
ITALIAN INSTITUTE OF TECHNOLOGY, AND

UNIVERSITY OF GENOVA

PHD PROGRAM IN BIOENGINEERING AND ROBOTICS

Hopping, Landing, and Balancing with Springs
by

Juan David Gamba Camacho

Thesis submitted for the degree of Doctor of Philosophy (34◦ cycle)

March 2022

Roy Featherstone Supervisor
Darwin Caldwell Supervisor
Giogio Cannata Head of the PhD program

Thesis Jury:
Dr. Patrick Wensing, University of Notre Dame External examiner
Dr. Leonardo Lanari, Università di Roma "La Sapienza" External examiner

Advanced Robotics Department (iit), and
Department of Informatics, Bioengineering, Robotics and Systems Engineering (UniGe)



I would like to dedicate this thesis to my wife, parents and family.



Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Juan David Gamba Camacho
March 2022



Acknowledgements

I would like to thank my supervisor, Dr. Roy Featherstone, for his pieces of advice and
guidance along this journey. I would also like to thank my wife and parents for their
unconditional support over these years and the pandemic. I also thank the Skippy team for
their help and friendship.



Abstract

This work investigates the interaction of a planar double pendulum robot and springs, where
the lower body (the leg) has been modified to include a spring-loaded passive prismatic
joint. The thesis explores the mechanical advantage of adding a spring to the robot in
hopping, landing, and balancing activities by formulating the motion problem as a boundary
value problem; and also provides a control strategy for such scenarios. It also analyses
the robustness of the developed controller to uncertain spring parameters, and an observer
solution is provided to estimate these parameters while the robot is performing a tracking
task. Finally, it shows a study of how well IMUs perform in bouncing conditions, which is
critical for the proper operation of a hopping robot or a running-legged one.



Table of contents

List of figures viii

List of tables xii

Nomenclature xiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Review of The State Of The Art . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Balancing, Tracking and Hopping . . . . . . . . . . . . . . . . . . 5
1.2.2 Parameter Identification and High Order Nonlinear Observers . . . 8
1.2.3 Trajectory Optimization . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.4 Inertia Measurement Unit (IMU) sensors and Legged Systems . . . 13

1.3 Goals and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Hopping 20
2.1 Robot Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Launching Trajectory Search . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 The Launching Instant . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 NLP Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Optimization Results . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Balance Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1 Balancing States . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 PID Momentum Balance Controller . . . . . . . . . . . . . . . . . 35
2.3.3 Balance Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



Table of contents vi

2.4 Trajectory Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.1 Launch Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Landing 44
3.1 Robot Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Balancing with a Springy Leg 61
4.1 General Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Balance Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Actuated Joint Tracking . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.2 Absolute Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.3 Launching with an Uncertain Spring . . . . . . . . . . . . . . . . . 74

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Non-linear Observers for balancing 81
5.1 Parameters Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.1 Finite Time Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 82
5.1.2 Spring Parameters Identification . . . . . . . . . . . . . . . . . . . 85

5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 IMU Bouncing Test 96
6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.1 Actuation system . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.1.2 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.1.3 Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Experiment Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Conclusion 109



Table of contents vii

References 112

Appendix A Linear Spring Damper Design For Mass Impact 125



List of figures

1.1 Tang Xijing of China competes during the artistic gymnastics women’s
balance beam final at the Tokyo 2020 Olympic Games in Tokyo, Japan, Aug.
3, 2021. (Xinhua, 2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Skippy Robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 (a) The SLIP model, (b) Raibert’s hopper, (c) A human runner. (Arslan et al.,

2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Conventional and High Order Sliding Mode (HOSM) state space (Utkin

et al., 2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Robot model. q2 is negative in this configuration, and has been drawn as
q2 +2π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Optimized launching motion with a torque τ2 saturation limit at 150 Nm. . 30
2.3 Launching motion obtained with the TRT introduced by Azad and Feather-

stone (2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Optimized launching motion with a torque τ2 saturation limit at 300 Nm. . 32
2.5 Launching motion obtained with the TRT introduced by Azad and Feather-

stone (2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Optimized launching motion with a torque τ2 saturation limit at 300 Nm. . 33
2.7 Launching motion obtained with a torque τ2 saturation limit at 150 Nm. . . 33
2.8 Plant describing the dynamics of balancing. qa is the actuated joint variable,

which is q2 in Fig. 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.9 Performance comparison of both controllers without a torque τ2 saturation

limit. The gray line denotes the reference signal, the blue line shows the
performance obtained with the Azad and Featherstone (2013) controller, and
the black line is the tracking obtained with the new launch controller. . . . . 41



List of figures ix

2.10 Performance comparison of both controllers with a torque τ2 saturation limit
at 150 Nm. The gray line denotes the reference signal, the blue line shows
the performance obtained with the Azad and Featherstone (2013) controller,
and the black line is the tracking obtained with the new launch controller. . 42

3.1 Spring loaded monoped robot. . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Spring profile for different G values with a hypothetic stiffness of 1N/m. "l"

indicates the linear model G = 0, "p" and "r" denote the nonlinear model in
progressive G =−0.9 and regressive G = 0.9 modes. . . . . . . . . . . . . 47

3.3 Robot’s motion during landing using the linear spring. . . . . . . . . . . . 51
3.4 Robot’s motion during landing using the nonlinear spring. . . . . . . . . . 51
3.5 Spring profiles obtained from the motion’s optimization. The solid blue line

indicates the linear model with stiffness of 480.7420N/m, G = 0, and the
dashed red line shows the nonlinear progressive model G =−0.3134 with
stiffness of 546.1554N/m. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 CoM position c response of Fig.3.1 system with a linear (solid blue line) and
a nonlinear (dashed red line) spring. . . . . . . . . . . . . . . . . . . . . . 53

3.7 CoM velocity ċ response of Fig.3.1 system with a linear (solid blue line) and
a nonlinear (dashed red line) spring. . . . . . . . . . . . . . . . . . . . . . 53

3.8 Joints position qi response of Fig.3.1 system with a linear (solid blue line)
and a nonlinear (dashed red line) spring. . . . . . . . . . . . . . . . . . . . 54

3.9 Joints velocities q̇i response of Fig.3.1 system with a linear (solid blue line)
and a nonlinear (dashed red line) spring. . . . . . . . . . . . . . . . . . . . 55

3.10 Vertical force F and torque profile τ3 response of Fig.3.1 system with a linear
(solid blue line) and a nonlinear (dashed red line) spring. . . . . . . . . . . 56

3.11 Vertical force F and torque profile τ3 response of Fig.3.1 system with a linear
(solid blue line) and a nonlinear (dashed red line) spring. . . . . . . . . . . 57

3.12 Voltage V and current i response of Fig.3.1 system with a linear (solid blue
line) and a nonlinear (dashed red line) spring. . . . . . . . . . . . . . . . . 57

3.13 Electrical power input response of Fig.3.1 system with a linear (solid blue
line) and a nonlinear (dashed red line) spring. . . . . . . . . . . . . . . . . 58

4.1 Robot model. q3 is negative in this configuration, and has been drawn as
q3 +2π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



List of figures x

4.2 Block diagram for the balancing control problem of the springy-leg robot,
with kℓ=diag(kdd,kd,kL). The green lines indicate the balance controller,
and the purple lines denote the plant. qa denotes the controlled joint variable,
which can be q3 or q1 +q3 . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Motion profile of the launching phase. . . . . . . . . . . . . . . . . . . . . 69
4.4 Motion profile of the flight phase. . . . . . . . . . . . . . . . . . . . . . . 70
4.5 Motion profile of the landing phase, when qa = q3. . . . . . . . . . . . . . 71
4.6 Evolution of the controller’s state variables from the moment of landing until

the robot has settled. The left side scale corresponds to L̈, L̇ and L, and the
right side scale corresponds to qa = q3. The shaded zones show the periods
in which the foot has lost contact with the ground because of the bounces. . 72

4.7 Tracking performance of the balance controller, when qa = q3. . . . . . . . 73
4.8 Motion of the spring during the whole motion. The shaded zones of red,

blue, and magenta colors show the instant in which the foot has lost contact
with the ground because of the leap and two bounces, respectively. The
green-shaded zone denotes the moment when the robot is performing the
tracking sequence of Fig. 4.7. The quantity qy is the height of the foot above
the ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.9 Tracking performance of the balance controller, with qa = q1 +q3. . . . . . 75
4.10 Motion of the spring during tracking the motion at figure 4.9. . . . . . . . 75

5.1 Block diagram of the proposed balance control strategy. . . . . . . . . . . . 85
5.2 Legged robot model: joint variables, lengths and masses. . . . . . . . . . . 86
5.3 Evolution of the controller’s state variables from the moment of landing until

the robot has settled. The left side scale corresponds to L̈, L̇ and L, and the
right side scale corresponds to qa. The shaded zone shows the time interval
during which the foot has lost contact with the ground because of the small
hop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Evolution of the estimator’s parameters from the moment of landing until the
robot has settled. The left side scale corresponds to K̂s and D̂s, and the right
side scale corresponds to e. The shaded zone shows the time interval during
which the foot has lost contact with the ground because of the small hop. . . 91



List of figures xi

5.5 Absolute motion tracking performance of the balance controller. qc is the
original desired signal, qt denotes the theoretical response of the balance
controller if the plant was really linear, qa (springy) is the actual response of
the absolute joint on the springy-leg robot, and qa (rigid) denotes the actual
response on the rigid-leg robot. . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 Motion of the foot and spring during landing and tracking of the desired
signal in Fig. 5.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Figure a shows the evolution of the error related to the estimations θ̃ . Figure
b shows the observer’s injected term error e response. Both graphs display
information from the tracking phase shown in Fig. 5.5. . . . . . . . . . . . 94

6.1 Vertical view of the experimental setup. . . . . . . . . . . . . . . . . . . . 98
6.2 Base view of the experimental setup. . . . . . . . . . . . . . . . . . . . . . 99
6.3 Vertical view of the IMUs mounted at the end of the carbon fiber rod. . . . 100
6.4 Actuation Logic. The blue line is the angle measurement obtained from the

encoder, and the red line denotes the duty cycle of the PWM signal control-
ling the solenoid. The left-side scale applies to the encoder measurement,
and the right-side scale applies to the solenoid’s duty cycle. . . . . . . . . . 102

6.5 Synchronized measurements obtained from the encoder and the three IMUs
at the beginning of the bouncing motion. . . . . . . . . . . . . . . . . . . . 103

6.6 Synchronized measurements obtained from the encoder and the three IMUs
at the end of the bouncing motion. . . . . . . . . . . . . . . . . . . . . . . 104

6.7 Filtered orientation error response about the y axis. . . . . . . . . . . . . . 105
6.8 Filtered orientation error response about the x axis. . . . . . . . . . . . . . 106
6.9 Filtered orientation error response about the z axis. . . . . . . . . . . . . . 107

A.1 Mass-spring-damper system. . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.2 q and q̇ response of fig.A.1 system with a linear spring-damper for an impact

of a mass of 2kg travelling at −6m/s2. . . . . . . . . . . . . . . . . . . . 127
A.3 Vertical force F response of fig.A.1 system with a linear spring-damper for

an impact of a mass of 2kg travelling at −6m/s2. . . . . . . . . . . . . . . 128



List of tables

2.1 Length and inertia parameters of the robot shown in Fig.2.1 . . . . . . . . . 21
2.2 Comparison table between the following methods: (i) TRT, (ii) DMS, (iii)

DOC with Legendre-Gauss polynomial (DOC-LG) and (iv) DOC with
Legendre-Gauss-Radau polynomial (DOC-LGR). . . . . . . . . . . . . . . 29

2.3 Comparison table between the new launch controller and Azad and Feather-
stone (2013) controller with and without limited torque(|τ| ≤ 150N); for the
results presented in figures 2.9 and 2.10. . . . . . . . . . . . . . . . . . . . 43

3.1 Length and inertia parameters of the robot shown in Fig.3.1. . . . . . . . . 45
3.2 DC motor parameters. The implemented torque and speed constants already

consider the ratio of the reduction driver (Nd). . . . . . . . . . . . . . . . . 48

4.1 length and inertia parameters of the robot shown in Fig.4.1 . . . . . . . . . 63
4.2 Launching sensitivity related to different spring parameters. . . . . . . . . . 79

6.1 Absolute value of the maximum error about each axis for the three IMUs. Er-
rors in red denote that it surpassed the resolution and repeatability tolerances
in the data sheet. Blank spaces denote that the information was not available. 106



Nomenclature

Acronyms / Abbreviations

BIBO Bounded-Input, Bounded-Output

BVP Boundary Value Problem

CoM Center of Mass

DAE differential-algeabric equation

DMS Direct Multiple Shooting

DOC Direct Orthogonal Collocation

LV Linear Variant

NLP Non-linear Programming

ODE Ordinary-Differential Equations

ODE ordinaty differential equation

TRT Time-Reversed Technique



Chapter 1

Introduction

For acrobats and athletes, the success or failure of a maneuver depends on precise and
accurate movements. Different studies have been carried out on gymnastic and acrobatic
motions performed by humans. In sports like Artistic Gymnastics, Aleksic-Veljkovic et al.
(2014) analyzed the balance performance (based on the athlete’s age) of young gymnasts
competing at the international level on the balance beam. Hars et al. (2005) also studied the
balance performance of human athletes at a basic back walkover by analyzing the dynamics
of reaction forces acting during different supporting phases. Kim et al. (2012) performed a
kinetic analysis of a standing back tuck on the balance beam (figure 1.1) with eight female

Figure 1.1 Tang Xijing of China competes during the artistic gymnastics women’s balance
beam final at the Tokyo 2020 Olympic Games in Tokyo, Japan, Aug. 3, 2021. (Xinhua, 2021)



1.1 Motivation 2

gymnasts. The study used six eagle cameras and one force plate to capture the body’s motion,
velocity, acceleration, and ground reaction forces at jumping (around twice the athlete’s
weight). Motions of this kind are nearly planar activities that require precise balance control
at one-support movements, the ability to produce and correctly modify high ground reaction
forces, and the necessary skill to execute the actions accurately. So it makes sense to reduce
the study’s complexity by using a planar model of the motion.

1.1 Motivation

This thesis is part of a series on the design and construction of an experimental high-
performance monopedal robot, called Skippy (Featherstone, 2021) (figure 1.2), which uses
springs to help it achieve higher maximum speed at launch; shock reduction on landing; and
recycling mechanical energy from one hop to another.

The main idea of the project is to demonstrate that "it is easier to increase the complexity

of a high-performance robot than to increase the performance of a highly complex robot"

(Featherstone, 2021). In this sense, a technology-inspired approach (instead of a bio-inspired
one) is the basis of the robot’s design to reach the maximum possible physical performance
with today’s robotics technology.

In figure 1.2, it is possible to see that the robot is merely planar except for the crossbar,
which allows it to have three degrees of freedom. The mechanism has two revolute joints at
the ankle and the crossbar and a 4-bar linkage at the hip to rotate the leg relative to the torso.
The robot has:

• Two actuators at the crossbar and hip.

• Two regressive springs at the main motor and the ankle. Physically both are leaf
springs made of fiberglass curved into a circular arc.

• A ring crew mechanism (Featherstone, 2022) between the main motor and the 4-bar
linkage.

In this context, this thesis merges some challenges related to the Skippy robot, like:

• The trajectory optimization and design of a controller for executing complex motions
like hops and summersaults.

• The study of advantages and disadvantages of using linear and nonlinear springs.

• The balancing problem on spring-loaded mechanisms.



1.1 Motivation 3

Figure 1.2 Skippy Robot.



1.1 Motivation 4

• Online estimators to deal with uncertain spring parameters.

• Performance test of IMU sensors subject to continuous bouncing tasks.

A new balance controller has already been developed for Skippy, which can cope with
the high-speed motions that Skippy is intended to exhibit (Featherstone, 2017, 2018). The
controller has already been tested on different legged robots to balance (Driessen et al., 2019),
hop (Yim et al., 2020), and even walk along a line (ninja walk) (González et al., 2020).
However, the interaction between the balance controller and the springs has not yet been
investigated, and that is one of the topics of this thesis.

Spring-loaded mechanisms like the spring-loaded inverted pendulum (SLIP) have also
been widely applied in the biomechanical analysis of lower limb prostheses since it re-
produces the kinetics of ground force loading during running (Kajita and Ott, 2016). In
addition, the study on modeling and control of legged robots allow us to understand how such
motions can be modelled, their stability analysis, and how dynamic motions are generated
and commanded to avoid loss of balance and falls (Wieber et al., 2016) while performing a
task.

Consequently, the presence of a spring in the leg improves the machine’s performance
for walking or running activities by providing the ability to store and release elastic energy.
This allows energy to be recycled efficiently from one step to the next and increases the
instantaneous peak power available. The disadvantage is that it makes the control problem
more complicated. In locomotion applications, the Spring-Loaded Inverted Pendulum (SLIP)
model has proven itself to be very useful (Ankaralı et al., 2010). Many studies using the
SLIP model have addressed the problem of controlling the transition from flight to stance
and from stance back to flight for performing walking or running motions (Hereid et al.,
2014; Wensing and Orin, 2013); but this is different from the task of stopping, where there
is a need to remove kinetic energy quickly. An approach consisting of an online controller
that can drive the robot to the desired trajectory and an offline or semi-online strategy to find
the desired trajectory (to be followed) for achieving certain motions seems to be a suitable
strategy to exploit the execution of complex movements.

Regarding the system hardware, obtaining accurate models to describe the robot structure
is usually accomplished by using offline calibration techniques involving measurement tools
or very accurate design-build processes. Although, situations where the robot structure
suffers breakage or malfunctions leading the system to instability while execution cannot be
covered by pre-calibrating the entire system and require an online estimation scheme, which
is another topic of this work.



1.2 Review of The State Of The Art 5

The feasibility of these motions on real robots relies on the behavior of the existing
hardware when executing this kind of task (Allione et al., 2021). In contrast to rovers and
drones, a monopod robot needs to produce leaps and hops for moving along the ground.
Consequently, the study of how well the robot’s sensors perform in such bouncing conditions
is critical for the proper operation of the robot. In this study, we also developed a test rig to
explore the behavior of three IMU sensors subject to continuous bouncing situations.

1.2 Review of The State Of The Art

Robots walking, running, balancing, and performing complex motions is becoming more
common nowadays. Technological improvements like higher computational power, powerful
algorithms, and more sophisticated mechanisms are significantly transforming the classic
idea of "slow robots" into intelligent and agile machines. There have been more than 30 years
since this trend started taking its first steps with the hopping robot introduced by Raibert
which consist of a telescopic springy leg connected to a torso by a revolute joint (Raibert,
1986).

1.2.1 Balancing, Tracking and Hopping

Hopping involves fast motions, so a balance controller must be able to make fast motions
while maintaining, recovering, or deliberately losing its balance (Nassiraei et al., 2006; Tokur
et al., 2020). These motions (hops) are essentially planar and can be explored using planar
systems.

