimal construction as follows.

Let δ(H) = inf
T ∈S

‖H − T ‖. For a given fixed ε > 0, let �(H) denote an ε-optimal

approximation to H in the sense that

δ(H) ≤ ‖H − �(H)‖ ≤ δ(H) + ε.

Lemma 3.7 If �(H) is defined as an ε-optimal approximation to H on S, then

‖H − �(H)‖ ≤ ‖H − Z‖ + ε for any Z ∈ S. (3.9)

Proof Use ‖H − �(H)‖ − ‖H − Z‖ ≤
‖H−Z‖≥δ(H)

(δ(H) + ε) − δ(H) = ε. 	


In the next sections, we discuss some details of the construction of L and � for
hierarchical block matrices and matrices in the tensor format.

Other useful applications of the same general framework are Toeplitz-like matrices,
where L(X) := P X − X Q for some specially chosen fixed matrices P and Q (cf.
[9,31,33]).

3.2 Application to hierarchical block matrices

Let V be the space R
n×n of n×n matrices. Consider a block decomposition as depicted

in Fig. 1. Let N be the number of matrix blocks. Then each matrix block belongs to a
certain matrix space Wi (1 ≤ i ≤ N ). Given X ∈ V , let Li (X) ∈ Wi be the i th block.
The space W is defined according to (3.5).

The above-considered operator L : V → W maps a matrix X into the N -tuple of
matrix-blocks:

L(X) := (L1(X), . . . , L N (X)).
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If the Frobenius norm is used on the spaces V and W1, . . . , WN , the norm induced
on W is again the Frobenius norm. Obviously, ‖X‖F = ‖L(X)‖F holds. Hence, the
inverse L−1 exists and satisfies

‖L‖ = ‖L−1‖ = 1.

Fix a positive integer r and let Si ⊂ Wi be the subset of matrices of rank ≤ r .
Define S as the Cartesian product

S = S1 × · · · × SN ⊂ W

and let �i : Wi → Si be of the form (3.7) involving the singular value decomposition
of the matrix block Wi . Defining � : W → S as in Lemma 3.4 and using Lemma 3.5,
we can apply Theorem 2.2 to R = L−1 ◦ � ◦ L .

Note that exactly this kind of truncation is used in the theory of hierarchical block
matrices (cf. [21,22,38,39]) and even in some early implementations (cf. [16]).

Initially, the main purpose of the rank truncation was the reduction of storage and of
the matrix-by-vector complexity. In the sequel, it was shown that with an appropriate
block decomposition the hierarchical matrix structure supports all matrix operations
and therefore allows to compute various matrix functions f (A) of A ∈ S ⊂ V, where
B := f (A) is known to be close to S (e.g., for f (A) = A−1 compare [2,15], and
for f (A) = sign(A) see [14,25]). In spite of the observation that these computations
are efficient and robust, the rigorous analysis of the intermediate truncation errors was
incomplete. Our results now suggest some general framework for such an analysis of
basic iterative algorithms.

Finally we remark that sometimes the optimal truncation is replaced by an approx-
imate or heuristic one which is cheaper to compute (e.g., by cross approximation
techniques, see [17,40]). However, the rigorous analysis of such kind of quasi-optimal
truncation procedures is beyond the scope of our paper.

3.3 Application to tensor approximations

Let V1 = R
p×q and V2 = R

r×s , while V = R
pr×qs for some integers p, q, r, s. The

Kronecker product is a mapping from V1 × V2 into V . For A ∈ V1 and B ∈ V2, the

Kronecker product A × B is defined by the block matrix

⎡
⎢⎣

a11 B a21 B . . .

a12 B a22 B . . .
...

...
. . .

⎤
⎥⎦ ∈ V . We

say that a matrix M ∈ V has a Kronecker rank ≤ k, if there is a representation

M =

∑

ν=1

Aν × Bν with Aν ∈ V1, Bν ∈ V2, and 
 ≤ k. (3.10)
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We define the subset of structured matrices S by the set of all matrices of Kronecker
rank ≤ k. If k is not too large, this is an interesting representation since matrices of
the large size pr × qs can be described by matrices Aν, Bν of relatively small size.

