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A CONSTRUCTIVE ARBITRARY-DEGREE KRONECKER
PRODUCT DECOMPOSITION OF TENSORS

KIM BATSELIER AND NGAI WONG∗

Abstract. We propose the tensor Kronecker product singular value decomposition (TKPSVD)
that decomposes a real k-way tensor A into a linear combination of tensor Kronecker products

with an arbitrary number of d factors A =
∑R

j=1 σj A
(d)
j ⊗ · · · ⊗ A(1)

j . We generalize the matrix

Kronecker product to tensors such that each factor A(i)
j in the TKPSVD is a k-way tensor. The

algorithm relies on reshaping and permuting the original tensor into a d-way tensor, after which
a polyadic decomposition with orthogonal rank-1 terms is computed. We prove that for many

different structured tensors, the Kronecker product factors A(1)
j , . . . ,A(d)

j are guaranteed to inherit
this structure. In addition, we introduce the new notion of general symmetric tensors, which includes
many different structures such as symmetric, persymmetric, centrosymmetric, Toeplitz and Hankel
tensors.

Key words. Kronecker product, structured tensors, tensor decomposition, TTr1SVD, general-
ized symmetric tensors, Toeplitz tensor, Hankel tensor

AMS subject classifications. 15A69, 15B05, 15A18, 15A23, 15B57

1. Introduction. Consider the singular value decomposition (SVD) of the fol-
lowing 16× 9 matrix Ã

(1.1)



1.108 −0.267 −1.192 −0.267 −1.192 −1.281 −1.192 −1.281 1.102
0.417 −1.487 −0.004 −1.487 −0.004 −1.418 −0.004 −1.418 −0.228
−0.127 1.100 −1.461 1.100 −1.461 0.729 −1.461 0.729 0.940
−0.748 −0.243 0.387 −0.243 0.387 −1.241 0.387 −1.241 −1.853
0.417 −1.487 −0.004 −1.487 −0.004 −1.418 −0.004 −1.418 −0.228
−0.127 1.100 −1.461 1.100 −1.461 0.729 −1.461 0.729 0.940
−0.748 −0.243 0.387 −0.243 0.387 −1.241 0.387 −1.241 −1.853
−0.267 −1.192 −1.281 −1.192 −1.281 1.102 −1.281 1.102 −0.474
−0.127 1.100 −1.461 1.100 −1.461 0.729 −1.461 0.729 0.940
−0.748 −0.243 0.387 −0.243 0.387 −1.241 0.387 −1.241 −1.853
−0.267 −1.192 −1.281 −1.192 −1.281 1.102 −1.281 1.102 −0.474
−1.487 −0.004 −1.418 −0.004 −1.418 −0.228 −1.418 −0.228 −1.031
−0.748 −0.243 0.387 −0.243 0.387 −1.241 0.387 −1.241 −1.853
−0.267 −1.192 −1.281 −1.192 −1.281 1.102 −1.281 1.102 −0.474
−1.487 −0.004 −1.418 −0.004 −1.418 −0.228 −1.418 −0.228 −1.031
1.100 −1.461 0.729 −1.461 0.729 0.940 0.729 0.940 −0.380


into a 16×16 orthogonal matrix U , a 16×9 diagonal matrix S and a 9×9 orthogonal
matrix V . The distinct entries of Ã were drawn from a standard normal distribution.
Note that Ã has only 5 distinct columns and 7 distinct rows, limiting the rank to
maximally 5, and has no apparent structure such as a symmetry or displacement
structure (Hankel or Toeplitz matrix). Reshaping the first left and right singular
vectors into a 4 × 4 and 3 × 3 matrix respectively results in the following Hankel
matrices

−0.100 0.194 −0.375 0.245
0.194 −0.375 0.245 −0.244
−0.375 0.245 −0.244 −0.177
0.245 −0.244 −0.177 0.106

 ,

 0.036 −0.158 0.442
−0.158 0.442 −0.373
0.442 −0.373 −0.290

 .

In fact, it turns out that all singular vectors of Ã can be reshaped into square Hankel
matrices. In the same vein, other matrices can be easily constructed such that their
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2 KIM BATSELIER, NGAI WONG

reshaped singular vectors are square structured matrices (symmetric, Toeplitz, cen-
trosymmetric, persymmetric,...). And as we will demonstrate in this article, the same
can even be done for k-way tensors. Now what is going on here? Why are all singular
vectors so highly structured? This is explained in this article, where we introduce the
tensor-based Kronecker product (KP) singular value decomposition (TKPSVD). The
TKPSVD decomposes an arbitrary real k-way tensor A ∈ Rn1×n2×···×nk as

(1.2) A =

R∑
j=1

σj A(d)
j ⊗ · · · ⊗ A

(1)
j ,

where ⊗ denotes the tensor Kronecker product, defined in Section 3, and the tensors

A(i)
j ∈ Rn

(i)
1 ×···×n

(i)
k satisfy

||A(i)
j ||F = 1 with

d∏
i=1

n(i)
r = nr (r ∈ {1, . . . , k}).(1.3)

It turns out that the TKPSVD is key in explaining the structured singular vectors of
the matrix Ã. In Section 4, we show that computing the SVD of (1.1) is an interme-
diate step in the computation of the TKPSVD of a 12 × 12 Hankel matrix into the
Kronecker product of a 4× 4 with a 3× 3 matrix.

The Kronecker rank [5], which is generally hard to compute, is defined as the minimal
R required in (1.2) in order for the equality to hold. If for any r ∈ {1, . . . , k} we have

that n , n
(1)
r = n

(2)
r = · · · = n

(d)
r , then nr = nd. For this reason, we call the number

of factors d in (1.2) the degree of the decomposition. The user of the TKPSVD al-

gorithm is completely free to choose the degree d and the dimensions n
(i)
r of each of

the KP factors, as long as they satisfy (1.3). In addition to the development of the
TKPSVD algorithm, another major contribution of this article, shown for the first
time in the literature, is the proof that by our proposed algorithm we will have the

following favorable structure-preserving properties when all A(i)
j and A are cubical:

if A is



symmetric
persymmetric
centrosymmetric
Toeplitz
Hankel
general symmetric


then each A(i)

j is



(skew-)symmetric
(skew-)persymmetric
(skew-)centrosymmetric
Toeplitz
Hankel
general (skew-)symmetric


.

The fact that each of the factors A(i)
j inherits the structure of A is not trivial. In

providing this proof a very natural generalization of symmetric tensors is introduced,
which we name general symmetric tensors. In addition, Toeplitz and Hankel tensors
are also generalized into what we call shifted-index structures, which are special cases
of general symmetries. In fact, whenA is general symmetric, then all its cubical factors

A(i)
j will also be general symmetric. Another interesting feature of the TKPSVD

algorithm is that if the summation in (1.2) is limited to the first r terms, then the
relative approximation error in the Frobenius norm is given by

(1.4)
||A−

∑r
j=1 σj A

(d)
j ⊗ · · · ⊗A

(1)
j ||F

||A||F
=

√
σ2
r+1 + · · ·+ σ2

R√
σ2

1 + · · ·+ σ2
R

.
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Equation (1.4) has the computational advantage that the relative approximation er-
ror can be easily obtained from the σj ’s without having to explicitly construct the
approximant.