The problem of robotic balancing on a point is known to be a solved problem, but most
existing solutions, such as Berkemeier and Fearing (1999); Grizzle et al. (2005); Spong
(1995), are not fast enough for our application. More recent results, such as Gajamohan
et al. (2012); Murata Manufacturing Co., Ltd. (2020), show better performance, but require
the robot to have special features, such as reaction wheels. Cho and Jung (2003) presents a
neural network control of an inverted pendulum (cart pole). Decentralized neural networks
are used to balance and track the cart position. Unluturk et al. (2013) presents a two-
wheeled autonomous balance robot with a simple PID control strategy to only balance the
robot. Zhang et al. (2020) proposes a PD control strategy to balance a two-wheel hopping
robot in move-forward and hopping modes. Wai and Chang (2006) exhibits an adaptive
sliding-mode controller to control a dual-axis inverted-pendulum mechanism that is driven
by synchronous motors. The authors start by adopting the energy conservation principle to



1.2 Review of The State Of The Art 6

build a mathematical model of the motor-mechanism-coupled system. Next, an adaptive
sliding-mode control system is developed for stabilizing and performing tracking control
of the system. Chanchareon et al. (2006) introduces a trajectory-following controller for a
balanced rod inverted pendulum. The authors have used a "computed feedback linearization"
technique to stabilize the system at any desired position. The nonlinear system is controlled
using a linear approximation by keeping the closed-loop system’s roots fixed by nonlinear
state feedback. This work implements a "balance strategy" based on Featherstone (2017), to
achieve high-performance balancing in spring-loaded robots.

Figure 1.3 (a) The SLIP model, (b) Raibert’s hopper, (c) A human runner. (Arslan et al.,
2009).

The presence of a spring in the leg improves the machine’s performance for walking
or running activities by providing the ability to store and release elastic energy. This
allows energy to be recycled efficiently from one step to the next, and also increases the
instantaneous peak power available. The disadvantage is that it makes the control problem
more complicated.

Raibert’s original hopping machines (Raibert, 1986) had an actuated prismatic leg that
was springy because of the use of a pneumatic actuator. Similarly, Terry et al. (2016)
describes modeling and control techniques for a Raibert-like robot called "FRANK" based
on high-order partial feedback linearization. Batts et al. (2017) presents another single-leg
hopping robot that uses an actuated prismatic joint called a linear elastic actuator in parallel
(LEAP) and modified version of Raibert’s hopping strategy. The LEAP mechanism includes
a voice coil actuator parallel with two compression springs and enables the robot to perform
19 simultaneous hops (7 seconds). These machines could only hop, so balancing (without
hopping) was not an issue.

In this context, other studies have implement control strategies based on virtual springs
to gain robustness and performance. Jin et al. (2017) models each leg of a quadruped robot



1.2 Review of The State Of The Art 7

as two sets of virtual spring and damper systems to add robustness to the locomotion control
when the legs are subject to collisions with the ground during walking. Martin et al. (2015)
implements a spring-mass model for a running robot called ATRIAS. The approach led to
very robust running over the unobserved ground in a high fidelity simulation.

In locomotion applications, the Spring-Loaded Inverted Pendulum (SLIP) model (figure
1.3) has proven itself to be very useful (Ankaralı et al., 2010). McDonald-Maier et al. (2000)
proposes different neuro controllers to perform fast spring-legged locomotion using the
classic SLIP model to run at untrained speeds over flat surfaces and uneven terrains. Piovan
and Byl (2013); Xue et al. (2017) comments that the good performance of humans and
animals at running and hopping compared to robots, is due to the leg’s capacity to regulate
energy production and removal by varying the muscle stiffnesses. Therefore the classic SLIP
system with fixed stiffness is inappropriate to reproduce these motions. The authors proposed
a variable stiffness SLIP system to mimic this good performance, and show via simulations
the high tracking accuracy and rapid convergences to the desired motion. Many studies using
the SLIP model have addressed the problem of controlling the transition from flight to stance
and from stance back to flight for performing walking or running motions (Hereid et al.,
2014; Piovan and Byl, 2012; Riese and Seyfarth, 2012; Wensing and Orin, 2013); but this
differs from the task of stopping, where there is a need to remove kinetic energy quickly.

Applications involving physical springs in locomotion had been also explored. Ma et al.
(2017) introduces a control strategy to experimentally implement a sustainable running
of a spring-loaded biped robot called DURUS-2D. The authors first used a large-scale
optimization to generate an energy-efficient running gait, subject to hybrid zero dynamics
conditions and feasibility constraints which incorporate practical limitations of the robot
model based on physical conditions. Then, a state stability-based control law is used to
implement the optimized gait.

On the other hand, there has been also developed robots to perform motions while flying,
Stickman is a simple two-degree of freedom robot that produces somersaulting stunts from
an initial non-zero angular momentum launching. The robot uses various sensors like an
IMU and a laser rangefinder to estimate and control its mid-flight kinematic configuration,
this to perform certain in-flight motions and reach a desired landing position (Pope et al.,
2018).

A more recent robot, Salto (Haldane et al., 2016), resembles a miniature, electrically
actuated Raibert-style hopping machine having an explicit series elastic element to provide
the springyness in the leg. Salto has demonstrated its ability to balance as well as hop (Yim
et al., 2020) using the balance controller in Driessen et al. (2019); Featherstone (2017).



1.2 Review of The State Of The Art 8

However, Salto’s upper link is a reaction wheel, which means that the action of balancing
has negligible effect on the spring, and vice versa.

The problem of hopping with an asymmetric upper link was studied from a control
perspective by Poulakakis and Grizzle (2007); while Batts et al. (2017) presents a 3D
hopping machine with a parallel spring, which is more controllable than a series spring. Their
robot was able to perform continuous hops for about seven seconds before losing its balance.
Xiong and Ames introduced a hopping and landing solution for a bipedal robot named Cassie
(Xiong and Ames, 2018). They described the mechanical compliance of the robot leg by a
virtual SLIP mechanism with nonlinear stiffness (the nonlinearity being a function of the
kinematics of the leg). Then the prismatic motions of the virtual model are optimized to
produce the desired hop.

The study of combined balancing and hopping on a general planar double pendulum
was pioneered by Berkemeier (Berkemeier and Fearing, 1998), and this was the inspiration
for Azad’s later work (Azad, 2014; Azad and Featherstone, 2013). These works assume
a rigid leg. However, in an experiment that was never published, Azad repeated the work
on single hops (Azad and Featherstone, 2013), but with the rigid leg replaced by a springy
one. Although the work was never published, an animation of his result can be viewed at
Featherstone (2021). It can be seen that Azad’s controller works very well with a springy leg.

The study in this thesis goes beyond Azad’s work by using a faster, more responsive
balance controller, and by investigating the spring’s effect on the controller’s ability to execute
large and fast movements after the landing transient has died away. The main objective of
having such a high-performance controller is to ensure the proper execution of motions that
drive a spring-loaded monopod robot to take-off stance, and landing phases.

1.2.2 Parameter Identification and High Order Nonlinear Observers

The parameter identification theory deals with the problem of efficiently extracting data
about the system dynamics from its measurements. Most of these strategies involve mainly
optimal parameter estimation (Jovic et al., 2016; Manns et al., 2017; Rizzello et al., 2016),
least-squares methods (Briot and Gautier, 2013; McFarland and Whitcomb, 2012; Riva et al.,
2017), Bayes methods (Green et al., 2015; Kreucher and Lakshmanan, 1999; Zhang et al.,
2015), Kalman filter extensions (Bolzon et al., 2002; Corigliano and Mariani, 2004; Iwasaki
and Kataoka, 1989), among others.

Parameter identification techniques for underactuated nonlinear systems have been
applied to systems like the mobile wheeled pendulum using Kalman filters (Roffel and



1.2 Review of The State Of The Art 9

Narasimhan, 2014), the Furuta pendulum (Garćıa-Alarćon et al., 2012) using the least
squared algorithm with Volterra polynomials (Ronquillo-Lomeli et al., 2016), and the single
and double pendulum based on harmonic balance-based algorithms (Liang and Feeny, 2006,
2008).

On the other hand, high-order sliding mode finite-time algorithms are used widely due to
their attractive features over other kinds of observers (Benallegue et al., 2006):

• Insensitivity (more than robustness!) to unknown inputs;

• Possibilities to use the values of the equivalent output injection for the unknown inputs
or parameter identification;

• Finite-time convergence to exact values of the state vectors.

Figure 1.4 Conventional and High Order Sliding Mode (HOSM) state space (Utkin et al.,
2020).

Figure 1.4 shows the trajectories driven by a conventional sliding mode (gray solid line with
a green arrow) and by a high-order sliding mode (red solid line) controllers with the vector
variable σ , σ̇ . The high-order sliding mode controller reaches the manifold σ = σ̇ = 0 faster
than the conventional one.

HOSM observers have demonstrated their effectiveness by identifying mechanical pa-
rameters in combination with a recursive LS algorithm where the design of the non-linear
injection terms is based on the generalized super-twisting algorithm (STA) (Moreno and



1.2 Review of The State Of The Art 10

Osorio, 2012), leading to finite-time convergence (Davila et al., 2006; M’sirdi et al., 2006). In
Adetola and Guay (2008) the authors use STA and a non-recursive LS algorithm to identify
constant parameters in nonlinear systems (Boubaker and Iriarte, 2017). Benallegue et al.
(2006) applies a feedback linearization controller using a high-order sliding mode observer
for a quadrotor subject to parameter uncertainties and external disturbances. Through sim-
ulations, they demonstrated that the observer easily overcomes the system’s nonlinearities
by estimating the external disturbances, which are used as desired stability and robustness
properties in the global closed-loop system. Na et al. (2013) presents an adaptive control
framework for nonaffine pure-feedback nonlinear systems. Instead of using the classic back-
stepping approach, they employ a high-order sliding mode observer with finite-time error
convergence to estimate unknown states. Moreover, the observer worked with two adaptive
controllers to achieve tracking control and guarantee closed-loop system stability. Efimov
et al. (2012) improves the estimation accuracy of an interval observer applied to linear-
parameter varying systems by employing a high-order sliding mode method to an observable
subsystem (the main system is supposed to have non-detectable or non-observable parts) to
estimate the states and their derivatives. Ríos et al. (2012) presents different observers based
on high-order sliding mode techniques to reconstruct the continuous and discrete states of a
switched system in the presence of unknown inputs. Pilloni et al. (2015) uses a high-order
sliding mode observer with an injected term of the second and third orders of the sliding
mode controller to regulate the oxygen excess ratio of a proton exchange membrane fuel cell
to a suitable setpoint.

In general, the finite-time convergence is based on the adaptive control theory, requiring
to solve matrix-valued ordinary differential equations and check the invertibility property of
a matrix online (Polyakov and Fridman, 2014). This scheme allows the reconstruction of the
unknown parameters in finite-time (FT) provided that a given persistence of excitation (PE)
condition holds (Polyakov and Fridman, 2014). A well-known approach used to ensure the
PE condition in adaptive controllers is to add a bounded perturbation signal to the set-point or
trajectory, or even use it as the reference input, which in contrast may degrade the specified
regulation or tracking performance (Adetola and Guay, 2008).

The balance controller introduced in this work (Gamba and Featherstone, 2021) has
already demonstrated its capacity to control a spring-loaded monopod robot through fast
and large motions. Nevertheless, the controller relies on the continuous knowledge of the
force exerted by the spring located at the leg of the robot, and uncertainties on this estimate
can lead to poor performance and instability. In this regard, we demonstrate the feasibility



1.2 Review of The State Of The Art 11

of executing a high-performance task under uncertain or unknown spring parameters by
combining a HOSM observer with an injection term (Gamba et al., 2021).

1.2.3 Trajectory Optimization

The dynamic behavior required for achieving actions applied to body motions (Fang and
Pollard, 2003; Lee et al., 2002) has been studied to animate characters in video games
(Menache, 1999). The necessary trajectories that make up the motion can be obtained
using kinematic and biological models (that incorporate muscle models and other natural
considerations)(Anand et al., 2019; Jiang et al., 2019; Leiva et al., 2017), control models
based on energy minimization (Quinn and Zhai, 2018; Todorov and Jordan, 1998), and
data-driven models leveraging neuronal networks (Alsharif et al., 2015; Frintrop et al., 2010;
Itti et al., 2003). Majkowska and Faloutsos (2007) presents a method for creating complex,
multi-flip ballistic motions from simple, single-flip jumps. The authors commented that the
developed method uses a computational optimization algorithm to produce physically valid
results. Wooten and Hodgins (2000) describes a technique for generating motion transitions
for jumps, leaps, and somersaults by parametrizing individual basis behaviors. In this sense,
they designed a control system to connect the parametrized individual basis.

This behavior problem also exists when controlling robots at complex tasks (Schultz
and Mombaur, 2010), specifically at trajectory optimization (Toussaint, 2009a). In this
regard, the optimizer can control the system directly (Dierks and Jagannathan, 2011, 2012;
Vamvoudakis and Lewis, 2010) or obtain a command signal to be executed by a low-
level controller (Ibrahim et al., 2020; Lampariello et al., 2018; Quintero et al., 2013). Lin
et al. (2021) compares offline the performance of deep-reinforcement learning with model
predictive control in an adaptive cruise control design for car-following scenarios. The
results demonstrated that both solutions performed similarly when the prediction horizon
of the model predictive controller was sufficiently long to find a global solution. Kloeser
et al. (2020) presents a real-time control of 1:43 scale autonomous race cars using nonlinear
predictive control. The online controller allows the car to avoid obstacles, perform stop-and-
go maneuvers and run at low and high speeds.

Optimization strategies had also demonstrated its applicability in legged robots applica-
tions. Di Carlo et al. (2018) presents an implementation of a model predictive controller to
determine ground reaction forces for a torque-controlled quadruped robot. They performed a
convex optimization by simplifying the robot’s dynamics, finding a solution in one millisec-
ond. Although the optimal solution comes from a simplified model, the robot demonstrated



1.2 Review of The State Of The Art 12

robust locomotion at different gaits and three-legged gaits at a speed of three meters per
second. Nguyen et al. (2019) presents a methodology for implementing an optimized jumping
behavior on quadruped robots. The strategy starts by obtaining an optimized trajectory. Then,
the motion is followed by using a high-frequency tracking controller and a robust landing
controller to complete the jump. Tian et al. (2021) presents an optimization framework
for upward jumping motion using quadratic programming. The scheme covers the offline
trajectory optimization and online tracking controller to produce the act. The Simulation
results show a three-link robot of 43.5kg performing a jump of 16.4cm height. Fan et al.
(2020) addresses the motion planning problem of a free three-link robot during the in-air
motion by using a homotopy method that deforms an arbitrary path connecting the initial and
final states. The path deformation is performed using geometric heat flow, and it’s defined by
a Riemannian metric encoding the system dynamics and state constraints. Xiong and Ames
(2020) presents a sequential motion planning method for generating somersaults on bipedal
robots equipped with a flywheel mechanism. The authors use the bipedal robot "Cassie"
with a flywheel mounted at the top of its pelvis to increase the inertia at its upper body and
increase the capability to control the momentum.

In this sense, different works have introduced software solutions for obtaining optimal
trajectories. Chen et al. (2020) introduces an optimal control scheme for a hybrid SLIP model
to be applied in rapid trajectory optimization like walking or running. Hereid and Ames
(2017) presents a software package called "FROST" to model dynamic behaviors using the
hybrid zero dynamics framework (Ma et al., 2016). The software has been used in different
robots to produce walking and running behaviors (Hereid et al., 2016b; Reher et al., 2016).
Koenemann et al. (2019) presents a software framework for modeling and solving offline
optimal control problems. Fevre et al. (2020) show’s a CasADI (Andersson et al., 2018)
based optimization package to efficiently solve gait optimization problems. Verschueren
et al. (2018) presents "acados", a software package for model predictive control focusing on
computational efficiency by using algorithms written in C.

Most of the commented optimization strategies have demonstrated their success in finding
motion profiles. Nevertheless, finding motions (hops, leaps, somersaults, etc.) involving
motion trajectories to be tracked by a controller in a real robot requires an optimization
framework with the following features:

• Allow event-based optimization. Time-based optimization approaches are not the best
choice when finding a motion conditioned by discrete actions (contact and non-contact
with the ground), similar to hops. The event-based feature allows us to determine the



1.2 Review of The State Of The Art 13

end of the maneuver to be determined by an event rather than a specific time duration.
In this kind of application, the task’s duration is unknown as the motion profile.

• Accurate solutions. As previously commented, many optimization frameworks suc-
cessfully generate motions for gaming applications that don’t need to be very realistic.
In robotics, other approaches use an ordinary-differential equation solver with the
optimizer to ensure that the solution complies with the system dynamics. Solutions of
this kind demand a lot of execution time. In this sense, orthogonal direct collocation
methods minimize the execution time by making the problem’s formulation more
sparse, which is exploited by a solver.

• Computationally cheap solution. Many approaches require lots of computational power
and or execution time for solving problems of this kind. The ideal approach should
exploit the system’s mathematical model to find the solution rather than treating the
optimization problem as a black box.

• Scalability. As commented, by using the mathematical model of the system, it is
possible to obtain a cheaper solution in terms of computational resources. Now, finding
this full mathematical description can be difficult and time-consuming for complex
mechanisms. In this sense, the appropriate scheme should be able to deduce this
full mathematical model by providing a simpler representation of the dynamics and
kinematics of the robot.

• Solve Multi-phase optimizations. Solvers like IPOPT (Wächter and Biegler, 2006)
require twice continuously differentiable functions for describing the problem’s ob-
jective and constraint functions. In this regard, hybrid trajectory problems relate to
applications with discontinuities like transitions from flight to stance and are generally
implemented in a single optimization problem with multiple phases.

In this work, we use an optimization framework that meets the commented requirements
for finding motion trajectories.

1.2.4 Inertia Measurement Unit (IMU) sensors and Legged Systems

As commented in section 1.1, this work is related to the development and control of the
Skippy robot. In this regard, testing the capability of different IMU sensors available on
today’s market is necessary to explore their performance in hopping activities.



1.2 Review of The State Of The Art 14

IMUs are electronic devices containing accelerometers, gyroscopes, and sometimes
magnetometers. The accelerometer measures the apparent acceleration, which is the sum
of the actual acceleration and the effect of the gravitational field. In theory, it is impossible
to separate these two effects. However, It becomes possible by making certain assumptions
about the motion. If these assumptions fail, the IMU’s estimate of which way is ’up’
becomes inaccurate. In this regard, the accelerometer’s measurements can be used to
compute attitude, the gyroscope measurements (angular velocity) can be used to calculate
the change of orientation using numerical strap-down integration (Nazarahari and Rouhani,
2021). Although the devices that only use accelerometers and gyroscopes are unaffected by
external magnetic fields around the apparatus, this sensor’s combination may not be sufficient
to increase the measurements accuracy due to the sensor’s noise and gyro’s well-known drift
issue (Ahmad et al., 2013). In a magnetically neutral setup, the magnetometer measures the
geomagnetic field, which is used to estimate the yaw angle.

In this sense, Attitude and Heading Reference Systems (AHRS) uses the IMU measure-
ments and combines them with different sensor fusion algorithms that have been proposed in
the literature (mainly based on the Kalman filter) to obtain accurate and reliable estimations
(Caron et al., 2006; Li and Wang, 2013; Mirzaei and Roumeliotis, 2008). Their history
began in the 1930s, constrained to large-scale applications due to their size, cost, and power
consumption. IMU’s used in robotics are commonly based on micro-electromechanical
system technology, and unfortunately, low-cost units are usually affected by non-accurate
scaling and zero biases (Tedaldi et al., 2014). In the literature, the Attitude and Heading
Reference Systems are generally known as IMUs, and we’ll also refer to them as IMUs.