As described, e.g., in [27], there is a simple isomorphism L from V = R
pr×qs to

R
pq×rs such that the representation (3.10) of M ∈ S ⊂ V = R

pr×qs is equivalent
to rank(L(M)) ≤ k. Therefore, we obtain the situation of Lemma 3.5 with W :=
�(V ) = R

pq×rs . The truncation operator is again of the form R = L−1 ◦ � ◦ L ,
where � is the optimal SVD-based truncation or an appropriate substitute.

The framework of this paper can be applied also to the (multi-linear) tensor
representation (3.10) where the number of factors is greater than 2. In this case the
truncation procedures are not so well developed; however, some algorithms are avai-
lable and claimed to be efficient in particular applications (mostly for data analysis in
chemometrics, physicometrics, etc.; cf. [11]).

4 Examples of approximate iterations

We will consider iterative schemes to compute the matrix-valued functions f (A) =
A−1 and f (A) = √

A. The common feature of the considered iterative schemes is that
they have locally quadratic convergence and require only matrix-matrix products in
each step of the iteration. We prove that our general results can be applied in the case of
hierarchical matrices, Kronecker products or mixed hierarchical Kronecker-product
formats to compute A−1 (cf. Sect. 4.1) and

√
A (cf. Sect. 4.2.2).

On the other hand, our convergence theory for iteration with truncation does not
apply, in general, to the case of Newton-type iterative schemes in a subspace.

4.1 Newton iteration for calculating A−1

Let V = C
n×n and A ∈ V a regular matrix. The Newton method applied to the

equation �(X) := A − X−1 = 0 yields the iteration

Xk := Xk−1(2I − AXk−1) (k = 1, 2, . . .) , (4.1)

which is also named Schulz iteration (cf. [34]). This corresponds to the formulation
(2.1) with

�k(X) := �(X) := X (2I − AX).

The Newton method is known to have locally quadratic order of convergence (i.e.,
α = 2 in (2.3)). Let Ek := I − AXk denote the error. Using Xk = Xk−1(I + Ek−1)

we obtain

Ek = I − AXk−1(I + Ek−1) = I − (I − Ek−1)(I + Ek−1) = E2
k−1. (4.2)
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Applying (4.2) recursively, we find that

Ek = E2k

0 (k = 1, 2, . . .) (4.3)

and conclude

A−1 − Xk = A−1 Ek = A−1 E2k

0 = X0(I − E0)
−1 E2k

0 .

Hence, the iteration converges quadratically for all starting values X0 with ρ(E0) < 1,

where ρ is the spectral radius. Finally, Eq. (4.2) implies

A−1 − Xk = A−1 Ek = (A−1 − Xk−1)A(A−1 − Xk−1),

which proves (2.3) with α = 2 and c� = ‖A‖.
Now Theorem 2.4 can be applied with a proper choice of the subset S and of the

truncation operator R.

4.2 Newton iteration for the calculation of
√

A

4.2.1 Non-constrained Newton iteration

We apply the Newton method to the equation �(X) := A − X2 = 0. Abbreviating
the correction by �k := Xk − Xk−1, we obtain the iteration

X0 ∈ V, Xk−1�k + �k Xk−1 = A − X2
k−1 (k = 1, 2, . . .) , (4.4)

corresponding to the choice �k(X) := �(X), where �(X) solves the matrix equation

X (�(X) − X) + (�(X) − X)X = A − X2. (4.5)

A simple calculation shows that the latter equation implies (with the substitution
A = B2)

X (�(X) − B) + X B − X2 + (�(X) − B)X + B X − X2 = B2 − X2,

which leads to the matrix Lyapunov equation with respect to Y = �(X) − B,

XY + Y X = (B − X)2.

Making use of the solution operator for the Lyapunov equation [14] (and assuming
that X = X� is positive definite), we arrive at the norm estimate

‖�(X) − B‖ =
∥∥∥∥∥∥

∞∫

0

e−t X (B − X)2e−t X dt

∥∥∥∥∥∥
≤ C‖B − X‖2.
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This proves relation (2.3) with α = 2. Hence, Theorem 2.4 applies to the truncated
version of the non-linear iteration (4.4).