1.1. Context. The TKPSVD is directly inspired by the work of Van Loan and
Pitsianis [10]. In their paper, they solve the problem of finding matrices B,C such
that ||A−B⊗C||F is minimized. The globally minimizing matrices B,C turn out to
be the singular vectors corresponding with the largest singular value of a particular
permutation of A. In [9], the full SVD of the permuted A is considered and the
corresponding decomposition of A into a linear combination of Kronecker products is
called the Kronecker product singular value decomposition (KPSVD). Applications of
the d = 2, k = 2 KPSVD approximation in image restoration are described in [7, 12],
whereas extensions to the d = 3, k = 2 case using the higher order singular value
decomposition (HOSVD), also for imaging, are described in [11, 14].

The decomposition in this paper is a direct generalization of the KPSVD to an
arbitrary number of KP factors d and to arbitrary k-way tensors. In the TKPSVD
case, the SVD is replaced by either a canonical polyadic decomposition (CPD) [2,
6] with orthogonal factor matrices, the HOSVD [4] or the tensor-train rank-1 SVD
(TTr1SVD) [1]. The TKPSVD reduces to the KPSVD for the case d = 2 and k = 2.
Contrary to previous work in the literature, we are not interested in minimizing

||A −
∑r

j=1A
(d)
j ⊗ · · · ⊗ A(1)

j ||F . Instead, we are interested in a full decomposition
such that any structure of A is also present in the KP factors. Explicit decomposition
algorithms for when d ≥ 4 and k ≥ 3 are not found in the literature. To this end,
our proposed TKPSVD algorithm readily works for any degree d and any tensor
order k, does not require any a priori knowledge of the number of KP terms, and

preserves general symmetry in the KP factors A(i)
j . Furthermore, a Matlab/Octave

implementation that uses the TTr1SVD and works for any arbitrary degree d and
order k can be freely downloaded from https://github.com/kbatseli/TKPSVD. In
brief, the contributions of this article are:

• an explicit formulation of the generalization of the KPSVD algorithm for
d > 2 and k > 2 is presented for the first time in the literature,

• a new notion of general symmetric tensors, which describes many tensor struc-
tures, is introduced,

• we prove that for a general symmetric tensor A all KP factors A(i)
j in (1.2) are

guaranteed to have the same general symmetry under a particular condition.

The outline of this article is as follows. In Section 2, we introduce some basic
tensor concepts and notations. In Section 3, we generalize the matrix Kronecker
product into the tensor Kronecker product and present some of its properties. In
Section 4, we first derive the theorem that underlies the TKPSVD and then present
the TKPSVD algorithm for both general and diagonal tensors. In Section 5, we
introduce the framework of general symmetry that describes many different structured
tensors such as symmetry, centrosymmetry, Hankel, Toeplitz, etc.. Preservation of
general symmetry in the KP factors when the original tensor is general symmetric is
proven in Section 6. Numerical experiments that demonstrate different aspects of the
TKPSVD are presented in Section 7, after which conclusions follow.

2. Tensor basics and notation. We only consider real matrices and tensors
in this paper. Scalars are denoted by greek letters (α, β, ...), vectors by lowercase
letters (a, b, ...), matrices by uppercase letters (A,B, ...) and higher-order tensors by
uppercase caligraphic letters (A,B, ...). The notation (·)T denotes the transpose of

https://github.com/kbatseli/TKPSVD
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either a vector or a matrix. A kth-order or k-way tensor is a multi-way array A ∈
Rn1×n2×···×nk . A tensor is cubical if all dimensions are equal, e.g., n1 = n2 = · · · = nk.

Entries of tensors are always denoted with square brackets around the indices.
This enables an easy way of representing the grouping of indices. Suppose for example
that A is a 4-way tensor with entries A[i1][i2][i3][i4]. To improve readability we do not

write the square brackets when all indices are considered separate, thereforeAi1i2i3i4 ,
A[i1][i2][i3][i4]. A 3-way tensor can now be formed by grouping, for example, the first
two indices together. The entries of this 3-way tensor are then denoted by A[i1i2][i3][i4],
where the grouped index [i1i2] is easily converted into the linear index i1 +n1(i2−1).
Grouping the indices into the [i1] and [i2i3i4] results in a n1 × n2n3n4 matrix with
entries A[i1][i2i3i4]. The column index [i2i3i4] is equivalent to the linear index i2 +
n2(i3− 1) +n2n3(i4− 1). A very special case of grouping indices is obtained when all
indices are grouped together. The resulting vector is then called the vectorization of
A, denoted vec(A), with entries A[i1i2i3i4].

The r-mode product of a tensor A ∈ Rn1×n2×···×nk with a matrix U ∈ Rp×nr is
defined by

(A×r U)i1···ik−1jik+1···id =

nr∑
ir=1

UjirAi1···ir···id ,

so that A×rU ∈ Rn1×···×nr−1×p×nr+1×···×nd . The multiplication of a k-way tensor A
along all its modes with matrices P1, . . . , Pk

B = A×1 P1 ×2 P2 ×3 · · · ×kPk,

can be rewritten as the following linear system

(2.1) vec(B) = (Pd ⊗ · · · ⊗ P2 ⊗ P1) vec(A),

where ⊗ is the conventional matrix Kronecker product [13], which is defined and
generalized to the tensor case in Section 3. The inner product between two tensors
A,B ∈ Rn1×···×nd is defined as

〈A,B〉 =
∑

i1,i2,··· ,id

Ai1i2···id Bi1i2···id = vec(A)T vec(B).

Two tensors A,B are orthogonal with respect to one another when 〈A,B〉 = 0. The
norm of a tensor is taken to be the Frobenius norm ||A||F = 〈A,A〉1/2. A k-way
rank-1 tensor A ∈ Rn1×···×nk is per definition the outer product [8], denoted by ◦, of
k vectors a(i) ∈ Rni (i ∈ {1, . . . , k}) such that

(2.2) A = a(1) ◦ a(2) ◦ · · · ◦ a(k) with Ai1i2···ik = a
(1)
i1
a

(2)
i2
· · · a(k)

ik
.

Any real k-way tensor A can always be written as a linear combination of rank-1
terms

(2.3) A =

R∑
j=1

σj a
(1)
j ◦ a

(2)
j ◦ · · · ◦ a

(k)
j ,

where σj ∈ R and all the a
(i)
j vectors satisfy ||a(i)

j ||2 = 1. Such a decomposition is
called a polyadic decomposition (PD) of the tensor A. When the equality in (2.3)
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holds with a minimal number of terms R, then the PD is called canonical (CPD) [2, 6].
The number R in the CPD is called the tensor rank. Unlike the SVD, each of the
rank-1 terms in the (C)PD is not necessarily orthogonal.