IMUs are present in several applications in quadcopters, unmanned vehicle navigation,
robotics, human motion tracking tasks, and medical prostheses; by their capability of esti-
mating a body’s specific orientation; and angular rate. As previously commented, the IMU’s
internal processor must make assumptions about the nature of the motion to estimate the grav-
itational field, and therefore which way is ’up’. These assumptions are not always available
for the public, and therefore, the performance of the IMU subject to hopping/running motion
is unknown. In contrast to rovers and drones, legged robots are subject to a series of support
phases and flight phases in order to jog, trot, hop or run; specifically, a monopod robot
experiences more intensive accelerations at these contact and non-contact phases (bouncing)
by producing leaps and hops for moving along the ground. Consequently, the study of how
well these sensors perform in such bouncing conditions is critical for the proper operation of
robots of this kind. Nevertheless, the bouncing behavior is not limited to only robotics appli-
cations, Zhao et al. (2016) presents a systematic methodology combining multidomain hybrid



1.3 Goals and Objectives 15

systems and optimization-based controllers to achieve human-like multi-contact prosthetic
walking on prostheses. The authors used the IMU system to capture the human locomotion
response to be reproduced by the prosthetic device. Schmutz et al. (2020) shows a model to
estimate the horse speed per stride using only one IMU mounted in the saddle pommel (the
rounded knob on a horse’s saddle that a rider grips with one hand) close to the horse’s withers
(the ridge between the shoulder blades of an animal) without using a sensor at the limb to
reset the error at each cycle. The author claimed that the proposed solution overcomes the
setup constraint imposed by GPSs or 3D optical motion capture (badly influenced by the
presence of obstacles and cannot be used indoors, although the optical motion capture can
be used indoors. Benson et al. (2019) explores the possibility of establishing a stable gait
pattern for twelve different human runners by using a single IMU attached to the runner’s
wrist. The authors emphasize that these running patterns may provide real-world indications
of alterations in running biomechanics due to factors such as fatigue, performance, and injury
status.

In robotics, IMU acceleration estimates are frequently corrupted by noise and drift. Such
drifts can often be corrected by performing a zero-velocity update, which is unfeasible in
some applications (Lew et al., 2019). Li et al. (2014) presents a three-dimensional model of
a quadruped robot with six degrees of freedom at the torso and five degrees of freedom at
each leg executing a 3D trotting gait. The IMU (mounted on the robot’s torso) experienced a
severe drift at the yaw signal during the experiments. The authors believe that this drift was
caused by the magnetic field excited by the motor in the treadmill. In humanoid applications,
high-quality measurement of the floating base orientation can be achieved with an IMU,
but achieving high-precision positioning with low drift remains a significant challenge.
Kuindersma et al. (2015) describes different optimization strategies and a state estimator
to execute walking over non-flat terrain with the Atlas humanoid. The authors used an
IMU mounted on the pelvis to obtain the pelvis’s pose and twist. To reduce the drift of the
robot measurements, they used an inertial and kinematic estimator but, it was unsuitable for
accurate walking over tens of meters. They finally added a LIDAR to achieve the task.

1.3 Goals and Objectives

This work’s main objective is to explore the feasibility of hopping, landing, and balancing
with a springy leg monopod in the presence of uncertainties at the spring parameters. The key
idea is to develop a balance controller capable of accurately controlling the robot in executing
fast trajectory tracking; and an optimization tool for trajectory optimization applications. The



1.3 Goals and Objectives 16

scientific objectives regarding the theoretical aspects in short- and long-term scenarios, are
the following:

• Develop a balance controller able to control the motion of spring-loaded mopods while
balancing.

• Develop a strategy to deal with uncertainties at the spring parameters applied to motion
tracking without compromising the balancing performance.

• Develop an approach to explore the feasibility of launching into and landing from high
hop motions with such robot.

• Investigate the IMUs orientation estimation when subject to continuous bouncing
applications.

1.3.1 Methodology

The used methodology consisted in identifying possible ways to achieve the commented
objectives and reviewing the state-of-the-art to find the most suitable strategies to be used.
Then, the most relevant approaches were chosen to be improved and provide a better solution.

The balance strategy that demonstrated the best performance consisted in neglecting the
spring’s force at the controller’s plant. This force is only considered when calculating the
actuation torque to be sent to the robot. This setup showed a certain kind of robustness to
uncertain spring parameters (commented in subsection 4.4.3). Subsequently, the nonlinear
parameter identification approach demonstrated to be a more suitable solution for this specific
scenario than adding a robustness term to the control law by guaranteeing the persistent
excitation condition by performing balance and trajectory tracking tasks.

The trajectory optimization strategy started with a semi-optimized version of the reverse-
time technique employed by Azad and Featherstone (2013). This was followed by a multiple
shooting approach, which demonstrated some significant improvements but was computa-
tionally expensive. It was necessary to develop a software package to compute an symbolic
description of the robot’s dynamics to be used by the optimizer (IPOPT). The symbolic
representation was then used to perform an event-based optimization, rather than a time-based
one, such as performing a leap, in which, the take-off center of mass (CoM) velocity is
known, but the instant of take-off and the necessary motion to achieve it are unknown. The
final version of the trajectory optimization algorithm supports these features by employing
orthogonal collocation approaches to find solutions more quickly.



1.4 Contribution 17

The general workplan suffered various modifications given that it was not possible to
have the Skippy robot in time to achieve the objectives imposed at the beginning of this study.
Then, the scope moved to explore the scenario of using a passive springy leg to balance and
execute hops, which demonstrated some challenges that were not anticipated.

1.4 Contribution

In this work, a high-performance balance controller is developed to control a spring-loaded
monopod robot while balancing and tracking a fast motion. Moreover, the controller can
follow a trajectory referenced to:

• The actuated joint’s position.

• The absolute torso’s angle with respect to the ground (x-axis).

• The velocity of the robot’s CoM to produce a hop or a leap.

This new controller proves that the balance controller in Featherstone (2017, 2018) still
works when the leg is springy, although the performance is not as good as with a rigid leg,
but the position and velocity variables of the passive joint have to be taken into account
when calculating the state variables needed by the balance controller. There is an important
distinction between the work presented here and that presented in Featherstone (2017,
2018) on the topic of balancing in the presence of other motions. In the earlier work, the
other motions were assumed to be known in advance, and executed accurately by a motion
controller, so that the balance controller could be told in advance what the movements
would be, and hence make the robot lean in anticipation of the balance disturbances that
these motions were expected to cause. In contrast, a passive springy joint is considered
here, which moves in response to the actions of the balance controller, and therefore causes
unanticipated disturbances. The balance controller presented here is also able to to bring
improved balancing, in-flight motion and landing capabilities to the Skippy Project, in order
to cope with highly athletic tasks like performing four-meter hops, robust 3D balancing and
recovering from an unexpected breakage at landing (Gamba and Featherstone, 2021).

Another contribution of this thesis concerns the design of a scheme to estimate the
spring parameters. Such a problem can arise when the robot is landing, and sufferers spring
failure due to the action of an excessive force when the foot touches the ground. In this
scenario, the spring parameters are uncertain, and the strategy needs to achieve the parameter
identification without compromising the controller’s performance in terms of balancing and



1.5 Outline 18

tracking a motion. Moreover, the robustness and stability of the balance controller described
in Featherstone (2017) are evaluated by performing a fast sequence of motions where the
legged robot is capable of tracking a trajectory while balancing around a support point.

This thesis also extends and generalizes the application of the work presented in Azad
and Featherstone (2013) for producing hops and balance with a monopod robot. This study
uses a modified version of the dynamic software package developed in Featherstone (2008)
to obtain an symbolic representation of the equations of motion for any robot to be used for
nonlinear trajectory optimization applications with casADI software (Andersson et al., 2018).
The strategy formulates the problem as a nonlinear programming (NLP) problem, where the
motion profile is obtained by minimizing a given objective and respecting the imposed linear
and nonlinear constraints. Next, the whole motion is reproduced on a dynamic simulation
by using the commented balance controller (Featherstone, 2017; Gamba and Featherstone,
2021). Performing the complete act by using a launch controller allows us to incorporate
extra estimation and robust algorithms to ensure the motion success, like the spring estimation
strategy previously presented (Gamba et al., 2021).

Finally, we also explore the orientation response of IMUs subject to continuous hopping
activities. These kinds of motions are mainly present in legged robots at running, walking,
and trotting gaits.

1.5 Outline

This work is organized according to the following chapters:

• Chapter 2: Introduces the optimization framework developed used for finding motion
profiles. The development of the framework is compared with multiple shooting and
collocation methods. The chapter also presents a launch controller applied to a two-
degrees of freedom robot and compares the results with those obtained in Azad and
Featherstone (2013).

• Chapter 3: Presents a trajectory optimization study based on the optimization frame-
work developed in chapter two to explore the landing capabilities of a spring-loaded
monopod robot with an actuator consisting of a DC motor and frictionless gear. The
study presents the motion response of using a linear and nonlinear spring at the robot’s
leg.

• Chapter 4: Exhibits the design of the balance control theory commented in Feather-
stone (2017) applied to spring-loaded robots. The chapter expands the results presented



1.5 Outline 19

in Gamba and Featherstone (2021) and introduces the necessary modifications to con-
trol the robot’s torso absolute orientation rather than controlling the actuated joint
position. Finally, the chapter presents a sensitivity analysis of the launch controller
when a spring-loaded robot is subject to uncertain spring parameters.

• Chapter 5: Introduces an estimation scheme based on a high-order sliding mode
observer to estimate the spring parameters after a partial failure. The chapter presents
a mathematical stability proof, and its performance is validated through an absolute
motion-tracking task.

• Chapter 6: Presents the apparatus built to perform the IMU’s bouncing test. The
chapter also presents the results obtained from the commented three IMU’s subject to
continuous bouncing with a maximum acceleration of 4Gs for around three minutes.
The results demonstrated that orientation obtained from the IMU’s drifts during the
experiment.



Chapter 2

Hopping

For acrobats and athletes, the success or failure of a maneuver depends on precise and
accurate movements. In this sense, strategies for finding optimized ways of executing a task
and approaches to implement them in real systems are still an open problem in robotics.
Launching into a hop without considering the take-off velocities can cause head landings or
crashes, as commented in Pope et al. (2018). Xiong and Ames (2020) present a sequential
motion planning method for generating somersaults on bipedal robots; the authors modified
the robot Cassie by adding a flywheel at the top of its pelvis to amplify its capability to control
the momentum while flying. Additionally, Kollarčík (2021) used a sequential optimization
approach for finding a launching motion for a vertical hop with a biped wheeled robot and
concluded that by employing this strategy, it is necessary to manually adjust the motion
duration T until finding the best instant, which is highly inefficient.

This chapter presents a study about the launching (take-off) motion before a leap. Azad
and Featherstone (2013) accomplishes the launching problem by finding a motion profile
with a Time-Reversal Technique (TRT) and designing a controller capable of repeating this
motion to perform a launching motion in a real robot. They assume that the motion needed to
bring the robot to a still balanced configuration from a landing (supposing a plastic collision
between the ground and the robot’s foot) can be reversed and used to produce a take-off. Here
this strategy is improved by formulating the motion profile as a Boundary Value Problem
(BVP) and optimizing it as a Non-linear programming problem (NLP). The balance controller
is improved based on the balance theory presented in Featherstone (2017).

Section 2.1 introduces a detailed description of the robot model used for computing the
launching motion with the new method and the strategy presented by Azad and Featherstone
(2013).



2.1 Robot Model 21

Section 2.2 explains how the conservation of momentum law (while the robot is flying
after taking off the ground) needs to be considered to obtain the launching configuration.
Moreover, the problem is treated as a BVP and implemented as an NLP problem to exploit
globalization strategies developed for NLP algorithms simplifying the incorporation of
dynamic equality constraints, like

z(i) = z(i−1)+
∫ ti

ti−1

żdt, (2.1)

where z is the system’s state at a time step i; and mechanical inequality constraints, as

zm ≤ x ≤ zM (2.2)

where the system state is bounded by a region between zm and zM limits.
Section 2.3 provides a brief introduction of the balance problem properties and design

of the controllers presented in Azad and Featherstone (2013) and Featherstone (2017). The
latter gives the basis of the launch controller to produce the take-off.

Section 2.4 presents the design of the launching controller, and it’s compared with Azad’s
controller in terms of accuracy and performance.

Our main objective is to reproduce the results obtained by Azad and Featherstone (2013)
for producing a launching motion and compared them with the strategy proposed in this
chapter in terms of accuracy and applicability.

2.1 Robot Model

The robot model consists of a simplified monopod two-link mechanism as shown in Fig. 2.1.
Links 1 and 2 are the leg and torso, respectively. Joint 1 is a passive revolute joint that models
the contact between the foot and ground, and joint 2 is the actuated joint. Table 2.1 shows the
links’ mass and length parameters used in Azad and Featherstone (2013); and the symbols
mi, li, and Ii appearing below denote the mass, length, and rotational inertia about the center
of mass (CoM), respectively, of link i. The joint variables are q1 and q2. When all joints

Link Mass Length CoM Inertia at CoM
(i) (kg) (m) (m) (kgm2)
1 2 0.5 0 0
2 14 0.75 0.375 1.96875

Table 2.1 Length and inertia parameters of the robot shown in Fig.2.1
.



2.1 Robot Model 22

Figure 2.1 Robot model. q2 is negative in this configuration, and has been drawn as q2 +2π .

are zero, the leg is vertical, and the torso is horizontal out to the right. Positive motion of a
revolute joint i rotates link i counter-clockwise relative to link i−1; In Fig. 2.1, q1 is positive
and q2 is negative.

The robot’s dynamics is described by the equation:[
H11 H12

H12 H22

] [
q̈1

q̈2

]
+

[
C1

C2

]
=

[
0
τ2

]
, (2.3)

where Hi j are the elements of the joint-space inertia matrix, q̈1 and q̈2 are the joint acceleration
variables, C1 and C2 elements containing gravity, Coriolis and centrifugal forces, and τ2 is
the torque at the actuated joint. The matrix is symmetric, which is why H12 appears twice.
The elements of the joint-space inertia matrix and C vector can be obtained by

H11 = m1 l2
c1 + I1 +m2

(
l2
1 + l2

c2 +2 l1 lc2 cos(q2)
)
+ I2 ,

H12 = m2 l1 lc2 cos(q2)+m2 l2
c2 + I2 ,

H22 = m2 l2
c2 + I2 ,

C1 = −m2 l1 lc2 sin(q2)
(
q̇2

2 +2 q̇1 q̇2
)
+G1 ,

C2 = m2 l1 lc2 sin(q2) q̇2
1 +G2 ,

G1 = (m1 lc1 g+m2 gl1) sin(q1)+m2 glc2 sin(q1 +q2) ,

G2 = m2 lc2 g sin(q1 +q2) .



2.2 Launching Trajectory Search 23

where g is the gravitational force, lc1 and lc2 are the positions of the link’s CoM to its
respective link’s frame, and G1 and G2 denote the effect of g in links one and two, respectively.

2.2 Launching Trajectory Search

Optimization strategies had been extensively used by Dinev et al. (2020); Fevre et al. (2020);
Hereid et al. (2016a); Kloeser et al. (2020); Kuindersma et al. (2016); Pugh and Martinoli
(2007); Tian et al. (2021); Toussaint (2009b); Zhang et al. (2013) for solving motion planning
problems. In this sense, the motion search exercise is solved by employing the system
dynamics commented in the previous section as BVP of a differential-algebraic equation
(DAE).

Differential equations commonly model the evolution of the dynamics of physical systems
over time. In cases where the system’s states are also subject to limitations (kinematic
and dynamic), the mathematical model also contains algebraic equations to express these
restrictions. In this regard, DAE equations involve an unknown function and its derivative in
the general form:

f (t,z, ż) = 0, t0 ≤ t ≤ t f , (2.4)

where z = z(t), the unknown function, and f = f (t,z, ż) have N components denoted by zi

and fi for i = 1,2,3, ...,N. For an initial value problem, the solution needs also to satisfy the
condition z(t0) = z0, and for a boundary value problem, the solution needs to satisfy a set
of constraints in the form of b(z(t)) = 0. The DAE’s solution method will depend on the
modeled structure.

In this section, we’ll use a class of DAE named the semi-explicit DAE or ordinary system
equation (ODE) with constraints. In this sense, the dynamic model explained in equation
(2.3) takes the form:

q̈ = H−1(τ −C) = f (q, q̇,τ2) 0 = b(t,q, q̇,τ2), (2.5)

where the model is discretized over a time t ∈ (tk−1, tk] in time periods k = 1, ...,NT . Where
a certain control profile is found by evaluating the ODE system and satisfying the imposed
boundaries (Kunkel et al., 2006).

Consequently, the problem is implemented as an NLP problem to facilitate the addition
of the following constraints:



2.2 Launching Trajectory Search 24

• To guarantee the system continuity over the optimization, we introduce the following
nonlinear dynamic equality at every step

q̇(i) = q̇(i−1)+
∫ ti

ti−1

f (q, q̇,τ2)dt, q(i) = q(i−1)+
∫ ti

ti−1

q̇dt; (2.6)

• To bound the operating space of the joints positions due to the robot’s kinematics,
we implement mechanical inequalities qmin ≤ q ≤ qmax. In presence of motors at the
joint’s axis, the joint’s velocity can also be restricted to a maximum value |q̇| ≤ q̇max;

• Initial state equalities/inequalities are used to ensure that the optimal solution starts at
a specific value or under a specified region;

• Like initial equalities/inequalities, terminal state equalities/inequalities are used to
specify that the solution should finish in a specific value or under specific region.

ODE systems can generally be solved using direct and indirect techniques. Direct
approaches are usually used given because they are simpler to set up and solve (von Stryk
and Bulirsch, 1992) than indirect approaches, where it is necessary to construct the adjoint
equations and their gradients to obtain a more accurate metric for the solution (Cervantes and
Biegler, 2009). Direct methods split into sequential and simultaneous methods. Sequential

or direct single shooting methods solve the ODE model in an inner-loop (simulation), and the
discretized control input τk is updated out of the simulation loop using an NLP solver. The
outer-loop control update can use an analytical (direct sensitivity equations, the integration of
adjoint sensitivity equations) or numeric sensitivity analysis of the ODE model to calculate
the objective function gradient concerning the control input (Biegler, 2010). These kinds
of strategies are moderately easy to construct but require multiple integrations of the ODE
system, which can be computationally costly and inefficient (Kollarčík, 2021).

Simultaneous methods deal with a full discretization of the state, control profiles, and
state equations. This discretization can be done using collocation or a Runge–Kutta method.
This transcription doesn’t require any calculation with ODE solvers, and leads to a large NLP,
and needs to be handled with large-scale NLP solvers (Biegler, 2010).