4.2.2 Newton iteration in the subspace

Let A be diagonalisable, i.e., A = T −1 DAT for some T ∈ V and a non-negative
diagonal matrix DA. This gives rise to the subspace

VT := {M ∈ R
n×n : M = T −1 DT, D is diagonal} ⊂ V . (4.6)

Note that A ∈ VT and that all matrices from VT commute.
We reconsider iteration (4.4) under the assumption X0 ∈ VT (this is trivially satis-

fied for all multiples X0 = a0 A). Next, it is easy to see that all iterates Xk of (4.4)
belong to VT . In particular, X ∈ VT implies �(X) ∈ VT and the left-hand side in
(4.5) can be simplified to 2X�(X) − 2X2. Hence we obtain the iteration

X0 = a0 A, Xk := 1

2

(
Xk−1 + X−1

k−1 A
)

(k = 1, 2, . . .) , (4.7)

where a0 > 0 is the given constant. This corresponds to the formulation (2.1) with

�k(X) := �(X) := 1

2
(X + X−1 A).

Note that newly defined � is different from � in (4.5), but both coincide on VT . In
particular for starting values X0 ∈ VT both exact iterations yield the same Xk . Hence,
the convergence analysis of Sect. 4.2.1 implies the same kind of convergence for the
iteration (4.7).

Unfortunately, the iteration (4.7) is proved to be numerically stable only under
quite restrictive assumptions [28]. As is shown in [29], useful stable versions for the
iteration (4.7) are related to the computation of the sign function (cf. [30]):

Y0 = A, Z0 = I,

Yk+1 = 1
2

(
Yk + Z−1

k

)
, Zk+1 = 1

2

(
Zk + Y −1

k

)
, k = 0, 1, . . . ; (4.8)

Y0 = A, Z0 = I,
Yk+1 = 1

2 Yk(3I − ZkYk), Zk+1 = 1
2 (3I − ZkYk)Zk, k = 0, 1, . . .

(4.9)

For both cases it is known that, under appropriate normalisation of A,

Yk → A1/2, Zk → A−1/2

with a quadratic convergence, and (4.9) takes an obvious advantage of involving only
matrix–matrix multiplications. We should note, all the same, that a rigorous analysis of
truncation for the iterations (4.8) and (4.9) remains an open problem, for the truncation
may cause the iterates to leave the subspace of matrices commuting with A.
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Table 4 Approximate iterations (4.9) for
√

A

Residual error 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

Number of iterations 9 11 12 12 13 13 13 14

Tensor rank 3 4 6 7 8 9 9 10

In the general case, we are not aware of any convenient means to keep approximate
iterations inside the subspace. Despite that, numerical results still demonstrate the
usefulness of truncation.

Table 4 shows the behaviour of iterations (4.9) with truncation onto the set of
matrices with a bounded tensor rank. The results are obtained for the discrete 2D
Laplacian (1.1) with the 1D grid size n = 20. Thus, A is a matrix of order n2 = 400
with tensor rank equal to 2. Note that the initial matrix is first normalised to have the
unit Frobenius norm. We start truncation with ε1 = ε0, where ε0 is the prescribed
residue error, and then tighten it by half at every iteration step k:

εk = ε0/2k−1.

We quit approximate iterations as soon as the residual error enjoys the stopping crite-
rion

||A − X2
k ||F

||A||F
≤ ε0 (4.10)

and then perform the final truncation with the given ε0 and recalculate the residual
error. In the end we report on the iteration number for the stopping criterion (4.10) to
hold and the tensor rank of the approximations to A1/2 and A−1/2.

5 Concluding remarks

In this paper we proposed a unified framework for the analysis of iterations with
truncation. The advantage of these approximate iterations is that they preserve the
data-sparse structure of the intermediate matrices. The main result is that an iterative
process for the evaluation of f (A) can be transformed, under very general assumptions,
into an implementable process which preserves the convergence rate and benefits from
the underlying structure during the iterations. It is shown how this result applies to
matrices in the tensor format with a bounded tensor rank and to the hierarchical
matrices (with a bounded rank of the blocks).
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