The Tucker decomposition [17, 18] writes a k-way tensor A as the following
multilinear transformation of a core tensor S ∈ Rr1×r2×···×rk by factor matrices
U (i) ∈ Rni×ri

(2.4) A = S ×1 U
(1) ×2 U

(2) ×3 · · · ×k U
(k),

which can also be written as (2.3) where each σj is now an entry of the core tensor
S. Each rank-1 term of the Tucker decomposition is then given by

Si1i2···ik U (1)(:, i1) ◦ U (2)(:, i2) ◦ · · · ◦ U (k)(:, ik),

where we use Matlab colon notation to denote columns of the U (i) factor matrices.
The minimal size of the core tensor S such that the equality in (2.4) holds is called
the multilinear rank. The higher-order SVD (HOSVD) [4] is a Tucker decomposition
where the core tensor S has the same dimensions as the original tensor A and with the
additional property that the factor matrices U (i) and the slices of S in the same mode
are orthogonal. This implies that each rank-1 term is orthogonal to all other rank-1
terms in the HOSVD, which has the immediate advantage that the approximation
error can be determined as in (1.4).

The PARATREE/TTr1SVD decomposition [1, 15] is another decomposition of a
k-way tensor into orthogonal rank-1 terms as described by (2.3). The total number

of terms in the TTr1SVD is upperbounded by R =
∏k−2

r=0 min(nr+1,
∏k

i=r+2 ni) and
therefore depends on the ordering of the indices. This decomposition is computed
from repeated reshapings and SVD computations and is unique for a fixed order of
indices. Note that although each of the rank-1 terms is orthogonal with respect to all
others, unlike the HOSVD, the factor matrices U (i) are not orthogonal. In addition,
the scalar σj coefficients obtained in the PARATREE/TTR1SVD decomposition are
guaranteed to be nonnegative. This has the advantage that one can plot these σj
coefficients in descending order and inspect the relative weight of each of the rank-1
terms in a very straightforward manner, just like one can do with the singular values
of a matrix.

3. Tensor Kronecker product.

3.1. Definition. The definition of the Kronecker product for two matrices is
well-known. If B ∈ Rm1×m2 and C ∈ Rn1×n2 , then their Kronecker product B ⊗C is
an m1 ×m2 block matrix whose (i3, i4)th block is the n1 × n2 matrix Bi3i4C

(3.1)

 B11 · · · B1n1

...
. . .

...
Bm11 · · · Bm1n1

⊗ C =

 B11C · · · B1n1
C

...
. . .

...
Bm11C · · · Bm1n1

C

 .

Generalizing this definition to the Kronecker product of k-way tensors is quite straight-
forward, although not in the form as given by (3.1). Before giving the definition of the
tensor Kronecker product, we first investigate how the entries of the matrix Kronecker
product are described by the indices of the original matrices. The following lemma is
easily verified.
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Lemma 3.1. If the entries of the matrices B ∈ Rm1×m2 , C ∈ Rn1×n2 are denoted
Bi3i4 and Ci1i2 respectively, then the entries of their Kronecker product A = B ⊗ C
are described by A[i1i3][i2i4] = Bi3i4 Ci1i2 for all possible values of i1, i2, i3, i4.

Remember that the grouped indices [i1i3], [i2i4] are easily converted into the linear
row index i1 +n1(i3−1) and the linear column index i2 +n2(i4−1) respectively. The
definition of the tensor Kronecker product follows from the generalization of Lemma
3.1 to multiple indices.

Definition 3.2. Let B ∈ Rn1×n2×···×nk , C ∈ Rm1×m2×···×mk be two k-way ten-
sors with entries denoted by Bik+1···i2k , Ci1···ik respectively. The tensor Kronecker prod-
uct A = B ⊗ C ∈ Rn1m1×n2m2×···×nkmk is then defined from

A[i1ik+1][i2ik+2]···[iki2k] = Bik+1···i2k Ci1···ik ,

which needs to hold for all possible values of i1, . . . , i2k.
Although the tensor Kronecker product is a very straightforward generalization

of the matrix Kronecker product, we failed to find any reference to it in the litera-
ture. One possible implementation of the tensor Kronecker product would be to use
Definition 3.2 over all possible values of the indices i1, . . . , i2k but this would not be
very efficient. Instead, one can use an existing implementation of the vector/matrix
Kronecker product (‘kron.m’ in Matlab) on the vectorized tensors vec(B), vec(C). In-
deed, the entries of c , vec(B) ⊗ vec(C) are indexed by the single grouped index
[i1 · · · ikik+1 · · · i2k]. One can then reshape and permute the entries of c such that the
desired [i1ik+1][i2ik+2] · · · [iki2k] index structure is obtained. This is how the tensor
Kronecker product is implemented in our Matlab/Octave TKPSVD package.

3.2. Properties of the tensor Kronecker product. We briefly list some
properties of the tensor Kronecker product without going into details. The following
properties are easily verified

A⊗ (B + C) = A⊗ B +A⊗ B,
(A+B)⊗ C = A⊗ C + B ⊗ C,

(αA)⊗ B = A⊗ (αB) = α(A⊗ B),

(A⊗ B)⊗ C = A⊗ (B ⊗ C),

where A,B, C are k-way tensors and α is a scalar. Just as in the matrix case, the
tensor Kronecker product is not commutative but permutation equivalent. That is,
there exists permutation matrices P1, . . . , Pk such that

(3.2) A⊗ B = (B ⊗A) ×1 P1 ×2 · · · ×k Pk.

This is easily seen from the definition. Indeed, suppose we have that C = A⊗ B and
C̃ = B ⊗A, then

C[i1ik+1][i2ik+2]···[iki2k] = Aik+1···i2k Bi1···ik ,
C̃[ik+1i1][ik+2i2]···[i2kik] = Ai1···ik Bik+1···i2k .

Now let P1, . . . , Pk be the permutation matrices that swap [ik+1i1] into [i1ik+1],
[ik+2i2] into [i2ik+2], . . . , [i2kik] into [iki2k] respectively, then (3.2) follows. Further-
more, if A,B are cubical and of the same dimension then C and C̃ are permutation
similar, which means that P1 = P2 = · · · = Pk.
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The mixed-product property of the Kronecker product states that if A,B,C,D are
matrices such that one can form the matrix products AC,BD, then (A⊗B)(C⊗D) =
(AC)⊗(BD). This is called the mixed-product property, because it mixes the ordinary
matrix product and the Kronecker product. We can also write the mixed-product
property using the 1-mode product as (C⊗D)×1 (A⊗B) = (C×1A)⊗ (D×1B). Its
generalization involves the mixing of the r-mode product with the tensor Kronecker
product. Let A,B be matrices and C,D be k-way tensors of appropriate dimensions
then for any r ∈ {1, . . . , k}

(3.3) (C ⊗ D) ×r (A⊗B) = (C ×r A)⊗ (D ×r B).

What the mixed-product property tells us is that we can obtain the r-mode product
of the tensor C ⊗ D with the matrix A ⊗ B from the Kronecker product of (C ×r A)
with (D ×r B). Choosing r = 1 and replacing C,D with matrices in (3.3) results in
the matrix mixed-product property.

