76 research outputs found

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Example Based Caricature Synthesis

    Get PDF
    The likeness of a caricature to the original face image is an essential and often overlooked part of caricature production. In this paper we present an example based caricature synthesis technique, consisting of shape exaggeration, relationship exaggeration, and optimization for likeness. Rather than relying on a large training set of caricature face pairs, our shape exaggeration step is based on only one or a small number of examples of facial features. The relationship exaggeration step introduces two definitions which facilitate global facial feature synthesis. The first is the T-Shape rule, which describes the relative relationship between the facial elements in an intuitive manner. The second is the so called proportions, which characterizes the facial features in a proportion form. Finally we introduce a similarity metric as the likeness metric based on the Modified Hausdorff Distance (MHD) which allows us to optimize the configuration of facial elements, maximizing likeness while satisfying a number of constraints. The effectiveness of our algorithm is demonstrated with experimental results

    spinfortec2022 : Tagungsband zum 14. Symposium der Sektion Sportinformatik und Sporttechnologie der Deutschen Vereinigung fĂĽr Sportwissenschaft (dvs), Chemnitz 29. - 30. September 2022

    Get PDF
    Dieser Tagungsband enthält die Beiträge aller Vorträge und Posterpräsentationen des 14. Symposiums der Sektion Sportinformatik und Sporttechnologie der Deutschen Vereinigung für Sportwissenschaft (dvs) an der Technischen Universität Chemnitz (29.-30. September 2022). Mit dem Ziel, das Forschungsfeld der Sportinformatik und Sporttechnologie voranzubringen, wurden knapp 20 vierseitige Beiträge eingereicht und in den Sessions Informations- und Feedbacksysteme im Sport, Digitale Bewegung: Datenerfassung, Analyse und Algorithmen sowie Sportgeräteentwicklung: Materialien, Konstruktion, Tests vorgestellt.This conference volume contains the contributions of all oral and poster presentations of the 14th Symposium of the Section Sport Informatics and Engineering of the German Association for Sport Science (dvs) at Chemnitz University of Technology (September 29-30, 2022). With the goal of advancing the research field of sports informatics and sports technology, nearly 20 four-page papers were submitted and presented in the sessions Information and Feedback Systems in Sport, Digital Movement: Data Acquisition, Analysis and Algorithms, and Sports Equipment Development: Materials, Construction, Testing

    CASA 2009:International Conference on Computer Animation and Social Agents

    Get PDF

    Hopping, Landing, and Balancing with Springs

    Get PDF
    This work investigates the interaction of a planar double pendulum robot and springs, where the lower body (the leg) has been modified to include a spring-loaded passive prismatic joint. The thesis explores the mechanical advantage of adding a spring to the robot in hopping, landing, and balancing activities by formulating the motion problem as a boundary value problem; and also provides a control strategy for such scenarios. It also analyses the robustness of the developed controller to uncertain spring parameters, and an observer solution is provided to estimate these parameters while the robot is performing a tracking task. Finally, it shows a study of how well IMUs perform in bouncing conditions, which is critical for the proper operation of a hopping robot or a running-legged one

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    The Cord Weekly (October 24, 1985)

    Get PDF
    • …
    corecore