Direct Multiple Shooting (DMS)

Between sequential and simultaneous methods, direct multiple shooting (DMS) approaches
are capable of handling unstable DAE systems (not guaranteed by sequential schemes
(Biegler et al., 2002)). In this context, the motion search is first achieved by employing a



2.2 Launching Trajectory Search 25

DMS method, where the control policy and states are discretized in NT periods. The system’s
dynamics are satisfied by imposing the commented constraints and integrating the system
dynamics over each step k. The solution accuracy of

z(ti) = z(ti−1)+
∫ ti

ti−1

f (z(t), t)dt, (2.7)

will depend of the robustness of the integration method implemented. Easier integration
techniques like Euler (Hindmarsh et al., 1984) clearly demand less computational effort than
more complex methods like Runge-Kutta (Hairer and Wanner, 1996) or a DAE solver by
compromising the solution’s accuracy. Relaxing the system’s dynamic constraints by using
simpler solvers to obtain an "initial guess" is a common optimization trick that may help the
solver avoiding getting stuck in the local minima. A more elaborate integration method is
later used to redefine the "initial guess" (Biegler, 2010).

Collocation Methods

Direct Collocation Methods (DCMs) also known as full-simultaneous methods, approximate
the continuous functions of the optimization problem in polynomials. In this way, this
approach substitutes the integration method used in DMS by algebraic equality constraints
enforced at the collocation points. In other words, it uses an implicit solver that satisfies the
system’s dynamics at the collocation points instead of an explicit integrator. Trapezoidal
or Hermite-Simpsons methods with relativity low-order polynomials are often used to
implement the direct collocation method implicit integrator. As expected, the new extra
collocation constraints increase the NLP problem dimension and its sparsity. Modern NLP
algorithms exploit the problem’s sparsity to reach solutions faster. Typical direct collocation

methods cannot guarantee the system’s accuracy (eq. (2.7)) as using an Ordinary-Differential

Equations (ODE) solver (like in DMS). A more complex variation of direct collocation

methods are Direct Orthogonal Collocation (DOC) methods (Finlayson, 1980) which employ
high-order polynomials. By considering the correct sets of orthogonal polynomials, it is
possible to increase the accuracy’s order of the collocation scheme (the result is still an
approximation to the true ODE solution) (Biegler, 2010). A more detailed explanation of
orthogonal polynomials is found in Hale and Townsend (2013); Trefethen (2012).



2.2 Launching Trajectory Search 26

Section Organization

Subsection 2.2.1 briefly discusses the calculation of the launch configuration at the instant
when the robot lifts off the ground. Subsection 2.2.2 comments about the formulation of the
BVP as an NLP problem and how this NLP is solved using DMS and DOC methods. Finally,
subsection 2.2.3 presents a comparison between the implemented schemes and the TRT in
terms of dimension, iterations, and convergence time.

2.2.1 The Launching Instant

The robot configuration at the instant when the robot takes off the ground is named the
launching state. This state is correlated to the CoM’s linear velocity with respect to the
coordinate frame and the centroidal angular momentum cL. The desired take-off linear
velocities along the x and y axes are denoted by ċxd and ċyd , respectively, and can be obtained
using parabolic-based physics equations,

ċxd =
hx

Tf
ċyd =

Tf g
2

hy =
ċ2

yd

2g
(2.8)

where hx is the hop length hx, hy the maximum height, and Tf the flight time. These equations
are simplified by using a polar notation, where the launch velocity is denoted by v=

√
ċ2

x + ċ2
y

with an angle 0 ≤ θ ≤ π/2 in rad with respect to the ground (x-axis). In this sense, an angle
of θ = π/2rad will result in a vertical hop with zero velocity along the x-axis. During the
launching motion, small values of θ ≤ π/4rad may cause a high reaction force along the
x-axis that exceeds the friction cone resulting in a slip. To produce a traveling hop hx ̸= 0,
the launching state is next rewritten in terms of the hop length hx

vd =

√
hx g

sin(2θd)
,

[
ċxd

ċyd

]
= vd

[
cosθd

sinθd

]
, (2.9)

where vd is the desired launching velocity at an angle θd . In this context, the new equation
does not required to know in advance the flight duration Tf .

The desired centroidal angular momentum is more complex to obtain than the linear ve-
locities because it is necessary to consider the robot’s motion during the flight and the desired
landing configuration. During the flight phase, based on the conservation of momentum’s
law, the robot can modify its rotational velocity by varying the mass distribution about the
CoM (given that the rotational momentum is constant during this phase). In this context, the



2.2 Launching Trajectory Search 27

landing configuration depends on the motion and the change of rotational velocity during the
flight. Now, assuming that the launching and landing configurations are barely similar and in
both scenarios the robot has the leg extended, that is the configuration where the robot has
less rotational velocity, a flight controller can execute smooth motions to correct the robot
pose prior to landing. In this sense, the solution will consist in obtaining the motion that
produces less rotation, so the robot can shrink during the flight to adjusts itself to the desired
touchdown configuration.

As the scope of this chapter is to compare the hopping strategy with the results obtained
by Azad and Featherstone (2013), we use the same robot and same launching states presented
in the paper.

The following subsection explains how to obtain the hopping motion profile by solving
an NLP problem. The problem is solved using the DMS approach and using two different
polynomials with the DOC method.

2.2.2 NLP Problem Formulation

The launching motion is implemented as an NLP problem, where the constrained parameter
optimization problem has nonlinear terms in its objective or constraints functions. In this
sense, it is necessary to define the problem constraints and the decision variables to control
during the optimization. This launching NLP problem implementation is done using Matlab
with the software package CasADI (Andersson et al., 2018) and the solver Interior Point
OPTimizer (IPOPT) (Wächter and Biegler, 2006) to minimize a given cost function J by
controlling the decision variables and satisfying the imposed constraints.

Once the problem is properly described and discretized in NT = 1500 steps to have
a small sampling time Ts = 0.001s according to the motion’s duration obtained in Azad
and Featherstone (2013) (1.525s). The NLP problem is formulated in initial constraints to
describe the starting state and conditions of the task to solve, loop constraints containing
a set of conditions evaluated every iteration of the optimization, and terminal constraints



2.2 Launching Trajectory Search 28

specifying the final requirements to achieve at the end of the task.

min
τ2,T

J =

T∫
0

wr τ2(t)2 dt +wt T (2.10)

subject to:

0.5s ≤ T ≤ 2s, (2.11)

initial constraints

q0 =
[
0 π/2

]⊤
, q̇0 =

[
0 0

]⊤
, (2.12)

loop constraints[
−π/2 −π/2

]⊤
≤ q(k)≤

[
π/2 π

]⊤
, |q̇(k)| ≤ ∞, (2.13)

|τ2(t)| ≤ τmax, (2.14)

q̇(k+1) = q̇(k)+
∫ tk+1

tk
f (q, q̇,τ2)dt, q(k+1) = q(k)+

∫ tk+1

tk
q̇dt, (2.15)

terminal constraints∣∣∣∣[ċx ċy

]⊤
−
[
1.1510 1.7157

]⊤∣∣∣∣≤ 1×10−3,
|cL+12.0995|

m
≤ 0.17. (2.16)

where the objective function (2.10) is in Bolza form combining a Lagrange term where there
isn’t a terminal cost and the second is the Mayer term, in which there is no running cost
(Kelly, 2017). The gains are wr = 0.25 and wt = 1000.

At the beginning of the optimization, the motion duration T is added as a control variable
and bounded in (2.11), where the maximum time is set a little bit bigger than the motion
duration obtained in Azad and Featherstone (2013) (1.525s). Then, (2.12) defines the initial
states of the system, where the robot starts in an upright position with zero velocity.

At the loop constraints, we define the operating regions for the positions and velocities
for the joints and the actuation torque. The positions and velocities of the joints are described
in equation (2.13) in rad and rad/s, respectively. The actuation torque is delimited by a
parameter τmax in equation (2.14) and its value will be discussed in next section. An extra
equation inserts the system’s dynamics commented in (2.3) as a constraint in (2.15) to ensure
the system’s continuity during the optimization. The following subsection will discuss the
employable methods to achieve this integration at every step k.



2.2 Launching Trajectory Search 29

Finally, the terminal constraint in equation (2.16) specifies the desired launching condi-
tions that need to be accomplished at the end of the motion to take-off. At the equation, cL

denotes the centroidal angular momentum of the whole robot, and m = 16Kg denotes the
total mass of the robot.

The subsequent subsection introduces a scheme to speed up the NLP solution by employ-
ing collocation methods combined with orthogonal polynomials. This modification makes
the formulation bigger by increasing the number of loop constraints and sparsity obtaining
an optimal solution faster.

2.2.3 Optimization Results

TRT DMS DOC-LG DOC-LGR

Number of Decision Variables - 7505 25505 25505

Number of Constraints - 6007 24007 24007

Number of Solver Iterations - 45 166 43

Cost Function Value - 1.923e+03 1.923e+03 1.923e+03

Execution Time (s) 0.65 58.91 70.98 20.16

Time per Iteration(s/it) - 1.3091 0.4276 0.4688

Launching Instant ( s) 1.5250 0.8728 0.8728 0.8728
Table 2.2 Comparison table between the following methods: (i) TRT, (ii) DMS, (iii) DOC
with Legendre-Gauss polynomial (DOC-LG) and (iv) DOC with Legendre-Gauss-Radau
polynomial (DOC-LGR).

The previously commented methods (DMS, DOC, and TRT) are used to produce a leap of 0.5
m with launching velocity v0 = 2.0657 m/s at θ = 0.5916 rads; with the robot described
in section 2.1. DMS procedure executes the state integration of equation (2.15) by using an
explicit 4th order Runge Kutta integration method. While the DOC approach uses an implicit
Runge-Kutta with an orthogonal polynomial like Legendre-Gauss (LG), Legendre-Gauss-
Radau (LGR), and Legendre–Gauss–Lobatto (LGL) polynomials. Garg et al. (2010) presents
a study using the commented orthogonal polynomials (Legendre-Gauss, Legendre-Gauss-
Radau, and Legendre-Gauss–Lobatto) for trajectory optimization problems. The authors
noticed that using Legendre-Gauss–Lobatto polynomials adds constant oscillations about
the true solution in contrast with Legendre-Gauss and Legendre-Gauss-Radau polynomials
which converge faster without oscillations.

In this sense, TRT, DMS, DOC-Legendre-Gauss, and DOC-Legendre-Gauss-Radau
approaches are selected to obtain the launching motion with a maximum torque of τmax =



2.2 Launching Trajectory Search 30

0 0.5 1

-10

-5

0

k
g
-m

2
/s

0 0.5 1

0

0.5

1

m
/s

0 0.5 1
-1

0

1

m
/s

0 0.5 1

-0.2
0

0.2
0.4
0.6

ra
d

0 0.5 1
0

1

2

ra
d

0 0.5 1

0

50

100

150

N
m

0 0.5 1

sec

-4
-2
0
2

ra
d
/s

0 0.5 1

sec

-10

0

10

ra
d
/s

Figure 2.2 Optimized launching motion with a torque τ2 saturation limit at 150 Nm.



2.2 Launching Trajectory Search 31

0 0.5 1 1.5

-10

-5

0

k
g
-m

2
/s

0 0.5 1 1.5
-0.5

0

0.5

1

m
/s

0 0.5 1 1.5
-2

0

2

m
/s

0 0.5 1 1.5

0

0.5

1

ra
d

0 0.5 1 1.5

0

1

2

ra
d

0 0.5 1 1.5

0

50

100

N
m

0 0.5 1 1.5

sec

-4
-2
0
2
4

ra
d
/s

0 0.5 1 1.5

sec

-10

-5

0

5

ra
d
/s

Figure 2.3 Launching motion obtained with the TRT introduced by Azad and Featherstone
(2013)

300N. Table 2.2 compares the four strategies in terms of optimality and computer efficiency
on a Lenovo laptop with a Core i7-6500U CPU @ 2.5GHz and eight gigabytes of RAM. The
table demonstrates that the number of decision variables in the DOC methods increased more
than three times, and the number of constraints increased almost four times compared with
the DMS approach. As expected, the DOC approaches increased the NLP problem size by
implementing an implicit solver.

The DMS, DOC-Legendre-Gauss, and DOC-Legendre-Gauss-Radau approaches found
the same launching motion and minimized cost function at the end of the optimization. DMS
strategy took less time for finding the optimal solution than DOC-Legendre-Gauss, but the
DOC-Legendre-Gauss took three times more iterations than the DMS approach. On average,
each DOC-Legendre-Gauss iteration took three times less than the DMS iteration. According
to Biegler (2010), the Legendre-Gauss-Radau polynomial has better stability properties than
Legendre-Gauss, solving the problem with fewer iterations.



2.2 Launching Trajectory Search 32

0 0.5 1

-10

-5

0

k
g
-m

2
/s

0 0.5 1

0

0.5

1

m
/s

0 0.5 1

0

1

2

m
/s

0 0.5 1

-0.2
0

0.2
0.4

ra
d

0 0.5 1
0

1

2

ra
d

0 0.5 1

0

100

200

N
m

0 0.5 1

sec

-4
-2
0
2

ra
d
/s

0 0.5 1

sec

-5

0

5

10

ra
d
/s

Figure 2.4 Optimized launching motion with a torque τ2 saturation limit at 300 Nm.

DMS, DOC-Legendre-Gauss and DOC-Legendre-Gauss-Radau motion is presented in
figures 2.6 and 2.4. The optimized motion achieved the following values at the launching
instant: L =−14.7072 ċx = 1.1520 ċy = 1.7147. Figures 2.5 and 2.3 present the launching
motion obtained using TRT which turned out to take longer 1.525s than the optimized ones
0.8728s. Considering how TRT is constructed, the launching state is the same as the desired,
whereas, in the optimization approaches, the launching state is into the offset imposed at the
NLP formulation (equation (2.16)).

The optimized torque profile is smother than the obtained by TRT but required bigger
limits τmax to achive the motion. To achive a motion within the same torque range, the torque
limit is modified to τmax = 150Nm and the new optimized motion takes T = 0.9418s and
it’s presented in figures 2.2 and 2.7. The new torque profile now saturates to 150Nm at 0.83s
and it achieved the launching state cL =−13.8648Kgm2/s ċx = 1.1520 ċy = 1.7147.



2.2 Launching Trajectory Search 33

Figure 2.5 Launching motion obtained with the TRT introduced by Azad and Featherstone
(2013)

Figure 2.6 Optimized launching motion with a torque τ2 saturation limit at 300 Nm.

Figure 2.7 Launching motion obtained with a torque τ2 saturation limit at 150 Nm.



2.3 Balance Controller 34

2.3 Balance Controller

This section presents a brief outline of a balance control theory that is explained in detail
in Featherstone (2017, 2018), and which has its roots in earlier work in Azad (2014); Azad
and Featherstone (2013). This theory was developed with the objective of achieving balance
quickly and maintaining it in the presence of large fast motions. Moreover, it has been
demonstrated experimentally on a reaction-wheel pendulum (Driessen et al., 2019), on a
single-leg hopping robot (Yim et al., 2020), and it has been adapted to work on a quadruped
(González et al., 2020).

2.3.1 Balancing States

Assuming that the foot never slips, it is possible to design a momentum-based controller to
maintain the robot’s balance. Consequently, the center of mass of the robot along the x axis
is:

cx =− 1
m
(m1 lc1 sin(q1)+m2 (l1 sin(q1)+ lc2 sin(q1 +q2 −π/2))) (2.17)

As joint one q1 is un-actuated, gravity is the only force capable of producing a moment about
the support point, modifying the angular momentum of the robot about this point. If we
define L to be the angular momentum of the whole robot about the support point, then we
have:

L̇ =−mgcx, (2.18)

where m is the total mass of the robot, g is the acceleration due to gravity (a positive number),
and cx is the x coordinate of the robot’s center of mass (CoM). The expression −mgcx is the
moment of gravity about the support. The equation that follows directly from (2.18) is

L̈ =−mgċx, (2.19)

and the angular momentum is described as:

L = H11 q̇1 +H12 q̇2, (2.20)

which follows from a special property of joint-space momentum that is proved in the appendix
B of Featherstone (2017).

The following two subsections explain two different approaches to solve the balance
problem for the monopod robot introduced in section 2.1 with the schemes presented in Azad
and Featherstone (2013) and Featherstone (2017), respectively.



2.3 Balance Controller 35

2.3.2 PID Momentum Balance Controller

Azad and Featherstone (2013) balance controller uses the previously commented momentum
states in a PID controller with an additional term τd to control the q2. The controller
calculates the actuation torque without any extra calculations or dynamic compensations.
The system’s output is:

τ2 = kdd L̈+ kd L̇+ kL L+ τ
d (2.21)

where kdd ,kd and kL are controller gains, and τd is the necessary holding torque at the actuated
joint for a desired balanced configuration. The effect of τd is to make this configuration an
equilibrium point of the closed-loop system. If qd

1 and qd
2 are the joint angles in the desired

configuration, τd is calculated as:

τ
d = m2 lc2 cos(qd

1 +qd
2). (2.22)

The controller’s gains calculation and stability proof can be found in Azad and Featherstone
(2013).

2.3.3 Balance Theory

The methodology starts by adding a fictitious prismatic joint q0 joint (in the x-direction)
between joint one and the ground. Joint q0 never moves and does not affect the robot’s
dynamics. However, it increases the size of the equation of motion to:H00 H01 H02

H01 H11 H12

H02 H12 H22


 0

q̈1

q̈2

+

C0

C1

C2

=

τ0

0
τ2

 (2.23)

and the extra terms are denoted by:

H00 = m1 +m2,

H01 = −m1 lc1 cos(q1)−m2 (l1 cos(q1)+ lc2 sin(q1)) ,

H02 = −m2 lc2 cos(q1 +q2 −π/2) ,

C0 = sin(q1)(m1 lc1 +m2 l1) q̇2
1 +m2 lc2 sin(q1 +q2 −π/2)(q̇1 + q̇2)

2 .

By adding the extra joint q0, it is possible to recall the special property of joint-space
momentum used in equation (2.20) to obtain equations linking the joint-space dynamics with



2.3 Balance Controller 36

the motion of the CoM:
mċx = H01 q̇1 +H02 q̇2 =−L̈/g, (2.24)

then, the ground reaction force acting on the robot along the x-axis is mc̈x, which is

τ0 = mc̈x =−
...
L/g. (2.25)

Next, combining (2.19), (2.20) and (2.24) gives[
L

L̈

]
=

[
H11 H12

−gH01 −gH02

][
q̇1

q̇2

]
(2.26)

which gives a direct mapping between the robot’s joint velocities and the momentum states L

and L̈; by assuming that the matrix is invertible (which it will be if the robot is physically
capable of balancing), equation (2.26) is solved into:[

q̇1

q̇2

]
=

1
gD

[
−gH02 −H12

gH01 H11

][
L

L̈

]
(2.27)

where
D = H01 H12 −H11 H02. (2.28)

Consequently q̇2 can be expressed as

q̇2 = Y1 L+Y2 L̈ (2.29)

where
Y1 =

H01

D
, Y2 =

H11

gD
(2.30)

Y1 and Y2 vary depending on the robot’s configurations q, and can be expressed as simple
functions of two physical properties of the mechanism: its time constant of toppling, Tc,
which measures how quickly the robot falls if the controller does nothing, and its velocity
gain (Featherstone, 2015, 2016), which measures the effect on centre of mass (CoM) velocity
of a unit change in the velocity of the actuated joint. The formulae are

Y1 =
1

mgT 2
c Gv

Y2 =− 1
mgGv

(2.31)



2.3 Balance Controller 37

Figure 2.8 Plant describing the dynamics of balancing. qa is the actuated joint variable,
which is q2 in Fig. 2.1.

where Gv is the linear velocity gain as defined in Featherstone (2016). Tc appears again in
the system’s open-loop transfer function and it’s need to improve the controller’s tracking
performance which is commented later.