4. TKPSVD Theorem and algorithm. Using Definition 3.2 we can easily
extend the tensor Kronecker product to multiple factors. Suppose we have three 3-
way tensors A(1),A(2),A(3), then their Kronecker product A = A(3) ⊗A(2) ⊗A(1) is
completely characterized by the following relationship

(4.1) A[i1i4i7][i2i5i8][i3i6i9] = A(1)
i1i2i3

A(2)
i4i5i6

A(3)
i7i8i9

.

Now suppose we permute all entries such that Ã[i1i2i3][i4i5i6][i7i8i9] , A[i1i4i7][i2i5i8][i3i6i9]

and that this is a rank-1 tensor. According to (2.2), Ã can then be written as the
following outer product of vectors Ã = a(1) ◦ a(2) ◦ a(3) with

(4.2) Ã[i1i2i3][i4i5i6][i7i8i9] = a
(1)
[i1i2i3] a

(2)
[i4i5i6] a

(3)
[i7i8i9].

Comparison of (4.1) with (4.2) allows us to conclude that a(1) = vec(A(1)), a(2) =
vec(A(2)) and a(3) = vec(A(3). We formalize this observation in the following Theo-
rem.

Theorem 4.1. For a given k-way tensor A ∈ Rn1×n2×···×nk , if

(4.3) A =

R∑
j=1

σj A(d)
j ⊗ · · · ⊗ A

(2)
j ⊗A

(1)
j and Ã =

R∑
j=1

σj a
(1)
j ◦ a

(2)
j ◦ · · · ◦ a

(d)
j ,

where Ã is the permutation of A such that the indices of the a
(i)
j vectors are identical

to those of the k-way A(i)
j tensors, then a

(i)
j = vec(A(i)

j ) for all i ∈ {1, . . . , d}, j ∈
{1, . . . , R}.

Observe that the order of the Kronecker products in (4.3) is reversed with respect
to the order of the outer products. Theorem 4.1 is crucial for the TKPSVD algorithm,
since it tells us that the desired decomposition (1.2) can be computed from a PD of Ã.
We now derive the TKPSVD algorithm by means of a simple example. Suppose we
have a 3-way tensor A for which we want to find a degree-3 decomposition. This im-
plies, as shown in (4.1), that each entry of A is labeled as A[i1i4i7][i2i5i8][i3i6i9]. Figure
4.1(a) illustrates how the grouped indices of the tensor A relate to those of the KP

factors A(i)
j . Theorem 4.1 tells us that the desired TKSPVD can be obtained from a

PD of the permuted tensor Ã. The first step in the TKPSVD algorithm is then to per-
mute the indices of A such that their order corresponds with i1, i2, i3, i4, i5, i6, i7, i8, i9.
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i2
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i3

i5

i6
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i2

i3
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i5

i6
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i1

i4

i7

A

i2
i5
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i6

i9

j
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i7

i8

i9

i4

i5

i6

i1

i2
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 A j
(3) A j

(2) A j
(1)

(a) k = 3, d = 3

(b) k = 2, d = 2 (c) k = 2, d = 3

A (2)

jA
(1)

jA

Fig. 4.1: How the grouped indices of A relate to the indices of the KP factors Ai
j .

In order to do this, we first reshape the 3-way tensor A into the 9-way tensor A with
entries Ai1i4i7i2i5i8i3i6i9 . The indices of A are then permuted into the desired order
Ãi1i2i3i4i5i6i7i8i9 . The next step of the TKPSVD algorithm is to compute the KP

factors A(i)
j , each of which is computed as a vector in a PD. We therefore group the

indices such that we obtain the 3-way tensor Ã with entries Ã[i1i2i3][i4i5i6][i7i8i9]. The
steps prior to the computation of the PD are hence summarized as

A[i1i4i7][i2i5i8][i3i6i9]
reshape−−−−−→Ai1i4i7i2i5i8i3i6i9

permute−−−−−→ Ãi1i2i3i4i5i6i7i8i9

reshape−−−−−→ Ã[i1i2i3][i4i5i6][i7i8i9].

Each of the KP factors A(i)
j is obtained from reshaping the a

(i)
j vectors of the PD (Fig-

ure 4.2) into a 3-way tensor of the correct dimensions. In order to make sure this
procedure of reshaping and applying the permutation is clear, we also demonstrate it
for a simple matrix example. Suppose we have a 12× 12 Hankel matrix A, which we
want to decompose into a sum of KPs of a 4 × 4 matrix with a 3 × 3 matrix. If the

entries of the KP factors A
(1)
j , A

(2)
j are labeled by i1i2, i3i4 respectively, then the row

index of A is [i1i3] and the column index is [i2i4], shown in Figure 4.1(b). The steps
prior to the computation of the PD are now

A[i1i3][i2i4]
reshape−−−−−→Ai1i3i2i4

permute−−−−−→ Ãi1i2i3i4
reshape−−−−−→ Ã[i1i2][i3i4].

The dimensions of the tensors in each of these steps are 12×12, 4×3×4×3, 4×4×3×3
and 16×9 respectively. The 16×9 matrix Ã shown on the front page is in fact obtained
from this procedure. The Hankel structure is apparently lost due to the consecutive
reshapings and permutation. The final step is to compute a PD with orthogonal rank-
1 terms, which for the matrix case is the SVD. The previous two examples might give
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[i7i8i9]

[i1i2i3]

[i4i5i6]

[i7i8i9]

(1)

ja

(2)

ja

(3)

ja

Fig. 4.2: Decomposition of the 3-way tensor Ã into a linear combination of rank-1
terms.

the impression that d and k need to be equal in the TKPSVD. This is not the case.
In Figure 4.1(c) we show a degree-3 TKPSVD of a matrix. Here, the steps prior to
the computation of the PD are

A[i1i3i5][i2i4i6]
reshape−−−−−→Ai1i3i5i2i4i6

permute−−−−−→ Ãi1i2i3i4i5i6
reshape−−−−−→ Ã[i1i2][i3i4][i5i6].

The pseudo-code for our general TKPSVD algorithm is presented in Algorithm 4.1. As
we will show in Section 6, the structure-preserving property of the TKPSVD critically
depends on the fact that the rank-1 terms of the computed PD are orthogonal with
respect to one another. Another consequence of this orthogonality is that

||A||F =
√
σ2

1 + · · ·+ σ2
R,

where R is the total number of terms in the decomposition. The relative approxi-
mation error obtained from truncating the number of terms to r < R is then easily
computed as

||A−
∑r

j=1 σj A
(d)
j ⊗ · · · ⊗A

(1)
j ||F

||A||F
=

√
σ2
r+1 + · · ·+ σ2

R√
σ2

1 + · · ·+ σ2
R

.

This is especially convenient when using the TTr1SVD [1] to compute the PD, since
then all σj ’s are positive and can be sorted in descending order just like singular values
in the matrix case.

Algorithm 4.1. TKPSVD Algorithm

Input: tensor A, dimensions n
(1)
1 , . . . , n

(d)
1 , n

(1)
2 , . . . , n

(d)
2 , . . . , n

(1)
k , . . . , n

(d)
k

Output: σ1, . . . , σR, tensors A(i)
j

A ← reshape A into a (kd)-way tensor according to n
(1)
1 , . . . , n

(d)
1 , n

(1)
2 , . . . , n

(d)
k

Ã ← permute A to indices i1i2i3i4 · · · ikd−1ikd
Ã ← reshape Ã into a d-way tensor by grouping every k indices together

a
(1)
1 , . . . , a

(d)
R , σ1, . . . , σR ← compute a PD of Ã with orthogonal rank-1 terms

for all nonzero σj do

A(i)
j ← reshape a

(i)
j into a n

(i)
1 × · · · × n

(i)
k tensor

end for
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The PD with orthogonal rank-1 terms is easily computed for the case d = 2 as
the SVD. When d ≥ 3, several options are available. A first option is to compute
the CPD with the additional constraint of orthogonal factor matrices. This orthog-
onality constraint limits the size of the factor matrices and consequently also the
total number of rank-1 terms that are possible to find. As a result, the CPD with
orthogonality constraints does not lend itself very well to applications. We demon-
strate this with a worked out example in Section 7. Alternatively, one could compute
the HOSVD or the TTr1SVD of Ã, as these decompositions have orthogonal rank-1
terms. The CPD with orthogonal factor matrices and the HOSVD can be computed
in Matlab using Tensorlab [16], freely available from http://www.tensorlab.net/.
A Matlab/Octave implementation of Algorithm 4.1 that uses the TTr1SVD and
works for any arbitrary degree d and tensor order k can be freely downloaded from
https://github.com/kbatseli/TKPSVD.

In Section 5, we introduce a new framework in which many different structured
tensors (symmetric, persymmetric, centrosymmetric, Toeplitz, Hankel,...) can be de-
scribed and then prove that the TKPSVD algorithm guarantees to preserve these
structures in the KP factors. But first, we present a small modification of Algorithm
4.1 for the case of diagonal tensors.

4.1. Diagonal tensors. A diagonal tensor D is an extremely simple symmetric
tensor (see Section 5 for the definition). If we define the main diagonal of a cubical
tensor as the entries Ai1i2···ik with i1 = i2 = · · · = ik, then the entries not on the
main diagonal of a diagonal tensor are per definition zero. It is easy to see that the
Kronecker product of two diagonal tensors is also diagonal. This motivates us to ad-
just Algorithm 4.1 such that only the main diagonal entries Di1i1···i1 are considered.
This reduces the number of entries to store in memory from nd to n. As a result, the

diagonal tensor D is decomposed into a Kronecker product of diagonal factors D(i)
j .

Suppose a degree d TKPSVD of a diagonal tensor D is required. We then consider
the vector a that contains all main diagonal entries with entries ai1i2···id and reshape
it into a d-way tensor A. Note that since the indices are already in the right order,
no permutation of indices is required and the PD decomposition can be directly com-

puted from A. Each KP factor D(i)
j of (1.2) is then an ni × · · · × ni diagonal tensor

with main diagonal entries a
(i)
j . The pseudocode for the diagonal TKPSVD algorithm

is summarized in Algorithm 4.2.

Algorithm 4.2. TKPSVD Algorithm for a diagonal tensor
Input: diagonal tensor D, dimensions n1, n2, . . . , nd

Output: σ1, . . . , σR, diagonal tensors D
(i)
j

a← main diagonal entries of D
A ← reshape a into an n1 × n2 × . . .× nd tensor

a
(1)
1 , . . . , a

(d)
R , σ1, . . . , σR ← compute a PD of A with orthogonal rank-1 terms

for all nonzero σj do

D(i)
j ← a ni × · · · × ni diagonal tensor with main diagonal entries a

(i)
j

end for

It is interesting to investigate whether it is possible to adjust Algorithm 4.1 to exploit
other specific structures, like the general symmetries which we define in Section 5. At
first sight this does not seem to be straightforward to exploit, since Ã will not retain

http://www.tensorlab.net/
https://github.com/kbatseli/TKPSVD
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the original structure. We keep this problem for future research.

Fig. 4.3: Overview general symmetric tensors.

5. General symmetric tensors. It turns out that the d-way tensor Ã in Algo-
rithm 4.1 allows us to generalize the notion of symmetric tensors in a very natural way.
The motivation of introducing general symmetry lies in the fact that then only one
proof suffices to show the preservation of symmetry, persymmetry, centrosymmetry
and many other symmetries in the KP factors of the TKPSVD. This new framework
also provides a different perspective of describing and investigating these different
tensor structures. Figure 4.3 shows an overview of how the notion of general sym-
metry encapsulates symmetric, persymmetric, centrosymmetric, Toeplitz and Hankel
tensors. The key idea of the general symmetric structure is that it involves particu-
lar permutations P of the entries of vec(A) that can be decomposed into Kronecker
product of smaller permutations along each mode of Ã. We discuss and demonstrate
this decomposition of the permutation P for three particular cases. In the remainder
of this Section we always assume that A is a k way cubical tensor of dimensions n.

5.1. Symmetry. The symmetric structure of a k-way cubical tensor A can be
defined as a particular permutation of the entries of vec(A). This permutation is
described by the perfect shuffle matrix.

Definition 5.1. The perfect shuffle matrix S is the nk ×nk permutation matrix

S =


I(1 : nk−1 : nk, :)
I(2 : nk−1 : nk, :)

...
I(nk−1 : nk−1 : nk, :)

 ,

where I is the nk × nk identity matrix and Matlab colon notation is used to denote
submatrices.

It is easily verified that for a symmetric k-way tensor A we have that S vec(A) =
vec(A). We now turn this reasoning on its head and define a symmetric tensor as
any tensor A that satisfies S vec(A) = vec(A). The perfect shuffle matrix S reduces
to the matrix defined in [9, p. 86] for the case k = 2. In this sense, Definition 5.1
generalizes the notion of a perfect shuffle matrix to tensors.
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In what follows we will apply the TKPSVD algorithm to construct the Ã tensor
and see how this affects the equation S vec(A) = vec(A). In order to illustrate this
process we will consider the 3-way example tensor from Section 4 and suppose that it
is symmetric. This symmetry implies that

(5.1) A[i1i4i7][i2i5i8][i3i6i9] = A[i2i5i8][i3i6i9][i1i4i7] = · · · = A[i3i6i9][i1i4i7][i2i5i8].

In other words, the symmetry of A is equivalent with swapping i1 with either i2 or i3,
i4 with either i5 or i6 and i7 with either i8 or i9. The TKPSVD algorithm reshapes and
permutes the symmetric tensor A into the tensor Ã, with entries Ã[i1i2i3][i4i5i6][i7i8i9].