Controller Design

Bringing the open-loop system to the formalism:

ẋ = Ax+Bu y =Cx (2.32)

we have:
...
L
L̈

L̇

q̇2

=


0 0 0 0
1 0 0 0
0 1 0 0
Y2 0 Y1 0




L̈

L̇

L

q2

+


1
0
0
0

u y =
[
0 0 0 1

]


L̈

L̇

L

q2

 (2.33)

The system can be classified as Linear Variant (LV) system because Y1 and Y2 vary according
to q. Then, it is possible to analyze the system’s internal stability or Bounded-Input, Bounded-

Output (BIBO) stability. BIBO stability is the system property that any bounded input yields
a restricted output. In other words, as long as the input signal has an absolute value less than
some constant, it is possible to guarantee an output with an absolute value less than some
other constant (Chen, 1998).

Calculating the sytem’s transfer function by

y(s) =C(sI −A)−1B (2.34)



2.3 Balance Controller 38

it is obtained,

q2(s) =
Y2 (s2 +1/T 2

c )

s4 u(s); (2.35)

And it is possible to see that the system has two zeros at ±1/Tc and one pole at 0, which
means that the system is not stable in open-loop. The end of this section comments on the
strategy used by Featherstone (2016) to deal with the zero at the right semi plane 1/Tc.

Then, to know the controller’s capability of moving the system around in its entire
configuration space, it is necessary to examine the rank of the controllability matrix Cont ,
calculated as:

Cont =
[

B AB A2B A3B
]
=


1 0 0 0
0 1 0 0
0 0 1 0
0 Y2 0 Y1

 (2.36)

The system is controllable only if Y1 ̸= 0, which means that the robot needs to be above the
ground (cy ̸= 0) and to have the capability of controlling the robot CoM. Then, the following
control law is introduced:

u =−k x+ kq r (2.37)

where r is a reference signal, k is a gain vector

k =
[

kdd kd kL kq

]
(2.38)

The system closed-loop form ẋ = (A−Bk)x−Br becomes:

ẋ =


−kdd −kd −kL −kq

1 0 0 0
0 1 0 0

Y2(q) 0 Y1(q) 0




L̈

L̇

L

q2

+


kq

0
0
0

r (2.39)

Subsequently, the system transfer function is obtained:

q2(s) =
kqY2(q)(s2 −1/T 2

c )

s4 + kdd s3 +(Y2(q)kq + kd)s2 + kL s+Y1(q)kq
qc(s) (2.40)

The control law introduced in eq. (2.37) is good enough for controlling the robot’s balance
and q2 to a fixed position. For a tracking application, Featherstone (2017) uses an acausal
filter to add a positive zero into the tracking signal and improve the tracking performance.



2.4 Trajectory Execution 39

2.4 Trajectory Execution

The controller employed to track the optimized launching motion is based on the balance
theory introduced in Featherstone (2017). The controller is modified to control the CoM
velocity along the x-axis cx by driving L̈ through a tracking task. Simulation results are
compared with Azad and Featherstone (2013) to demonstrate the effectiveness of the new
launching strategy.

2.4.1 Launch Controller

The open-loop LV system introduced in eq. (2.33) is modified by changing the system’s
output to:

y =
[
1 0 0 0

]


L̈

L̇

L

q2

 (2.41)

in this sense, we use L̈ as output instead of q2 given that we are interested in controlling the
robot’s CoM instead of only q2. After modifying the system’s plant, the open-loop transfer
function is

y(s) =
1
s

u(s) (2.42)

in this form, the system does not present any zeros in the left semi-plane as commented in
eq (2.35). The system behaves like a simple integrator, and to ensure that the tracking error
eL = L̈c − L̈ goes to zero during the take-off motion, the control law u is computed as:

u =−kdd(L̈− L̈c)+
...
Lc, (2.43)

where L̈c denotes the desired signal to be tracked, and as the launching motion is known, it is
possible to obtain

...
Lc by differentiating L̈c. Then, the closed-loop system looks like:

ẋ = (A−Bk)x−Br =


−kdd 0 0 0

1 0 0 0
0 1 0 0

Y2(q) 0 Y1(q) 0




L̈

L̇

L

q2

+


kdd

0
0
0

(L̈c +
...
Lc/kdd) (2.44)



2.4 Trajectory Execution 40

and the the transfer function of the closed-loop system is:

L̈(s) =
kdd(1+ s/kdd)

kdd + s
L̈c = L̈c (2.45)

which demonstrates that by only imposing a positive gain kdd it is possible to drive L̈ → L̈c.

Launch Motion Comparison

Here we use the optimized launching motion obtained in the last section (fig. (2.2)), which
limits the robot’s torque τmax = 150Nm to demonstrate that it is possible to satisfy the
imposed mechanical constraints imposed during the NLP optimization with the launch
controller. The controllers presented in this section (the new controller) and Azad and
Featherstone (2013) are compared in terms of achieving the launching state obtained from the
NLP optimization with τmax = 150Nm. Figure 2.9 shows the performance of both controllers
to track a given motion (gray line). In this case, the trajectory used is to perform a take-off.
The blue and black lines demonstrate the tracking execution of the Azad and Featherstone
(2013) and the new controller. In contrast with the new controller, Azad and Featherstone
(2013) controller presented some irregularities when tracking the angular momentum L, and
the torque output τ2 did not obey the imposed constraint in the NLP optimization. Figure
2.10 demonstrates a scenario where the controller’s output is bounded to a maximum torque
τmax by imposing a saturation limit at 150 Nm similar to having an actuator with limited
power. Table 2.3 shows the launching states obtained in both scenarios (fig. 2.9 and fig. 2.10)
with the Azad and Featherstone (2013) and the new launch controllers. The average error is
calculated by:

Av.Error =
(∣∣∣∣Ld −L

|Ld|

∣∣∣∣+ ∣∣∣∣ ċdx − ċx

|ċdx|

∣∣∣∣+ ∣∣∣∣ ċdy − ċy

|ċdy|

∣∣∣∣)× 100%
3

(2.46)

where Ld, ċdx and ċdy denote the desired parameters obtained from the NLP optimization. In
the table 2.3, the Azad and Featherstone (2013) controller with and without limited torque
demonstrated larger errors in the linear velocities along the x and y axes (ċx and ċy) which
are critical for achieving an accurate motion.



2.5 Conclusion 41

0 0.2 0.4 0.6 0.8 1
-4

-2

0

k
g
-m

2
/s

0 0.2 0.4 0.6 0.8 1

0

0.5

1

m
/s

0 0.2 0.4 0.6 0.8 1
-1

0

1

m
/s

0 0.2 0.4 0.6 0.8 1

-0.2
0

0.2
0.4
0.6

ra
d

0 0.2 0.4 0.6 0.8 1
0

1

2

ra
d

0 0.2 0.4 0.6 0.8 1

0

100

200

N
m

0 0.2 0.4 0.6 0.8 1

sec

-4
-2
0
2

ra
d
/s

0 0.2 0.4 0.6 0.8 1

sec

-10

0

10

ra
d
/s

Figure 2.9 Performance comparison of both controllers without a torque τ2 saturation limit.
The gray line denotes the reference signal, the blue line shows the performance obtained
with the Azad and Featherstone (2013) controller, and the black line is the tracking obtained
with the new launch controller.

2.5 Conclusion

This chapter presented a strategy to accurately control a monoped robot during the launching
motion to produce a leap. A DOC-Legendre-Gauss-Radau method was developed to obtain
this motion profile. Then, a launch controller was designed based on the balance theory
presented in Featherstone (2017) to produce the optimized motion on the robot. The presented
strategy was compared with the approach introduced by Azad and Featherstone (2013) in
terms of optimality and accuracy. In this context, it was demonstrated that by formulating
the BVP as an NLP problem, it is possible to find a quicker and smoother motion than the
TRT used in Azad and Featherstone (2013). And that it is also possible to design a controller
for driving the robot accurately during the launching.



2.5 Conclusion 42

0 0.2 0.4 0.6 0.8 1
-4

-2

0

k
g
-m

2
/s

0 0.2 0.4 0.6 0.8 1

0

0.5

1

m
/s

0 0.2 0.4 0.6 0.8 1
-1

0

1

m
/s

0 0.2 0.4 0.6 0.8 1

-0.2
0

0.2
0.4
0.6

ra
d

0 0.2 0.4 0.6 0.8 1
0

1

2

ra
d

0 0.2 0.4 0.6 0.8 1

0

50

100

150

N
m

0 0.2 0.4 0.6 0.8 1

sec

-4
-2
0
2

ra
d
/s

0 0.2 0.4 0.6 0.8 1

sec

-10

0

10

ra
d
/s

Figure 2.10 Performance comparison of both controllers with a torque τ2 saturation limit at
150 Nm. The gray line denotes the reference signal, the blue line shows the performance
obtained with the Azad and Featherstone (2013) controller, and the black line is the tracking
obtained with the new launch controller.

At the optimization phase, direct multiple shooting and direct orthogonal collocation

methods were implemented in search of a computationally cheaper and accurate approach to
solve the NLP problem. Initially, with the direct multiple shooting method, it was possible
to find a feasible and optimal trajectory using an explicit integrator (4th order Rung-Kutta).
Collocation methods give another alternative to solve the optimization faster by replacing the
explicit integrator with an implicit one. Then, formulating the collocation integration em-
ploying orthogonal polynomial instead of low-order ones improves the integration accuracy
by the proper choice of the number of collocation points and polynomial type (Legendre-
Gauss, Legendre-Gauss-Radau, and Legendre-Gauss-Lobatto). After implementing the NLP
problem with Legendre-Gauss polynomial, it was possible to reduce the computational time
per iteration more than three times compared to the direct multiple shooting method. The



2.5 Conclusion 43

L (kgm2/s) ċx (m/s) ċy (m/s) Av.Error
Desired launching state -3.4448 1.152 1.7147 -

The new launch controller -3.4528 1.1528 1.7128 0.13%
Previous controller -3.4784 0.9873 1.6447 6.45%

Previous controller with limited torque -3.4368 0.9280 1.4989 10.76%
Table 2.3 Comparison table between the new launch controller and Azad and Featherstone
(2013) controller with and without limited torque(|τ| ≤ 150N); for the results presented in
figures 2.9 and 2.10.

direct multiple shooting method still solved the optimization faster, using four times fewer
iterations. The DOC approach with an Legendre-Gauss-Radau polynomial instead of an
Legendre-Gauss obtained the best performance. This approach takes nearly the same time
per iteration as the DOC-Legendre-Gauss, and two iterations less than the DMS approach.
The DOC-Legendre-Gauss-Radau (DOC-LGR) solved the entire NLP problem 2.9 times
faster than the direct multiple shooting and 3.5 times faster than the DOC-Legendre-Gauss
on a Lenovo laptop with a Core i7-6500U CPU @ 2.5GHz and eight gigabytes of RAM.

Next, to obtain a controller to accurately tracking the motion profile obtained from the
commented optimization, the controller introduced by Azad and Featherstone (2013) was
compared with a designed launch controller in terms of accuracy. The Azad and Featherstone
(2013) controller repeated the desired motion with some significant drifts during the tracking.
It also missed the take-off state by 6.45% without obeying the imposed torque limit at the
optimization. Consequently, a saturation function was employed to force the controller to
follow the constrained torque, but the performance notably degraded by missing the take-off
state by 10.76%. On the other hand, the proposed controller reproduced the desired motion
satisfying the mechanical and torque constraints imposed during the launching optimization
with a small error (0.13%) at the take-off instant.

The next chapter introduces another monopod robot with a passive spring between its
actuated and un-actuated joints. The new passive spring enables the robot to store and release
elastic energy as needed. The following chapter explores the capability of spring-loaded
robots to achieve less impact at landing from a vertical hop. The optimization approach used
in this chapter (DOC-LGR method) is employed to accomplish this study.



Chapter 3

Landing

Like hopping, landing requires fast motions to recover the robot’s balance by dissipating the
system’s kinetic energy from the touchdown instant. Different studies have addressed the
problem of controlling the transition from flight to stance and from stance back to flight for
performing walking or running motions (Hereid et al., 2014; Wensing and Orin, 2013); but
this differs from the task of stopping, where there is a need to remove kinetic energy quickly
and achieve a fixed configuration.

Spring-loaded mechanisms present shock reduction capability at the touchdown but
also the ability to recycle energy during a motion which increases the instantaneous peak
power available in the system. Behaviors of this kind are reached by more complex control
strategies.

With this study, we are interested in finding a motion profile to drive the robot from a
vertical landing velocity of −6m/s to a fixed balance position experiencing the minimum
ground contact force. The chapter also extends the trajectory optimization problem by
comparing the performance of using a linear and a nonlinear spring in terms of power
consumption at the actuator and maximum vertical force.

The robot is equipped with a DC motor and a frictionless reduction driver to produce
torque at the actuated joint, he landing motion is obtained by employing the trajectory
optimization method introduced in chapter two with a pair of extra variables to find the
optimal spring parameters and a soft constraint to reduce the maximum vertical force during
the landing. In this context, we find the required voltage profile V by solving an NLP problem,
where we formulate the system dynamics, constraints, initial, loop, and terminal conditions.

Our main objective is to explore the applicability of the optimization method commented
in the previous chapter for finding an optimal motion profile and the spring parameters
for executing a successful landing with the robot. We are also interested in comparing the



3.1 Robot Model 45

Link (i)
Mass Length CoM Inertia at CoM
(kg) (m) (m) (kgm2)

1 0.2 0.2 0.1 0.001
2 0.3 0.3 0.15 0.003
3 2 0.5 0.33 0.08

Table 3.1 Length and inertia parameters of the robot shown in Fig.3.1.

benefits and disadvantages of employing a nonlinear spring over a linear one in terms of
control complexity, performance, and electrical energy consumption.

3.1 Robot Model

Figure 3.1 Spring loaded monoped robot.

The springy-leg robot shown in Fig. 3.1 is a planar, three-link mechanism in which
the links 1, 2, and 3 are the foot, the leg, and the torso, respectively. Joint 1 is a passive
revolute joint that models the contact between the foot and ground; joint 2 is a spring-loaded
passive prismatic joint, and joint 3 is the actuated joint. Table 3.1 shows the links’ mass and
length parameters. The symbols mi, li, and Ii appearing below denote the mass, length, and
rotational inertia about the center of mass (CoM), respectively, of link i. The joint variables
are q1, q2 and q3. When all joints are zero, the leg is vertical, and the torso is horizontal out



3.1 Robot Model 46

to the right. Positive motion of a revolute joint i rotates link i counter-clockwise relative to
link i−1; and positive motion of joint 2 extends the leg (so the actual length of the leg is
l1 +l2 +q2). In Fig. 3.1, q1 is positive, q2 is zero and q3 is negative. The whole structure is
clamped to the ground considering the gravity acceleration g = 9.8m/s2.

We now introduce two fictitious extra joints along the x and y axes between joint one
and the base. These imaginary joints are named "joint x" and "joint y". They never move,
and therefore never affect the robot’s dynamics. Their purpose is to increase the number of
coefficients in the robot’s equation of motion, which now reads

Hxx Hxy Hx1 Hx2 Hx3

Hxy Hyy Hy1 Hy2 Hy3

Hx1 Hy1 H11 H12 H13

Hx2 Hy2 H12 H22 H23

Hx3 Hy3 H13 H23 H33




0
0
q̈1

q̈2

q̈3

+


Cx

Cy

C1

C2

C3

=


Fx

Fy

0
Fs

τ3

 , (3.1)

where Hi j are the elements of the joint-space inertia matrix, q̈1, q̈2 and q̈3 are the joint
acceleration variables, Cx, Cy, C1, C2 and C3 elements contain gravity, Coriolis and centrifugal
forces. Here, Fx and Fy are the necessary forces along the x and y axes to produce zero
acceleration at joint x and joint y; τ3 is the torque command at the actuated joint (Joint 3);
and Fs is the force produced by the spring. This spring force can be calculated based on a
linear and a nonlinear model, described by

Fs =−Ks

(
q2 +Gq2

q2 + l1
l1

)
, (3.2)

where Ks the stiffness coefficient, and −0.9 ≤ G ≤ 0.9 is a bounded extra parameter that let
us switch between a linear spring G = 0 and a nonlinear one in regressive 0 < G ≤ 0.9 or
progressive −0.9 ≤ G < 0 modes (Fig.3.2). The spring model does not consider any damping
coefficient. We will demonstrate the robot’s actuator capability of working also as a damper
during the landing.

Given that our model assumes that the robot is clamped to the ground and only rotations
are allowed around the support point q1, the initial joints velocities q̇i are calculated as

q̇1

q̇2

q̇3

=

H11 H12 H13

H12 H22 H23

H13 H23 H33


−1Hx1 Hy1

Hx2 Hy2

Hx3 Hy3

[
ux

uy

]
(3.3)



3.1 Robot Model 47

-0.2 -0.15 -0.1 -0.05 0

m

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

N

l

p

r

Figure 3.2 Spring profile for different G values with a hypothetic stiffness of 1N/m. "l"
indicates the linear model G = 0, "p" and "r" denote the nonlinear model in progressive
G =−0.9 and regressive G = 0.9 modes.

where ux and uy mean the robot’s center of mass (CoM) velocity at the touchdown along the
x and y axes. This equation solves the impulsive dynamics of the robot (Featherstone, 2008)
assuming a plastic collision between the foot and the ground.

To guarantee the feasibility of the motion profile for a robot with a mobile base and a
high-friction solid rubber foot on a hard floor, it is necessary to ensure that the force Fx is
bounded during the landing. Fy also needs to be limited to avoid hypothetic mechanical
damages due to high impact forces. The forces and joints accelerations are obtained by
solving 

−1 0 Hx1 Hx2 Hx3

0 −1 Hy1 Hy2 Hy3

0 0 H11 H12 H13

0 0 H12 H22 H23

0 0 H13 H23 H33




Fx

Fy

q̈1

q̈2

q̈3

+


Cx

Cy

C1

C2

C3

=


0
0
0
Fs

τ3

 , (3.4)

and the magnitude of the ground reaction force is,

F =
√

Fx(t)2 +Fy(t)2. (3.5)

The actuation torque is produced by a 24Volts DC motor with a frictionless reduction
driver of 1 : 40 at joint three, where it is necessary to control the motor voltage to produce



3.1 Robot Model 48

MAXON DCX 32 L Data-sheet Implemented
24V Units Units

Torque Constant(ktv) 27.3mNm/A 0.0273 Nm/A× Nd
Speed Constant (ktv) 350rpm/V 0.0273V/(rad/s)× Nd

Inductance (L) 0.103mH 0.000103H
Resistance (R) 0.331Ω 0.331Ω

No Load Current (Inl) 164mA 0.164A
Rotor Inertia 72.8gcm2 7.28kgm2 ×10−6 ×N2

d

Table 3.2 DC motor parameters. The implemented torque and speed constants already
consider the ratio of the reduction driver (Nd).

torque in the system. In general, The DC motor’s voltage can be controlled using pulse
width modulation (PWM). In this sense, the joint three torque τ3 depends on the amount of
current i present in the motor, the motor’s torque constant times the ratio of the reduction
drive Nd = 40. The current is modified depending on the voltage V applied to the engine and
the joint’s velocity q̇3. The employed motor is similar to the DC motor MAXON DCX 32 L
24V, and its parameters are presented in table 3.2, where the implemented torque and speed
constants already consider the ratio of the reduction driver.