Although Ã is not symmetric, the symmetry of A still allows us to swap the indices
as indicated in (5.1) such that

Ã[i1i2i3][i4i5i6][i7i8i9] = Ã[i4i5i6][i7i8i9][i1i2i3] = · · · = Ã[i7i8i9][i1i2i3][i4i5i6],

which can be rewritten as

(5.2) Ã ×1 S1 ×2 S2 ×3 S3 = Ã

where all Si matrices are perfect shuffle matrices. By using (2.1), equation (5.2) can
be rewritten as

(5.3) (S3 ⊗ S2 ⊗ S1) vec(Ã) = vec(Ã),

which is nothing else but a reformulation of the symmetry S vec(A) = vec(A) in terms
of vec(Ã). If Q denotes the permutation matrix such that Q vec(A) = vec(Ã), then
from

(S3 ⊗ S2 ⊗ S1) vec(Ã) = vec(Ã),

⇔ (S3 ⊗ S2 ⊗ S1)Q vec(A) = Q vec(A),

⇔ QT (S3 ⊗ S2 ⊗ S1)Q vec(A) = vec(A),

we infer that S = QT (S3 ⊗ S2 ⊗ S1)Q. This can be interpreted as the perfect
shuffle matrix S being “decomposed” into a Kronecker product of smaller perfect
shuffle matrices. Another way of seeing this equality is that S and S3 ⊗ S2 ⊗ S1 are
permutation similar.

5.2. Centrosymmetry. Another interesting and useful permutation of the en-
tries of vec(A) is the exchange matrix J , which is the nk×nk column-reversed identity
matrix. This permutation maps each index ij of vec(A) to n − ij + 1, e.g., for the
3-way tensor A from Section 4 the entry vec(A)[i1i4i7i2i5i8i3i6i9] is mapped to

vec(A)[n−i1+1 n−i4+1 n−i7+1 n−i2+1 n−i5+1 n−i8+1 n−i3+1 n−i6+1 n−i9+1]

and vice-versa. A k-way cubical tensor A is defined to be centrosymmetric when

J vec(A) = vec(A).

Our definition of centrosymmetric tensors is equivalent with the alternative definitions
given in [3, 19]. The “decomposition” argument of J is completely analogous to
the decomposition of the perfect shuffle matrix S for symmetric tensors. Following
the TKPSVD reshapings and permutations leads to the expression J = QT (J3 ⊗
J2 ⊗ J1)Q, where J1, J2, J3 are exchange matrices and Q is the same permutation as
described in Subsection 5.1.
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5.3. Persymmetry. Given the definition of the perfect shuffle matrix S and
exchange matrix J , we now define a k-way cubical tensor A to be persymmetric when

S J vec(A) = vec(A),

applies. Using similar arguments as in the symmetric and centrosymmetric cases, we
can write the following decomposition S J = QT (S3 J3⊗S2 J2⊗S1 J1)Q. Using the
mixed-product property of the Kronecker product, we can rewrite the permutation
decomposition as S J = QT (S3 ⊗ S2 ⊗ S1)(J3 ⊗ J2 ⊗ J1)Q.

5.4. General symmetric tensor. We now define general symmetric tensors by
generalizing the previous three examples of particular symmetries.

Definition 5.2. A k-way cubical tensor A is a general symmetric tensor if

P vec(A) = vec(A),

where the permutation matrix P can be written for any arbitrary degree d and di-

mensions n
(i)
r into a Kronecker product of smaller permutation matrices P1, . . . , Pd

as

(5.4) P = QT (Pd ⊗ · · · ⊗ P2 ⊗ P1)Q,

where Q is the permutation matrix such that Q vec(A) = vec(Ã) and the dimension

of each of the permutation matrices Pi is
∏k

r=1 n
(i)
r .

General skew-symmetric tensors are defined similarly as in Definition 5.2 where
now P vec(A) = −vec(A) needs to hold. The permutation matrices P1, . . . , Pk do not
necessarily need to be of the same dimension. In fact, the definition requires that (5.4)

holds for any arbitrary degree d and dimensions n
(i)
r of the KP factors. For example,

there are several ways in which a general symmetric 12 × 12 × 12 tensor A can be
decomposed into a TKPSVD. There are three different decompositions when d = 3,
depending on the order of the 3×3×3, 2×2×2 and 2×2×2 tensors. Likewise when
d = 2 there are different orderings of the 3×3×3, 4×4×4 or 6×6×6, 2×2×2 tensors.
Each of these TKPSVDs is characterized by different Pk and Q permutation matrices,
nevertheless, (5.4) needs to hold for all of them for A to be general symmetric.

5.5. Shifted-index structure. Within the set of general symmetric tensors
there are other interesting, more restrictive structures that we call shifted-index struc-
tures. These are tensors whose entries do not change when at least one index is
“shifted”.

Definition 5.3. A k-way cubical tensor A has a shifted-index structure if

A[i1][i2]···[ik] = A[i1+∆1][i2+∆2]···[ik+∆k],

where at least one of the integer shifts ∆1, . . . ,∆k is nonzero. For any two nonzero
shifts ∆i,∆j, either ∆i = ∆j or ∆i = −∆j must be satisfied.

Of course, none of the shifted indices i1 + ∆1, . . . , ik + ∆k are allowed to go “out
of bounds”. The case where ∆1 = ∆2 = · · · = ∆k is called a Toeplitz tensor and is
a special case of a persymmetric tensor. Similarly, a symmetric tensor for which all
shifts are zero except for one arbitrary pair ∆i = −∆j is called a Hankel tensor. A
tensor for which all shifts are zero except ∆r has constant entries along the r fibres. It
is straightforward to show that any shifted-index structure is also a general symmetry
by writing down its corresponding permutation matrix and showing that Definition
5.2 applies.
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(a) Perfect shuffle matrix S (b) Hankel permutation matrix P

Fig. 5.1: Permutation matrices for a 27× 27× 27 Hankel tensor.

Example 5.1. Consider a 27× 27× 27 Hankel tensor H. The Hankel structure
means that the tensor is also symmetric, which implies that S vec(H) = vec(H) with
S the 19683× 19683 perfect shuffle matrix. Now consider a degree-3 TKPSVD where
each KP factor is a 3× 3× 3 tensor. We can then retrieve S from the 27× 27 perfect
shuffle matrix S1 = S2 = S3 as S = QT (S3⊗S2⊗S1)Q, where Q is the permutation
matrix in vec(H̃) = Q vec(H). The 27 × 27 permutation matrices P1 = P2 = P3 that
define a 3× 3× 3 Hankel tensor A are completely specified by the vector of indices

i = [1, 4, 5, 10, 7, 8, 11, 12, 15, 2, 13, 14, 19, 16, 17, 20, 21, 24, 3, 22, 23, 6, 25, 26, 9, 18, 27],

since vec(A)(i) = vec(A), where vec(A)(i) is Matlab notation to denote P3 vec(A).
If we now set P = QT (P3 ⊗ P2 ⊗ P1)Q then indeed P vec(H) = vec(H) is satisfied.
Figure 5.1 shows the nonzero pattern of both S and P . Observe that although the
Hankel permutation P is a special case of a symmetry, the nonzero pattern is very
different from that of S.

6. Preservation of structures. It is quite a remarkable fact that all general
symmetries, included the shifted-index structures, are preserved in the cubical KP

factors A(i)
j when they are computed according to Algorithm 4.1. The orthogonality

of the rank-1 terms in the PD plays a crucial role in this. Another critical element
are the scalar coefficients σj ’s of the TKPSVD, which are required to be distinct. We
now show how this comes about.

6.1. General symmetry. In order to prove general symmetry preservation in
the KP factors, we need the following useful lemma.

Lemma 6.1. Suppose a = vec(A) ∈ Rnk×1 with aTa = 1 and P is a permutation
matrix that corresponds with a general symmetry. Then the cubical tensor A obtained
from reshaping a is general symmetric if and only if aT P a = 1 or general skew-
symmetric if and only if aT P a = −1.

Proof. We first prove Pa = a ⇒ aT P a = 1. Since a has unit norm we can
write aTa = 1 and substitution of a by Pa then results in aTPa = 1. The proof for
aT P a = 1 ⇒ Pa = a goes as follows. Let b = P a, then we have that ||b||2 = 1 and
aT b = cosα. Since cosα = 1 it follows that α = 0 and a is a multiple of b, but since
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||a||2 = ||b||2 = 1 it follows that a = b = P a. The proof for the skew-symmetry of A
follows the same logic.

The general symmetry of A implies that

(6.1) Ã = Ã ×1 P1 ×2 P2 ×3 · · · ×d Pd,

where all Pi’s are permutation matrices. We now substitute Ã in both sides of (6.1)
by its PD and obtain

(6.2)

R∑
j=1

σj a
(1)
j ◦ a

(2)
j ◦ · · · ◦ a

(d)
j =

R∑
i=1

σj P1a
(1)
j ◦ P2a

(2)
j ◦ · · · ◦ Pda

(d)
j .

The orthogonality of each rank-1 term and ||a(i)
j ||2 = 1 implies that the mode products

of both sides of (6.2) with (a
(1)
k )T , . . . , (a

(d)
k )T along the modes 1, 2, . . . , d respectively

for any k ∈ {1, . . . , R} ⊂ N results in

(6.3) σk =

R∑
j=1

σj (a
(1)
k )TP1 a

(1)
j (a

(2)
k )TP2 a

(2)
j · · · (a

(d)
k )TPd a

(d)
j .

We have that each of the (a
(i)
k )TPia

(i)
j scalars lies in the real interval [−1, 1], since

||a(i)
j ||2 = 1 for all j and P is a permutation matrix. We now assume that the following

condition holds.
Condition 1. All σj’s in the PD of Ã are distinct and all terms on the right-hand

side of (6.3) except for the one corresponding with σk vanish.

The equality in (6.3) holds under Condition 1 when (a
(i)
k )T Pi a

(i)
j = 0 for at least

one particular i when k 6= j and when

(6.4)

d∏
i=1

(a
(i)
k )T Pi a

(i)
k = 1.

The only possible way for (6.4) to be true under the constraint that each of the

(a
(i)
k )TPia

(i)
k scalars lies in the interval [−1, 1] is when

(6.5) (a
(i)
k )T Pi a

(i)
k = ±1.

From Lemma 6.1 we know that if the right-hand side of (6.5) is 1, then A(i)
k is general

symmetric, otherwise A(i)
k is general skew-symmetric. In addtion, (6.4) implies that

there are either zero or an even number of general skew-symmetric KP factors in
each term. This proves the main theorem on general symmetry-preservation in the
TKPSVD.

Theorem 6.2. Let A be a general symmetric tensor with a dth-degree TKPSVD

into cubical KP factors A
(i)
j . If Condition 1 holds, then each of the A

(i)
j factors in the

TKPSVD is either a general symmetric or a general skew-symmetric tensor. There
are always either zero or an even number of skew-symmetric factors in each term of
(1.2).

Let us see what happens when Condition 1 is not satisfied. Suppose that σk =
σk+1 and that the terms corresponding with the other σj ’s vanish. We can then
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combine the σk and σk+1 terms such that now

(6.6)

d∏
i=1

(a
(i)
k )T Pi a

(i)
k +

d∏
i=1

(a
(i)
k+1)T Pi a

(i)
k+1 = 1

needs to hold. Contrary to the case of distinct σj ’s, there are now multiple ways

that (6.6) can be satisfied without (a
(i)
k )T Pi a

(i)
k = ±1 being true, which implies that

the terms corresponding with σk, σk+1 will not necessarily have general symmetric
factors. A very particular case where Condition 1 is not satisfied for all terms is for
symmetric tensors of order k > 2. We discuss this case, along with other general
symmetries, in Section 7.

7. Numerical Experiments. In this section we discuss numerical experiments
that illustrate different aspects of the TKPSVD algorithm. We will demonstrate the
structure preservation of generaly symmetries and shifted-index structures and discuss
a curious observation for symmetric tensors. We also compare the use of the CPD
with orthogonal matrix factors, the HOSVD and TTr1SVD in terms of runtime and
storage. Finally, we illustrate how the Kronecker product structure can be interpreted
as a multiresolution decomposition of images. All computations were done in Matlab
on a 64-bit 4-core 3.3 GHz desktop computer with 16 GB RAM.

7.1. General symmetric structure. As a first example, we demonstrate the
use of the CPD with orthogonal factor matrices, the HOSVD and the TTr1SVD to
compute the TKPSVD, together with the preservation of centrosymmetry in the KP
factors.

Example 7.1. We construct a 24 × 24 × 24 centrosymmetric tensor A with its
distinct entries drawn from a standard normal distribution and compute a 3rd degree
decomposition with factor sizes 4×4×4, 3×3×3, 2×2×2 respectively. The reshaping
and permutation steps result in a 8 × 27 × 64 tensor Ã. Table 7.1 compares the use
of the CPD with orthogonal factor matrices, the HOSVD and TTr1SVD for the PD
of Ã. We list the total number of rank-1 terms, the required memory for storage of
the PD of Ã, the total runtime to compute the TKPSVD (computed as the median

over 100 runs) and the relative error ||A −
∑R

j=1 σjA
(d)
j · · · A

(1)
j ||F /||A||F . The total

number of rank-1 terms for the orthogonal CPD is limited to only 8, since the first
factor matrix will be an orthogonal 8×8 matrix. This results in a large relative error.
The runtime for computing the orthogonal CPD is also very long compared to the
HOSVD and TTr1SVD. The main difference between the HOSVD and TTr1SVD lies
in the total number of rank-1 terms. But since the HOSVD reuses the mode vectors,
this results in slightly less required memory. All rank-1 terms computed with both the
HOSVD and TTr1SVD retain the centroysymmetric structure. The TTr1SVD method
results in 56 terms that have 2 skew-centrosymmetric factors, The HOSVD has 1792
such terms. Note that the HOSVD has a 8 × 27 × 64 core tensor containing 6912
nonzero entries.

Due to the limitations of the CPD with orthogonal factors, as demonstrated in
Example 7.1, we will refrain from using it for the following examples in this Section.
We now demonstrate the occurrence of σ’s with multiplicities for symmetric tensors.
Consequently, KP terms that belong to the same σ will not inherit the general sym-
metry in their factors. This is true for when both the TTr1SVD and HOSVD are
used. The TTr1SVD case however has a lot more regularity than the HOSVD. When
the TKPSVD of a k-way symmetric tensor is computed with the TTr1SVD, then all
multiple σ’s have a multiplicity of k − 1.
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Table 7.1: Comparison of CPD, HOSVD and TTr1SVD for the TKPSVD.