The joint torque τ3 is obtained by

τ3 = ktv i− ktv Inl tanh(q̇3 Nd), (3.6)

the first term on the right-hand side denotes the torque produced by the amount of current
i in the motor. The second term denotes an approximation to the Coulomb friction in the
motor, where ktv denotes the torque and speed constants, Inl is the no-load current, and Nd is
the reduction driver ratio.

As the electrical time constant is a fraction of a millisecond, which is way faster than
the mechanical dynamics that it could be regarded as instantaneous. We use the following
equation to describe the motor’s current,

i =
V − ktv q̇3

R
, (3.7)

where the input is the voltage V and R denotes the motor’s resistance.



3.2 Optimization 49

3.2 Optimization

This subsection introduces the NLP formulation required to bring the robot from a landing
velocity of −6m/s to a fixed balance configuration. The motion is discretized in 500 steps
and is allowed to be solved in maximum 2.5s. The optimizer uses the DOC method and the
LGR polynomial described in the previous chapter to perform the intrinsic integration at the
three collocation points in every step.

The NLP problem is formulated in initial constraints to describe the starting state and
conditions of the task to solve, loop constraints containing a set of conditions evaluated every
iteration of the optimization, and terminal constraints specifying the final requirements to
achieve at the end of the task.

min
V (t)

J =

T∫
0

F2
x +F2

y dt +w f F2
max (3.8)

subject to:

0.1s ≤ T ≤ 1s, (3.9)

1N/m ≤ K ≤ 5×104 N/m −0.9 ≤ G ≤ 0.9 (3.10)

1N ≤ Fmax ≤ 400N, (3.11)

initial constraints

q2 = 0m, ux = 0m/s, uy =−6m/s, (3.12)

i0 = 0Amp, (3.13)

loop constraints[
−π/2 −0.2 −5π/12

]⊤
≤ q(t)≤

[
π/2 0 5π/12

]⊤
(3.14)

|q̇3(t)Nd| ≤ 1183.3332rad/s, (3.15)

|V (t)| ≤ 24Volts, (3.16)

|Fx(t)| ≤ 30N, 0N < Fy(t), (3.17)

0 ≤ F
Fmax

≤ 1, (3.18)

terminal constraints∣∣∣∣[cx q̇ Fs τ3

]⊤
−
[
0 0 0 0 C2 C3

]⊤∣∣∣∣≤ 1×10−9. (3.19)



3.2 Optimization 50

The objective function (3.8) has a Lagrange term that minimizes Fx and Fy, and a Mayer
term that penalizes the maximum force reached during the landing (Kelly, 2017). The
maximum force is obtained by creating a control variable Fmax (eq. (3.11)), and imposing the
constraint (3.18), where the force magnitude is divided by Fmax and limited between zero
and one. In this sense, the optimizer sets Fmax to a value not bigger than the maximum force
because of the existent penalty at the end of the optimization. With a reasonable penalty’s
magnitude w f = 10, it is possible to minimize the maximum force during the landing. In this
way, the objective function is smooth enough to allow the optimizer to converge to a solution
with the smallest maximum force.

Then, other parameters aside from the actuation signal (voltage) that need to be optimized
are introduced from equations (3.9) to (3.11). The total task execution is bounded in eq.
(3.9); the spring parameters are defined in eq. (3.10), this spring model does not consider any
damping coefficient; finally, the maximum force variable is defined in eq. (3.10).

The motion starts at the touchdown instant (eq.(3.12)), where the spring is in a rest
position, the initial current at the motor is zero and the robot’s joint velocities q̇ are zero.
The landing velocity u is transmitted to the robot joints using the equation (3.3) because the
dynamic model used in the optimization does not consider any movement nor velocity along
joints x and y.

During the landing, the joints position q are delimited based on the physical limits of

the robot (eq. (3.14)) in
[

rad m rad
]⊤

and the joint velocities q̇1 and q̇2 are assumed to
be unbounded, q̇3 is bounded in equation 3.15 based on the motor’s maximum speed. The
forces along the x and y axes are limited in equation (3.17). The output voltage is limited
to 24Volts (eq. (3.16)), and the motor’s current is initialized at zero amps (eq. (3.13)). In
addition to the DC motor, a friction less reduction driver of Nd = 40 is used to connect joint
three with the motor. The motor’s inertia multiplied by N2

d is also added to the diagonal
element of the joint-space inertia matrix corresponding to joint 3 (i.e., H33 in eq.(3.1)). We
also added an extra constraint to the problem related to the motor’s maximum speed (3.15).

Equation (3.19) presents the terminal constraints, where the robot needs to be in balance,
with zero velocity. Moreover, the spring and actuation torque need to produce only the
necessary force for the robot to continue in a fixed position.



3.3 Results 51

3.3 Results

Figures 3.3 and 3.4 show the obtained motion using a linear (G = 0) and a nonlinear (G ̸= 0)
spring. In the graphs displayed from figure 3.5 to 3.12, the blue and red lines represent the
optimized solution for the linear and nonlinear springs, respectively.

Both motion profiles found using the linear and nonlinear springs achieve the fixed
position in 2.5s. The spring stiffness found in the linear model is 480.7420N/m, and the
motion profile is shown in figure 3.3. By allowing G to take a value different than zero the

Figure 3.3 Robot’s motion during landing using the linear spring.

the spring parameters found are K = 546.1554N/m, G =−0.3134, and the motion profile is
shown in figure 3.4.

Figure 3.4 Robot’s motion during landing using the nonlinear spring.

Both motions demonstrate that it is necessary to produce fast movements during the first
0.18s. During this time frame, the robot is trying to reduce its downward momentum as
gradually as possible so as to minimize the forces required, but this implies maximizing the
downward travel of the CoM from the moment of impact to the bottom point in the landing
motion.



3.3 Results 52

-0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0

m

0

20

40

60

80

100

120

N

Figure 3.5 Spring profiles obtained from the motion’s optimization. The solid blue line
indicates the linear model with stiffness of 480.7420N/m, G = 0, and the dashed red line
shows the nonlinear progressive model G =−0.3134 with stiffness of 546.1554N/m.

Then, the robot performs a motion to smoothly release the elastic energy stored at the
spring during the impact.

In figure 3.5, it is possible to see that the nonlinear spring required 1.14 times more
stiffness than the linear one to complete the landing, and both springs deliver a very similar
force when it is compressed to around −0.12m. According to the results, the nonlinear
progressive spring (−0.9 ≤ G < 0) seems to be the best option for landing.

Figure 3.6 shows the position response of the CoM along the x and y axes for the two
different springs.

• With the linear spring, the CoM’s position along the x-axis cx starts at 25.7mm and
finishes at 0.1075nm, and reaches a minimum of −9.37cm. The CoM’s position along
the y-axis cy starts at 67.91cm and finishes at 66.73cm, it reaches a minimum of
15.7cm.

• With the nonlinear spring, the CoM’s position along the x-axis cx starts at 27mm and
finishes at 8.2116nm, and reaches a minimum of −10.86cm. The CoM’s position
along the y-axis cy starts at 67.87cm and finishes at 66.17cm, it reaches a minimum
of 16cm.

Figure 3.7 shows the velocity response of the CoM along the x and y axes for the two
different springs.



3.3 Results 53

0 0.5 1 1.5 2 2.5

-0.1

-0.05

0
m

0 0.5 1 1.5 2 2.5

sec

0.2

0.4

0.6

0.8

m

Figure 3.6 CoM position c response of Fig.3.1 system with a linear (solid blue line) and a
nonlinear (dashed red line) spring.

0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

m
/s

0 0.5 1 1.5 2 2.5

sec

-4

-2

0

2

m
/s

Figure 3.7 CoM velocity ċ response of Fig.3.1 system with a linear (solid blue line) and a
nonlinear (dashed red line) spring.



3.3 Results 54

0 0.5 1 1.5 2 2.5
0

0.5

1

ra
d

0 0.5 1 1.5 2 2.5
-0.2

-0.1

0

m

0 0.5 1 1.5 2 2.5

sec

-1

0

1

ra
d

Figure 3.8 Joints position qi response of Fig.3.1 system with a linear (solid blue line) and a
nonlinear (dashed red line) spring.

• With the linear spring, the CoM’s velocity along the x-axis ċx starts at −1.7cm/s and
finishes with a velocity of −8.2734nm/s. At the beginning of the motion, it moves
towards −92.42cm/s, and then reaches a maximum positive velocity of 86.28cm/s.
The CoM’s velocity along the y-axis ċy starts at −5.5236m/s, it reaches a maximum
positive velocity of 2.1323m/s and finishes at −8.9906nm/s.

• With the nonlinear spring, the CoM’s velocity along the x-axis ċx starts at −1.69cm/s
and finishes with a velocity of −3.1463nm/s. At the beginning of the motion, it moves
towards −1.1018m/s, and then reaches a maximum positive velocity of 96.30cm/s.
The CoM’s velocity along the y-axis ċy starts at −5.5236m/s, it reaches a maximum
positive velocity of 1.8236m/s and finishes at −9.5050nm/s.

Figure 3.8 shows the evolution of the joint positions qi during the impact.

• With the linear spring, joint one q1 moves from 0.2081rad to 0.1116rad and reaches a
maximum of 1.1717rad. Joint two q2 starts at zero and finishes at −46.6mm, reaching
a maximum displacement of −19.97cm, and stores a maximum of 9.5907J in elastic
energy. Joint three q3 moves from 0.9017rad to 1.2884rad, reaching a maximum
displacement of −1.182rad.

• With the nonlinear spring, joint one q1 moves from 0.2074rad to 0.1084rad and
reaches a maximum of 1.1395rad. Joint two q2 starts at zero and finishes at −53.3mm,



3.3 Results 55

0 0.5 1 1.5 2 2.5

0

10

20

ra
d
/s

0 0.5 1 1.5 2 2.5

-4

-2

0

2

m
/s

0 0.5 1 1.5 2 2.5

sec

-20

-10

0

10

ra
d
/s

Figure 3.9 Joints velocities q̇i response of Fig.3.1 system with a linear (solid blue line) and a
nonlinear (dashed red line) spring.

reaching a maximum displacement of −19.97cm, and stores a maximum of 10.8839J
in elastic energy. Joint three q3 moves from 0.8980rad to 1.299rad, reaching a maxi-
mum displacement of −1.309rad.

Figure 3.9 shows the performance of the joint velocities q̇i during the impact.

• With the linear spring, joint one q̇1 moves from 2.6694rad/s to 10.307rad/s×10−9,
reaching a maximum velocity of 15.412rad/s. Joint two q̇2 moves from −5.8332m/s
to 10.296nm/s, reaching a maximum positive velocity of 1.7885rad/s. Joint three
moves from −2.877rad/s to 9.3227rad/s× 10−9, reaching a maximum velocity of
−25.0751rad/s.

• With the nonlinear spring, joint one q̇1 moves from 2.6598rad/s to 6.3893rad/s×
10−9, reaching a maximum velocity of 15.2171rad/s. Joint two q̇2 moves from
−5.8342m/s to 10.384nm/s, reaching a maximum positive velocity of 2.1276rad/s.
Joint three moves from −2.8661rad/s to −1.818rad/s×10−10, reaching a maximum
velocity of −24.7437rad/s.

Figure 3.10 shows the ground forces along the x axis Fx and the total magnitude F .

• With the linear spring, Fx moves from 620.5mN to 0.64 µN complying with the
imposed constraint (eq.(3.17)). F moves from 2.0438N to 24.525N, reaching a
maximum force of 159.2430N at t = 90ms.



3.3 Results 56

0 0.5 1 1.5 2 2.5

-40

-20

0

20

40

N

0 0.5 1 1.5 2 2.5

sec

0

50

100

150

N

Figure 3.10 Vertical force F and torque profile τ3 response of Fig.3.1 system with a linear
(solid blue line) and a nonlinear (dashed red line) spring.

• With the nonlinear spring, Fx moves from 619.7mN to 0.49 µN complying with the im-
posed constraint (eq.(3.17)). F moves from 2.044N to 24.525N, reaching a maximum
force of 140.2414N at t = 75ms.

Figure 3.11 shows the spring force Fs and the actuation torque τ3.

• With the linear spring, Fs moves from zero to 22.4227N, achieving a maximum force
of 96.0277N. τ3 moves from zero to 1.2631Nm, reaching a maximum torque of
70.8505Nm at t = 0.14s.

• With the nonlinear spring, Fs moves from zero to 22.4305N, achieving a maximum
force of 109.0452N. τ3 moves from zero to 1.209Nm, reaching a maximum torque of
62.1355Nm at t = 0.135s.

Figure 3.12 shows the current i and the voltage V during the impact for the two different
springs.

• With the linear spring, i moves from zero to 1.1574A, achieving a peak current of
64.9205A. V moves from −9.68V to 0.3741V, reaching a peak of −24V at t = 0.04s.

• With the nonlinear spring, i moves from zero to 1.1078A, achieving a peak current
of 56.9346A. V moves from −9.77V to 0.3669V, reaching a peak of −23.4245V at
t = 0.04s.



3.3 Results 57

0 0.5 1 1.5 2 2.5

0

50

100

N

0 0.5 1 1.5 2 2.5

sec

0

20

40

60

N
m

Figure 3.11 Vertical force F and torque profile τ3 response of Fig.3.1 system with a linear
(solid blue line) and a nonlinear (dashed red line) spring.

0 0.5 1 1.5 2 2.5

0

20

40

60

A
m

p
s

0 0.5 1 1.5 2 2.5

sec

-20

-10

0

10

20

V
o
lt
s

Figure 3.12 Voltage V and current i response of Fig.3.1 system with a linear (solid blue line)
and a nonlinear (dashed red line) spring.



3.3 Results 58

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

sec

-400

-200

0

200

400

600

800

1000

1200

W
a
tt
s

Figure 3.13 Electrical power input response of Fig.3.1 system with a linear (solid blue line)
and a nonlinear (dashed red line) spring.

Figure 3.13 shows the electrical power input during the impact for the two different
springs.

• With the linear spring, the motor demanded a maximum electrical power of 1197.3watts
at t = 0.2084s.

• With the nonlinear spring, the motor demanded a maximum electrical power of
1004.8watts at t = 0.1782s.

3.3.1 Discussion

As shown in figure 3.5, the capability of the nonlinear spring to deliver more force at
maximum compression seems to have an impact on the movement of the robot’s CoM along
the x-axis after the touchdown. The nonlinear spring setup experienced a larger movement.
The robot’s CoM motion along the y-axis shows a more damped response related to the linear
spring.

Because of the robot’s structure, it is impossible to drive the CoM along only one axis
while keeping zero velocity along the other axis, as shown in the graph of ċx where the
CoM moves in the x direction during the impact. Figures 3.6 and 3.7 also show that the
motion with the nonlinear spring had a smaller reaction velocity along the y-axis but a bigger
movement along the x-axis, which may demand more effort to keep the robot’s balance



3.4 Conclusion 59

during the landing. The nonlinear spring improves the deceleration of the CoM along the y
axis, requiring extra movement along the x-axis, increasing the control complexity to keep
the robot’s balance while reaching a stable configuration.

The nonlinear spring added more movement of the CoM along the x-axis but presented a
smother response along the y-axis. It also experienced bigger peak transients at the CoM’s
velocity along the x-axis. At y-axis, the nonlinear spring had a smaller reaction velocity than
the linear one, the response is also smother and delayed from the linear one.

In figure 3.8, it is also possible to observe a similar response at the joint level for both
springs. Specifically, both motions have a very similar profile before the springs had shrunk
to their maximum at t = 60ms, then, the response of the nonlinear spring seems to be delayed
in about 80ms respect to the linear one. The nonlinear spring reaches the nominal position
(position required to keep the system in a fixed configuration) quicker than the linear spring.
On the other hand, the linear spring setup presented more transients after the maximum
displacement, exhibiting the task’s complexity of controlling the flow of elastic energy that
goes in and out of the spring during the landing. Notably, this flow of elastic energy needs to
be minimized during the task to reach a fixed configuration. The nonlinear spring shows an
extra damping capability which settles the system in around 0.3 seconds faster.

Figure 3.10 shows how the extra damping capability helps the nonlinear spring to expe-
rience fewer reaction forces and transients along the x-axis after the minimum peak force
(-30N). It is also possible to observe that the motion with the nonlinear spring produced an
11% lower maximum force F . This is a significant reduction and shows that a nonlinear
spring can be advantageous for reducing peak forces on landing. In this particular example,
the nonlinear spring also reduced the peak torque needed at the actuated joint by about 12%.

Figure 3.12 shows that the nonlinear spring setup required less power to achieve the task.
It demanded a power peak 16.1% smaller.

3.4 Conclusion

This chapter introduced a numerical strategy to find the motion profile and spring parameters
for a spring-loaded monopod robot that minimizes the peak force at landing.

In this context, we introduced the spring-loaded monopod robot to exploit the robot’s
ability to vary its stiffness by modifying its configuration. Since the robot is supposed to
have a rubber foot to make contact with the ground and not a mechanism to clamp it to the
ground, we have constrained the maximum force along the x-axis to ensure that there are no
slips during the motion. Moreover, considering gravity implies that the angular momentum



3.4 Conclusion 60

of the robot about the support point (the foot) can be modified according to the position of
the CoM along the x-axis, consequently losing its balance. In this regard, the motion profile
successfully minimized the maximum impact force while keeping the robot in balance even
when the spring shrunk to its maximum. In this trajectory optimization study, we also added
the spring’s parameters as control variables to the NLP formulation for finding the optimal
values for a linear and nonlinear spring. We did not consider any damping coefficient at
the spring in order to explore the control profiles capability of serving as a damper for the
whole system. Finally, we modeled the robot’s actuator as a DC motor in conjunction with a
frictionless reduction driver to obtain a motion profile that could be replicated in reality. In
this connection, we added the necessary constraints to the NLP formulation according to the
mechanical limitations of the motor.

After running the optimization, the optimizer found the progressive nonlinear spring
optimal for this task rather than the regressive one. The nonlinear spring reached a slightly
higher spring force, but the ground reaction force and actuator torque were lower than the
linear one.

The results also demonstrated that the robot couldn’t decelerate the CoM along only the
y-axis while keeping zero velocity along the x-axis because of its structure. Furthermore, this
disturbance along the x-axis is correlated to the type of springs and the parameters chosen;
the linear and nonlinear springs minimized the maximum landing force by almost 17% and
28%, respectively, compared with the spring-mass-damper system with gravity. In addition,
before the spring reached its maximum compression, both robots had a similar response. The
nonlinear setup showed a delayed reaction with fewer vibrations than the linear setup after
the peak force at the spring.