Method # Terms Storage (kB) Runtime (seconds) Relative Error

orthogonal CPD 8 3.14 768.07 0.947
HOSVD 6912 146.19 0.18 2.21e-15
TTr1SVD 216 154.06 0.21 2.39e-15

Example 7.2. Consider a symmetric 8×8×8 tensor with distinct entries drawn
from a standard normal distribution. We compute its degree-3 TKPSVD using the
TTr1SVD and obtain 56 KP terms. For this 3-way tensor, each multiple σ has a
multiplicity of k− 1 = 2. There are 8 such pairs, which implies that 16 terms are not
(skew)-symmetric. Next, we compute a degree-3 decomposition for an 8×8 symmetric
matrix, which results in 14 KP terms. All the σ’s are distinct, which implies that all
terms in the decomposition are (skew)-symmetric. Finally, we compute the degree-3
TKPSVD of a 4-way symmetric tensor. This decomposition consists of 230 terms.
There are 20 3-tuples of multiple σ’s, which means that 60 KP terms are not (skew)-
symmetric.

7.2. Shifted-index structure. Next, we investigate the dependence of the total
number of KP terms and total runtime on the ordering of the KP factors for both the
TTr1SVD and HOSVD.

Example 7.3. Consider a 64 × 64 × 64 × 64 Hankel tensor with its distinct
entries drawn from a standard normal distribution. We compute its TKPSVD into 3
Kronecker factors with dimensions 2× 2× 2× 2, 4× 4× 4× 4 and 8× 8× 8× 8 over
all possible orderings of the factors and investigate the total number of obtained KP
terms for both the TTr1SVD and HOSVD, together with total runtimes. The results
are shown in Table 7.2. The first thing to notice is that the total number of terms in
the TKPSVD and total runtime are quite independent from the factor ordering when
the HOSVD is used. On average, about 2000 terms are needed and the computation
takes a little over 4 minutes. The TTr1SVD needs about 20 times less terms and is
for one particular ordering more than 80 times faster. Note that although the HOSVD
requires more terms, just like in Example 7.1 it will require less memory for storage
due to the fact that it reuses the mode vectors for each KP term. All of the terms in
every of the decompositions retained the Hankel structure.

Table 7.2: Number of KP terms and total runtime for TTr1SVD and HOSVD.

Ordering # Terms Runtime (seconds)

TTr1SVD HOSVD TTr1SVD HOSVD

2,4,8 65 1968 9.76 254.30
2,8,4 65 1973 2.47 251.70
4,2,8 65 1993 5.80 254.96
4,8,2 65 2146 5.75 256.41
8,2,4 145 2067 247.66 249.97
8,4,2 145 2105 239.95 254.16
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Fig. 7.1: Original 4000× 6000× 3 image.

7.3. Multiresolution decomposition of images. An interesting illustration
of the TKPSVD is in the multiresolution decomposition of a n1×n2× 3 colour image
A. This example gives an interpretation to two different aspects of the TKPSVD:
truncation of the Kronecker product and truncation of the number of terms. Indeed,

every pixel of the n
(d)
1 ×n

(d)
2 ×3 image A(d) is “blown up” by each Kronecker product

in A(d) ⊗A(d−1) ⊗ · · · ⊗A(1) until the resolution n1 × n2 × 3 is obtained. Truncating
the Kronecker products to only a few factors hence effectively reduces the resolution.
Furthermore, compression can be achieved at different resolutions by retaining only
a few terms. The compression rate achieved for retaining k factors and r number of
terms in (1.2) is defined as ∏k−1

i=0 n
(d−i)
1 n

(d−i)
2 n

(d−1)
3

r
∑k−1

i=0 n
(d−i)
1 n

(d−i)
2 n

(d−1)
3

.

This is illustrated with the 6000 × 4000 × 3 colour image in Figure 7.11. A degree-5
TKPSVD is computed with dimensions

(250× 375× 3)⊗ (2× 2× 1)⊗ (2× 2× 1)⊗ (2× 2× 1)⊗ (2× 2× 1).

The total runtime to compute the TKPSVD using the TTr1SVD and HOSVD was 18
and 30 seconds respectively. In contrast, computing a standard SVD of one of the three
slices A(:, :, i) takes about 1 minute and consists of 4000 rank-1 terms. The TTr1SVD
needs 240 terms while the HOSVD needs 65536. For this particular example, the
compression rate when retaining k factors and r terms can be approximated by

(250× 375× 3) (2× 2× 1)k−1

r(250× 375× 3 + (k − 1)(2× 2× 1))
≈ (2× 2× 1)k−1

r
=

4k−1

r
.

This implies that the maximal compression rate, when r = 1, is dependent on the
resolution, viz. the number of KP factors k in each term. At the largest resolution

1absfreepic.com/free-photos/download/water-nature-fall-6000x4000_90673.html

absfreepic.com/free-photos/download/water-nature-fall-6000x4000_90673.html
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(k = 5), the maximal compression rate is approximately 256 while at the smallest
resolution no compression is possible through truncation of KP terms. A common
measure to quantify the quality of reconstruction of lossy compressed images is the
peak signal-to-noise ratio (PSNR). The PSNR is defined as

PSNR = 20 log10(MAXI)− 10 log10(MSE)

where MAXI is the maximal possible pixel value, 255 in our case, and MSE is the mean
squared error ||A− Â||2F /(n1 ·n2 · 3). Figure 7.2 shows the PSNR as a function of the
number of retained KP terms, computed from the TTr1SVD for the highest possible
resolution. In this case, the PSNR can be completely determined from the σ’s in the
TKPSVD using (1.4). Acceptable values of the PSNR are between 30 and 50 dB and
are obtained from retaining the first 20 terms, which corresponds with a compression
rate of about 12.8. Figure 7.3 displays 1-term approximants for 3 different resolutions.
For Figures 7.3(a),(b),(c) the PSNR is 58dB, 58dB and 57dB respectively.

Fig. 7.2: Increase of the PSNR as the number of TTr1SVD-KP terms grows for the
4000× 6000× 3 resolution.

8. Conclusions. In this paper, we introduced the tensor Kronecker product
singular value decomposition that decomposes a real k-way tensor A into a linear
combination of tensor Kronecker product terms with an arbitrary number of d fac-

tors A =
∑R

j=1 σj A
(d)
j ⊗ · · · ⊗ A(1)

j . This decomposition enables easy computation
of a Kronecker product approximation and a very straightforward determination of
the relative approximation error without explicit construction of the approximant.
We proved that for many different structured tensors, the Kronecker product factors

A(1)
j , . . . ,A(d)

j are guaranteed to inherit this structure. In addition, we introduced the
new framework of general symmetric tensors, which includes many different structures
such as symmetric, persymmetric, centrosymmetric, Toeplitz and Hankel tensors.

Acknowledgements. The authors would like to thank Martijn Boussé and Nico
Vervliet for their invaluable help on computing a CPD with orthogonal factor matrices
in Tensorlab.
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(a) 250 × 375 (b) 500 × 750

(c) 1000 × 1500

Fig. 7.3: First term of the KP decomposition for 3 different resolutions.
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