The results in this chapter have demonstrated the complexity of the landing task for a
spring-loaded monopd robot. The results pointed that a nonlinear progressive spring can
increase the robot’s ability to perform a soft landing with less electrical power. It’s also
evidenced the possibility of solving trajectory optimization and parameter optimization
problems by using the orthogonal collocation methods implemented in conjunction with the
Rigid Body Dynamics Algorithms (Featherstone, 2008).

The next chapter introduces a modified version of the balance controller presented in
Featherstone (2017) applied to the spring-loaded monopod used in this chapter. The controller
keeps the robot in balance while it tracks the desired motion described by the third joint.
Moreover, with a modified version of the new controller, the robot can control the absolute
angle of the hip defined by joints three and one.



Chapter 4

Balancing with a Springy Leg

This chapter presents a simulation study of the problem of balancing a planar double pen-
dulum in which the lower body (the leg) has been modified to include a spring-loaded
passive prismatic joint. Robots of this kind can travel by hopping and can also stand and
balance on a single point. The purpose of this study is to investigate the degree to which
a balance controller can cope with the large and rapidly changing forces from the spring.
It is shown that good performance can be achieved using an existing balance controller if
the spring-loaded joint is instrumented. So, its position and velocity are considered when
calculating the state variables needed by the balance controller.

The main result of this chapter is that the balance controller in Featherstone (2017, 2018)
still works when the leg is springy, although the performance is not as good as with a rigid
one. Nevertheless, we can perform high-speed motions without losing balance, like directly
controlling the position of the actuated joint. By modifying the plant of the system, we also
demonstrate the possibility of indirectly controlling the angular position between the foot
and the ground, relaxing the usual assumption of controlling the robot’s movements based
only on the motor-actuated joints.

There is an important distinction between the study presented here and those presented in
Featherstone (2016, 2017) on the topic of balancing in the presence of other motions. In the
earlier works, it was assumed that the other motions were produced by a motion controller
that was executing a prescribed motion command that was independent of the actions of the
balance controller, and that was known in advance. Then, the robot could lean in anticipation
of balance disturbances that would be caused by executing the motion command. This
implies that the other motions are actuated, controlled and known in advance. In contrast, we
consider here a passive springy joint, which is neither actuated nor controlled, and which
moves in response to the actions of the balance controller.



4.1 General Setup 62

This chapter also explores the response of the launching controller subject to uncertain
spring parameters. Precision at launching is critical for executing a successful hopping
motion.

The rest of this chapter is organized as follows: first, the robot model; then the theory
of balancing used; then the balance controller; and finally the simulation experiments, their
results and an the controller’s response subject to uncertain spring parameters.

4.1 General Setup

We consider two robots in this chapter: one with a springy leg and one with a rigid leg. The
springy-leg robot is shown in Fig. 4.1. The rigid-leg robot is obtained from the springy-leg
robot by locking joint 2 (the prismatic joint) in the position it takes when the robot is balanced,
the torso is at right angles to the leg, and the spring is holding the weight of the upper leg
and torso against gravity.

Figure 4.1 Robot model. q3 is negative in this configuration, and has been drawn as q3 +2π .

The springy-leg robot is similar to the robot introduced in the previous chapter in which
links 1, 2, and 3 are the lower leg (or foot), upper leg, and torso, respectively. Joint 1 is



4.2 Balance Theory 63

Link Mass Length CoM Inertia at CoM
(i) (kg) (m) (m) (kgm2)
1 0.2 0.2 0.1 0.001
2 0.3 0.3 0.15 0.003
3 2 0.5 0.33 0.08

Table 4.1 length and inertia parameters of the robot shown in Fig.4.1
.

a passive revolute joint that models the contact between the foot and ground; joint 2 is a
spring-loaded passive prismatic joint, and joint 3 is the actuated joint. The links’ mass and
length parameters are shown in Table 4.1. The symbols mi, li and Ii appearing below denote
the mass, length and rotational inertia about the centre of mass (CoM), respectively, of link i.

The joint variables are q1, q2 and q3. When all three are zero, the leg is vertical, the leg’s
length is l1 + l2, and the torso is horizontal out to the right. Positive motion of a revolute
joint i rotates link i counter-clockwise relative to link i−1; and positive motion of joint 2
extends the leg (so the actual length of the leg is l1 + l2 +q2). In Fig. 4.1, q1 is positive and
q3 is negative.

The stiffness of the spring is 2000 N/m, and the damping coefficient is 15 Ns/m, which
results in an under-damped system. The stiffness is appropriate for a robot able to make
small hops of around 1m with a spring compression significantly less than l1, yet is soft
enough that joint 2 moves significantly during landings and fast balancing movements. In
other words, the stiffness is low enough to interfere significantly with the actions of the
balance controller.

4.2 Balance Theory

In this section, the analysis presented in Featherstone (2017) is modified for the planar robot
mechanism shown in Fig. 4.1. As previously commented, The upper joint (joint 3) is actuated
by the controller, the middle joint (joint 2) is actuated by a spring, and the lower joint (joint
1) represents the contact between the bottom of the lower link (the foot) and the ground and
is consequently un-actuated. By representing the contact with a revolute joint, the controller
assumes that the foot neither slips nor loses contact with the ground and that the movement



4.2 Balance Theory 64

of the contact point as the foot rotates is negligible. The equation of motion of this robot isH11 H12 H13

H12 H22 H23

H13 H23 H33


q̈1

q̈2

q̈3

+

C1

C2

C3

=

 0
Fs

τ3

 (4.1)

where Hi j are elements of the joint-space inertia matrix, q̈1, q̈2 and q̈3 are the joint acceleration
variables, C1, C2 and C3 contain gravity and velocity terms, Fs =−Ksq2−Dsq̇2, Ks and Ds

denote the stiffness and damping coefficients of the spring, and τ3 is the torque at the actuated
joint.

As joint one is un-actuated, it follows that the force of gravity is the only force capable of
exerting a moment about the support point and change the angular momentum of the robot
about this point. If we define L to be the angular momentum of the whole robot about the
support point then we have

L̇ =−mgcx (4.2)

where m is the total mass of the robot, g is the acceleration due to gravity (a positive number),
and cx is the x coordinate of the robot’s center of mass (CoM). The expression −mgcx is the
moment of gravity about the support. The equation that follows directly from (4.2) is

L̈ =−mgċx (4.3)

and the expression for L is

L = H11 q̇1 +H12 q̇2 +H13 q̇3 (4.4)

which is proved in the appendix of Featherstone (2017).
The next step is to add a fictitious joint between joint one and the ground, which is a

prismatic joint in the x-direction. We can call it joint zero so as not to disturb the numbering of
the other joints. This joint never moves, so it does not affect the robot’s dynamics. However,
it does increase the size of the equation of motion, which now reads

H00 H01 H02 H03

H01 H11 H12 H13

H02 H12 H22 H23

H03 H13 H23 H33




0
q̈1

q̈2

q̈3

+


C0

C1

C2

C3

=


τ0

0
Fs

τ3

 (4.5)



4.2 Balance Theory 65

The reason for this extra joint is that it provides us with two equations linking the joint-space
dynamics with the motion of the CoM:

mċx = H01 q̇1 +H02 q̇2 +H03 q̇3, (4.6)

which is proved in Featherstone (2017), and

τ0 = mc̈x =−
...
L/g (4.7)

Actuated Joint Tracking

Let qa denote the controlled variable. To control the motion of the actuated joint we set
qa = q3. In this case we combine (4.3), (4.4) and (4.6)[

L

L̈

]
=

[
H11 H13

−gH01 −gH03

][
q̇1

q̇3

]
+

[
H12

−gH02

]
q̇2. (4.8)

We omit the last term (the one involving q̇2) in order to make point that the resulting control
system does not need to consider the dynamics introduced by the spring. The simplified
equation can then be solved to give[

q̇1

q̇a

]
=

1
gD

[
−gH03 −H13

gH01 H11

][
L

L̈

]
(4.9)

where
D = H01 H13 −H11 H03 (4.10)

assuming that the matrix is invertible (which it will be if the robot is physically capable of
balancing (Featherstone, 2017)). Consequently q̇a can be expressed as

q̇a = Y1 L+Y2 L̈ (4.11)

where
Y1 =

H01

D
, Y2 =

H11

gD
(4.12)



4.2 Balance Theory 66

Figure 4.2 Block diagram for the balancing control problem of the springy-leg robot, with
kℓ=diag(kdd,kd,kL). The green lines indicate the balance controller, and the purple lines
denote the plant. qa denotes the controlled joint variable, which can be q3 or q1 +q3

Absolute Orientation Tracking

To control the absolute angular position we redefine qa as qa=q1 +q3 and use the following
mapping [

q̇1

q̇3

]
=

[
1 0
−1 1

][
q̇1

q̇a

]
, (4.13)

and the linear relationship (4.8) can be solved as:[
q̇1

q̇a

]
=

1
gD

[
−gH03 −H13

g(H01−H03) H11−H13

][
L

L̈

]
, (4.14)

where D=H13H01−H11H03. This equation requires D ̸= 0, which holds in any configuration
in which the robot is physically capable of balancing itself Featherstone (2017). So, q̇a can
be expressed as:

q̇a = Y1 L+Y2 L̈ , (4.15)

where
Y1=(H01−H03)/D, Y2=(H11−H13)/gD. (4.16)

It is worth noticing that Y1 and Y2 vary with configuration, and can be expressed as simple
functions of two physical properties of the mechanism: its time constant of toppling, Tc,
which measures how quickly the robot falls if the controller does nothing, and its velocity
gain (Featherstone, 2015, 2016), which measures the effect on centre of mass (CoM) velocity
of a unit change in the velocity of the actuated joint. The formulae are

Y1 =
1

mgT 2
c Gv

Y2 =− 1
mgGv

(4.17)



4.3 Controller 67

where Gv is the linear velocity gain as defined in Featherstone (2016). Tc appears again in
the acausal filter mentioned in the next section.

4.3 Controller

The balance controller works by controlling the plant shown in Fig. 4.2, as explained in
Featherstone (2017, 2018). The job of the balance controller is to calculate a value for

...
L to

make qa follow a given command signal, qc, without losing balance. Denoting qa := q3, a
suitable control law to accomplish this is

...
L := kddL̈+ kdL̇+ kLL+ kq(qa −qd) , (4.18)

where qd is the input to the control law (see below). The feedback gains are obtained via
pole placement as

kdd =−a3 kd =−a2 +a0Y2/Y1

kL =−a1 kq =−a0/Y1 ,
(4.19)

where
a0 = λ1λ2λ3λ4

a1 =−λ1λ2λ3 −λ1λ2λ4 −λ1λ3λ4 −λ2λ3λ4

a2 = λ1λ2 +λ1λ3 +λ1λ4 +λ2λ3 +λ2λ4 +λ3λ4

a3 =−λ1 −λ2 −λ3 −λ4

(4.20)

and λ1, . . . ,λ4 are the chosen values of the poles. We set λ1 to the closed-loop bandwidth
that we want the controller to achieve, while λ2 and λ3 are destined to be cancelled by two
introduced zeros, mentioned below, and λ4 is set to −1/Tc in order to cancel a natural zero
in the transfer function. The use of pole placement involves an assumption that Y1 and Y2 are
constants, implying that the plant is linear. This assumption is justified by the observation
that in practice Y1 and Y2 vary slowly with configuration.

The input to the control law, qd , is computed from the command signal and its derivatives,
qc, q̇c and q̈c, according to

qd = AF
(

qc −
(

1
λ2

+
1
λ3

)
q̇c +

1
λ2λ3

q̈c

)
. (4.21)

This formula has two effects. First, it introduces two zeros into the transfer function, at
λ2 and λ3, which cancel the corresponding poles. Second, it applies an acausal filter, AF,



4.4 Experiments 68

which makes the robot lean in anticipation of the balance disturbances that will be caused by
future commanded motions (Featherstone, 2017). Specifically, AF is a first-order low-pass
filter with time constant Tc, which runs backwards in time from a point sufficiently far in the
future back to the present. To implement this filter, the controller needs to know the expected
short-term future value of qc. Information of this kind can be found in the robot’s high-level
controller, which usually knows what movement it intends to make next.

Given the control law in (4.18), with gains as in (4.19) and (4.20), and the input signal as
in (4.21), it can be shown that the complete transfer function from qc to qa would be

qa(s) =
1

1+ s/(−λ1)
qc(s) (4.22)

if it were really true that Y1 and Y2 were constants (Featherstone, 2017). We take this
expression as the theoretical transfer function of the balance controller, and compare the
actual response with the theoretical one in the experimental results reported below.

Finally, the output of the control law (
...
L ) must be converted to a torque or an acceleration

at the actuated joint, which can be done by solving the equations (4.5) and (4.7),
0 H01 H02 H0a

0 H11 H12 H1a

0 H12 H22 H2a

−1 H1a H2a Haa




τa

q̈1

q̈2

q̈a

=


−

...
L/g−C0

−C1

Fs −C2

−Ca

 . (4.23)

4.4 Experiments

This section presents the experimental results for actuated joint and absolute tracking tasks;
and launching study with uncertain spring parameters. In the experiments we use the ode23t
integrator from MATLAB with a relative tolerance set to 10−6 and other parameters at
their default values. The controller is implemented as a continuous-dynamics subsystem,
and the sensors are assumed to be perfect. Although the balance controller employed on
the experiments assumes that the foot never loses contact nor slips with the ground, in the
simulation we incorporate the following contact model described in Azad and Featherstone
(2013). Contact forces acting on the foot in the normal and tangent directions are

Fy = max(0,Knz3/2 +Dnz1/2ż),

Fx = clip(Ktz1/2u+Dtz1/2u̇,−µFy,µFy),
(4.24)



4.4 Experiments 69

where z and u are the ground compression and shear deformation, and µ is the coefficient of
friction, Kn and Dn are the normal and Kt and Dt are the tangential stiffness and damping
coefficients. The function clip(a,b,c) returns the value of a clipped to b and c. The parameter
values used in the simulations are

Kt = 12.7×106 Dt = 3.1×105 µ = 1
Kn = 8.5×106 Dn = 3.1×105 (4.25)

which are consistent with a hard floor and a high-friction hard rubber foot.
The results in both scenarios are displayed in figures 4.7 and 4.9, where the signals are:

the original command signal, qc (i.e., not qd as in (4.21)); the theoretical response of the
balance controller if the plant really were linear (labelled qt); the actual response of the
controlled joint on the springy leg robot (labelled qa(springy)); and the actual response on
the rigid-leg robot (labelled qa(rigid)). The rigid-leg response is obtained from a separate
simulation in which the initial conditions are set as close as possible to the state of the
springy-leg robot at the beginning of the sequence.

4.4.1 Actuated Joint Tracking

This subsection presents the results of a simulation experiment in which the springy-leg robot
starts in an upright position, tips itself forward (positive x direction), crouches, launches into
a hop of 0.7m length and 0.9920m height (rise of the CoM from lift-off to apex), lands with
two bounces, stabilizes itself in a balanced configuration with qa = 0, and then executes a
motion command consisting of a sequence of ramps and sinusoids.

Figure 4.3 Motion profile of the launching phase.

Figures 4.3, 4.4 and 4.5 show the complete motion. The launching and the flight motion
profiles were obtained using the DOC method presented in chapter two with three collocation



4.4 Experiments 70

Figure 4.4 Motion profile of the flight phase.

points and discretized in 300 and 150 steps, respectively. The landing motion is obtained
using the balance controller to bring the robot to balance, and at t = 2.554s the commanded
angle qd is switched to drive the robot to the ready configuration to start the tracking phase.

During the landing, the evolution of the controller’s state variables is plotted in Fig. 4.6.
At this phase, the poles of the controller are set to −20,−7,−7,−1/Tc, all in units of rad/s,
and the controller is first set to recover the balance of the robot during the first 0.35s of
the landing, resulting in two bounces after the first touchdown, which demonstrates the
controller’s response to situations when it’s assumption about the ground foot contact is not
satisfied for short periods (bounces). In the graph, it can be seen that q3 is initially pushed to
about 0.39rad by the momentum of the landing, then rises to nearly 1.37rad during the first
bounce (blue shaded area). The joint is driven close to zero after the third touchdown (end of
magenta shaded area).

The robot’s foot loses contact with the ground between t = 2.3364s and t = 2.6224s, and
t = 2.7466s and t = 2.9198s and reaches a maximum height of 9.2286cm at the first bounce
and 3.16516cm at the second bounce. These periods are shown shaded in the graph, blue
for the first bounce and magenta for the second bounce. During these periods, the balance
controller does not know that the foot has left the ground and continues to use the model
described in section 4.2, which assumes that the robot’s foot is on the ground. It can be seen
that this short period of flight does not significantly affect the controller. It can also be seen
that the robot has come to rest within about 0.48s after the third touchdown. Note that the



4.4 Experiments 71

Figure 4.5 Motion profile of the landing phase, when qa = q3.

controller is assumed to know the orientation of the robot at all times, e.g. from an onboard
inertial measurement unit, so it always knows the correct values of q1 and q̇1.

At time 3.7037s the command signal (qc) switches from zero to the sequence of ramps
and sine waves mentioned above. This portion of the action sequence is plotted in Fig. 4.7.
The command sequence consists of three ramps between 0 and 1rad, followed by a long
ramp from 1rad to −1rad, all at a speed of 4rad/s, followed by two more ramps at speeds
of 2rad/s and 1rad/s, followed by two cycles of a sine wave at 1Hz. Observe that this
command sequence asks the robot to make large and fast movements.

During this tracking phase, the poles are set at −20, −20, −20 and −1/Tc, all in units
of rad/s, and the two introduced zeros are at −20rad/s. For this robot, Tc varies between
0.2112s at qa =−1.0087rad and 0.287s at qa = 1.1343rad in this action sequence.

Fig.4.8 shows the motion of the spring during the launch, flight (red shaded area), landing,
two bounces and tracking phases. During the take-off, the spring compresses to a maximum
of 61.22mm. Then, it compresses to a maximum of 72.78mm, 42.48mm, and 27.27mm at
the first, second and third touchdowns after the 0.7m leap. During the tracking, the spring
compression varies in a 2cm range, which is 4% of the leg length.

It can be seen in figure 4.7 that there are some significant tracking errors, particularly at
the beginnings and ends of the ramps. There are two main contributors to these errors. The
greater one is that the balance controller assumes that the plant in Fig. 4.2 is linear, when in
reality it is not. The lesser one is an approximation in the way that the acausal filter works:
for simplicity, it uses values of Tc calculated for a balanced configuration at each instant
instead of a leaning configuration.



4.4 Experiments 72

Figure 4.6 Evolution of the controller’s state variables from the moment of landing until
the robot has settled. The left side scale corresponds to L̈, L̇ and L, and the right side scale
corresponds to qa = q3. The shaded zones show the periods in which the foot has lost contact
with the ground because of the bounces.

It can also be seen that the springy-leg and rigid-leg responses are very nearly the
same. So, the presence of the spring-loaded joint in the leg has had almost no effect on the
closed-loop behavior of the robot while following large, fast motion commands; and this
has happened even though the spring is relatively soft and the spring-loaded joint makes
significant movements. One place where one can see a difference occurs at the end of the
second ramp, where the springy-leg response shows a small amount of ringing that dies away
in about 0.5s. There is also a little bit of ringing at the end of the long ramp, and at the end
of the sine wave. However, considering the under-damped nature of the spring-damper pair
in the leg, there is remarkably little ringing overall, and what little there is dies away quickly.
So we can conclude that in this experiment the balance controller has accomplished three
tasks simultaneously using only a single actuator: balance the robot, follow the command
signal, and suppress vibrations.

4.4.2 Absolute Tracking

This subsection presents the results of a simulation experiment in which the springy-leg robot
starts on a balance position with qa = q1 +q3 = 0 with zero velocity and then executes an



4.4 Experiments 73

4 6 8 10 12 14

sec

-1

-0.5

0

0.5

1

ra
d

Figure 4.7 Tracking performance of the balance controller, when qa = q3.

absolute motion tracking consisting of a sequence of ramps and sinusoids plotted in Fig. 4.9.
The poles of the controller were set to λ1=−20, λ2=−20, λ3=−20, and λ4=−1/Tc, all
expressed rads−1, and the two introduced zeros are at −20rad/s.

The desired sequence consists of three ramps between 0 and 0.8 rad, all at a speed of
3 rads−1, followed by a long ramp from 0.8 rad to −0.6 rad at −2.5rads−1, followed by two
more ramps at speeds of 2.5rads−1 and −1rads−1, followed by three cycles of a sine wave
at 1 Hz. Notice that, such a desired sequence asks the robot to make large and fast motions.
Two zeros are introduced to the desired signal at −20 rads−1, as mentioned in (4.21). For this
springy-leg robot, Tc varies between 0.1562 s at qa =−0.6 rad and 0.2507 s at qa = 0.8 rad
in this action sequence.

In Fig. 4.9, it can be seen that there are some significant tracking errors, particularly at
the beginning and end of the ramps. Three main factors contribute to such errors: (i) the
balance controller assumes that the plant in Fig. 4.2 is linear when in reality it is not; (ii) for
simplicity, the acausal filter uses values of Tc calculated for a balanced configuration at each
instant instead of a leaning configuration; (iii) at each of the balance configurations used to
calculate Tc, it assumes that q2 is constant for the whole tracking when in fact it oscillates
around 10% and reaches a peak of 17% of the link’s length, causing tracking inaccuracies
as shown in Figures 4.9. Then, in this experimental case, we can conclude that the balance
controller has accomplished balance while performing an absolute tracking task. However,
it can be seen that the controller is less efficient at damping oscillations compared with the
results in Section 4.4.1 (results in figure 4.10 are less damped than results in figure 4.8).



4.4 Experiments 74

Figure 4.8 Motion of the spring during the whole motion. The shaded zones of red, blue, and
magenta colors show the instant in which the foot has lost contact with the ground because
of the leap and two bounces, respectively. The green-shaded zone denotes the moment when
the robot is performing the tracking sequence of Fig. 4.7. The quantity qy is the height of the
foot above the ground.

4.4.3 Launching with an Uncertain Spring

This section presents a sensitivity analysis at the launch controller when the robot (model
described in section 4.1) is subject to uncertainties in the spring parameters. In this sense,
this section starts by obtaining a launching movement by formulating and solving it as an
NLP problem. Then, the motion is tracked using the launch controller presented in section
2.4 adapted to the spring-loaded monopod. In this sense, the controller output is obtained by:

...
L :=−kdd(L̈− L̈c)+

...
Lc (4.26)

where L̈c denotes the desired signal to be tracked, and as the launching motion is known, it is
possible to obtain

...
Lc by differentiating L̈c. The gain kdd is obtained as described in equation



4.4 Experiments 75

0 2 4 6 8 10 12 14

sec

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ra
d

Figure 4.9 Tracking performance of the balance controller, with qa = q1 +q3.

0 2 4 6 8 10 12 14

sec

-35

-30

-25

-20

-15

-10

-5

0

5

m
m

Figure 4.10 Motion of the spring during tracking the motion at figure 4.9.



4.4 Experiments 76

(4.19). Finally, the controller’s output
...
L is mapped to acceleration or torque at the actuated

joint q3 by: 
0 H01 H02 H03

0 H11 H12 H13

0 H21 H22 H23

−1 H31 H32 H33




τ3

q̈1

q̈2

q̈3

 =


−

...
L/g−C0

−C1

F̂s −C2

−C3

 , (4.27)

where F̂s is the estimated spring’s force. In this experiment, F̂s is modified to emulate
uncertain spring parameters.

NLP Problem Formulation

The launching motion is implemented as an NLP problem, where the constrained parameter
optimization problem has nonlinear terms in its objective or constraints functions. In this
sense, it is necessary to define the problem constraints and the decision variables to control
during the optimization. This launching NLP problem implementation is done using Matlab
with the software package CasADI (Andersson et al., 2018) and the solver Interior Point
OPTimizer (IPOPT) (Wächter and Biegler, 2006) to minimize a given cost function J by
controlling the decision variables and satisfying the imposed constraints.

The problem is adequately described when discretized in NT = 600 steps, implying a
maximum sampling time Ts = 0.0033s. The NLP problem is formulated in initial constraints
to describe the starting state and conditions of the task to solve, loop constraints containing
a set of conditions evaluated every iteration of the optimization, and terminal constraints
specifying the final requirements to achieve at the end of the task.



4.4 Experiments 77

min
τ3

J =

T∫
0

wr τ3(t)2 dt (4.28)

subject to:

0.5s ≤ T ≤ 2s, (4.29)

initial constraints

cx = 0, Fs =C2, q̇0 =
[
0 0 0

]⊤
, (4.30)

loop constraints[
−π/2 −0.2 −π/3

]⊤
≤ q(k)≤

[
π/2 0 π/3

]⊤
, |q̇(k)| ≤ ∞, (4.31)

|τ2(t)| ≤ 50Nm, (4.32)

q̇(k+1) = q̇(k)+
∫ tk+1

tk
f (q, q̇,τ2)dt, q(k+1) = q(k)+

∫ tk+1

tk
q̇dt, (4.33)

terminal constraints∣∣∣∣[Lc ċx ċy

]⊤
−
[
−1.189 0.9988 2.4224

]⊤∣∣∣∣≤ 1×10−3. (4.34)

where the objective function (4.28) has only a Lagrange term (Kelly, 2017).
At the beginning of the optimization, the motion duration T is added as a control variable

and bounded in (4.29). Then, (4.30) defines the initial states of the system, where the robot
starts in a balanced configuration with zero velocity.

In the loop constraints, we define the operating regions for the positions and velocities
for the joints and the actuation torque. The operating regions are described in equation (4.31)
in rad and rad/s, respectively. The actuation torque is limited in equation (4.32). An extra
equation inserts the system’s dynamics expressed as a constraint in (4.33) to ensure the
system’s continuity during the optimization. This continuity is ensure using the DOC-LGR
method with three collocation points. The function f (q, q̇,τ3) calculates the acceleration q̈,
as a function of the state variables and τ3.

Finally, the terminal constraint in equation (4.34) specifies the desired launching condi-
tions that need to be accomplished at the end of the motion to take-off. At the equation, cL

denotes the centroidal angular momentum of the whole robot, which is the system’s angular
momentum obtained in equation (4.4) transformed to the CoM’s frame.



4.5 Conclusion 78

Results

Several simulations were performed in which the robot was controlled according to the
control law in equation (4.26) with

...
L converted to a torque (τ3) using equation (4.27). In

each simulation, F̂s was taken to be equal to γFs, where Fs is the correct value and γ is
a constant taking values in the range 0 to 1.7. In each simulation, the robot starts in a
balanced configuration with q = [0.6475,−0.009,−0.6075], and the control system executes
the command signal (L̈c and

...
Lc) found by the optimization process. If the control system

manages to follow the optimal trajectory perfectly, then its configuration at lift-off should
be q = [0.0275,−0.0118,0.9568] in 0.391s at time 0.391s. The simulation finishes at the
instant when the foot losses contact with the ground regardless of whether it takes longer or
shorter time than the optimized motion. In case that it takes longer, the actuation torque is
set to τ3 =C3.

The average error for each scenario is calculated by:

Av.Error =
(∣∣∣∣cLd −c L

|cLd|

∣∣∣∣+ ∣∣∣∣ ċdx − ċx

|ċdx|

∣∣∣∣+ ∣∣∣∣ ċdy − ċy

|ċdy|

∣∣∣∣)× 100%
3

(4.35)

where cLd, ċdx and ċdy denote the lift-off desired parameters obtained from the NLP optimiza-
tion. Table 4.2 shows the launching states results for different uncertain spring parameters.
The results show that the controller presents a certain robustness to incorrect estimates of Fs.
According to the table, the controller accomplished the launching with nearly 11% of error
by assuming the total absence of the spring force F̂s = 0. The results also demonstrated that
the controller presents more robustness when the estimated spring force (F̂s) is lower than the
true spring force in the robot (Fs). Once the robot is flying, the control system loses control
over the CoM trajectory and centroidal angular momentum, so errors in these quantities
cannot be corrected. Therefore, achieving the desired launching states with precision is
critical for ensuring the entire motion’s success.

4.5 Conclusion

This chapter investigated the effect of a springy leg on the balance controller described in
Featherstone (2017, 2018), which aims to achieve and maintain balance in the presence of
large, fast motions. The purpose of this study was to investigate the feasibility of a robot
that uses a spring in its leg to help it hop efficiently, but which also needs to balance on that
leg. It was shown that the balance controller can cope with the large, fast motions that occur



4.5 Conclusion 79

cL (kgm2/s) ċx (m/s) ċy (m/s) Av.Error Task Duration (s)
NLP Solution -1.1808 0.9918 2.4131 - 0.391

F̂s = 0 -0.9435 0.8715 2.4589 11.3753% 0.3968
F̂s = 0.1Fs -0.9741 0.8908 2.4664 9.9641% 0.396
F̂s = 0.2Fs -1.003 0.9086 2.4719 8.6259% 0.3952
F̂s = 0.3Fs -1.0302 0.9247 2.4751 7.3603% 0.3945
F̂s = 0.4Fs -1.00556 0.9393 2.4761 6.1693% 0.3938
F̂s = 0.5Fs -1.0793 0.9521 2.4746 5.0461% 0.3931
F̂s = 0.6Fs -1.1014 0.9634 2.4704 3.956% 0.3925
F̂s = 0.7Fs -1.1221 0.9732 2.4631 2.9723% 0.3919
F̂s = 0.8Fs -1.1416 0.9814 2.4524 1.9964% 0.3914
F̂s = 0.9Fs -1.1649 0.9907 2.4389 0.8398% 0.3911

F̂s = Fs -1.1893 0.9988 2.4219 0.5978% 0.391
F̂s = 1.1Fs -1.2129 1.0047 2.4001 1.5238% 0.3911
F̂s = 1.2Fs -1.2376 1.0088 2.3695 2.7808% 0.3914
F̂s = 1.3Fs -1.2641 1.0116 2.3284 4.1891% 0.3918
F̂s = 1.4Fs -1.2935 1.0138 2.2750 5.8312% 0.392
F̂s = 1.5Fs -1.327 1.0158 2.2074 7.7768% 0.3921
F̂s = 1.6Fs -1.3657 1.017 2.1228 10.0785% 0.3922
F̂s = 1.7Fs -0.1931 0.1813 0.7481 78.1211% 0.1419

Table 4.2 Launching sensitivity related to different spring parameters.

during landing, including small bounces, and that it can track large, fast motion commands
after landing with almost the same accuracy as could be achieved if the leg were rigid. And
all that is necessary in order to achieve this performance is that the spring-loaded joint is
instrumented, and that the measured motion of the spring is taken into account when mapping
from the robot’s state variables to the balance controller’s state variables. This study also
showed the possibility of performing an absolute motion tracking, not only controlling the
angle of the actuated joint q3 but also the angle of the passive joint q1 by introducing a state
mapping for the balance controller given as (4.13). Moreover, we also demonstrated that the
varying-linear plant constructed by the controller does not need to know about the dynamics
introduced by the spring, although these dynamics are taken into account when calculating
the system’s states and mapping the controller’s output to a joint torque or acceleration
command. It also showed that the balance controller could suppress vibrations caused by the
spring.

This chapter also explored the response of the launching controller subject to uncertain
spring parameters. The results demonstrated the controller’s robustness by having a launching
error below 11% for different scenarios. Although the obtained error is small, it is too big for
executing a precise hopping motion.



4.5 Conclusion 80

The next chapter will present a parameter identification approach to achieve a proper
landing and tracking when the robot suffers a spring rupture and loses 50% of its spring force.
The strategy demonstrates the feasible application of high-order sliding mode observers to
balancing applications.



Chapter 5

Non-linear Observers for balancing

The balance controller presented in Azad and Featherstone (2016) can drive a monopod
robot through fast motions without compensating for the system dynamics and achieves a
reasonable error when tracking a reference trajectory. This performance can be improved by
considering the system dynamics when obtaining the actuated torque (Featherstone, 2017).
However, the presence of parametric uncertainties degrades the system’s efficiency and may
cause instability. Thus, an observer is useful to estimate any given system uncertainty.

This chapter presents a modified version of the existing balance controller Featherstone
(2017) to achieve high performance in balancing and absolute angular position tracking tasks
(Singh, 2021) for a spring-loaded monopod in the presence of uncertainties at the spring
parameters. A high-order sliding mode (HOSM) observer algorithm is used to estimate the
external force generated by a viscoelastic element (spring plus dashpot) located between the
robot leg and foot, identifying its elastic and viscous coefficients. The stability analysis of the
overall closed-loop system is demonstrated by using the Lyapunov stability theory. Numerical
simulations are included to illustrate the performance and feasibility of the proposed control
methodology.

Our main objective is to present a solution for estimating the spring parameters online
while the robot executes a task without compromising the controller’s performance.



5.1 Parameters Identification 82

5.1 Parameters Identification

The parameter identification theory deals with the problem of efficiently extracting data about
the system dynamics from its measurements. Most of these strategies involve mainly least-
squares methods, Bayesian analysis, Kalman filter extensions, among others. Finite-time
algorithms have also demonstrated their effectiveness by identifying mechanical parameters
in combination with a recursive least-squares algorithm where the design of the non-linear
injection terms is based on the generalized super-twisting algorithm (Moreno and Osorio,
2012), leading to finite-time convergence (Davila et al., 2006; M’sirdi et al., 2006). In Adetola
and Guay (2008) the authors use the super-twisting algorithm and a non-recursive least-square
algorithm to identify constant parameters in nonlinear systems (Boubaker and Iriarte, 2017).
In general, the finite-time convergence is based on the adaptive control theory, requiring to
solve matrix-valued ordinary differential equations and check the invertibility property of
a matrix online (Polyakov and Fridman, 2014). This scheme allows the reconstruction of
the unknown parameters in finite time provided that a given persistence of excitation (PE)
condition holds (Polyakov and Fridman, 2014). A well-known approach used to ensure the
PE condition in adaptive controllers is to add a bounded perturbation signal to the set-point or
trajectory, or even use it as the reference input, which in contrast may degrade the specified
regulation or tracking performance (Adetola and Guay, 2008). Here, the PE condition can be
guaranteed by performing balance and trajectory tracking tasks.

5.1.1 Finite Time Algorithm

The lack of knowledge, or even the existence of uncertainties in the system’s parameters, is a
common obstacle in the design of a model-based controller capable of successfully executing
a given task. In this subsection, we introduce the basic structure of a High-order Sliding
mode (HOSM) observer.

Let us introduce the following notation:

• R is the set of real numbers;

• m denotes the number of joints or degrees of freedom presented at the robot;

• H∈Rm×m and C∈Rm denote respectively the inertia matrix and the gravity, Coriolis
and centrifugal, and friction forces already commented in previous chapters;

• positions, velocities and accelerations of the robot are described by the vectors q∈Rm,
q̇∈Rm and q̈∈Rm respectively;



5.1 Parameters Identification 83

• τ ∈Rm denotes the torque signal produced by a given controller;

• n denotes the number of uncertain parameters to be estimated;

• ρ > 0 denotes a positive constant.

• I∈Rn×n is an identity matrix.

• for a given matrix Q, the pseudo-inverse and transpose matrices of Q are denoted by
Q† and Q⊤ respectively, the induced norm is given by ||Q||=

√
λmax(Q⊤Q), where

λmax is the maximum eigenvalue;

• ⌈ ·⌋γ =| · |γ sgn(·) for γ > 0, where sgn(·) is the sign function, and · denotes a real
number.

Then, the dynamic equation of motion introduced in the previous chapters can be solved
for a chosen joint b and written into a form:

q̈b = f (q, q̇,τ)+Γ(q, q̇,τ)θ , (5.1)

where f (·, ·, ·) is a nonlinear scalar function, Γ(·, ·, ·)⊤∈Rn is assumed to be a bounded
meassurable regressor in norm i.e., 0<Γm≤||Γ(q, q̇,τ) ||≤ΓM < ∞ for ∀q, q̇,τ , where Γm

and ΓM are scalar bounds, and it satisfies the persistent excitation (PE) condition, i.e. there
exists constants ρ1 > 0 and tk > 0 such that

∫ (t+tk)

t
Γ
⊤(tk)Γ⊤(tk)d tk ≥ ρ1 I (5.2)

(Poznyak, 2010); and θ ∈Rn denotes the uncertain parameters to be identified. In this sense,
the HOSM algorithm formulation takes the following form;

¨̂qb =−k1 φ(e)+Γθ̂ + f (q, q̇,τ) (5.3)

˙̂
θ =−k2 Γ

⊤
α(e) (5.4)

where k1 > 0 is a positive scalar gain, k2 is either an n× n positive definite gain matrix
or a scalar, e= ˙̂qb − q̇b is the parameter estimation error where q̇b is measurable, ˙̂qb is the
observer’s estimation (Boubaker and Iriarte, 2017), and θ̃ ∈Rn = θ̂−θ is the parameter
identification error to be minimized using the gradient-type adaptation law given by (5.4).
Finally, φ(e) and α(e) are nonlinear functions of the parameter estimation error e to be



5.1 Parameters Identification 84

defined in what follows:
φ(e) = ⌈e⌋1/2 + e , (5.5)

α(e) =
1
2
⌈e⌋0 +

3
2
⌈e⌋1/2 + e . (5.6)

Now, we can state the following theorem about the convergence properties of the finite-time
algorithm.

Theorem 1. Consider the dynamic system described by (5.1) and assume that the regressor

vector Γl(q, q̇) is measurable and satisfies the PE condition. Then, the finite-time parameter

identification algorithm (5.3)-(5.4) with (5.5)-(5.6) ensures the uniformly finite-time stability

property of the system errors, and the following properties hold:

• limt→∞ e(t)=0;

• limt→∞ θ̃(t)=0.

Proof. Let the system error dynamics be written as follows: ė=−k1 φ(e)+Γl θ̃ and ˙̃
θ =

−k2 α(e)Γ⊤
l , and define the state vector ζ = [φ(e) θ⊤ ]⊤. Now, consider the following

Lyapunov function candidate: V (t,e, θ̃)=ζ⊤P(t)ζ where P(t) is a symmetric, bounded and
positive definite matrix satisfying Ṗ(t)=−φ ′(e)[P(t)A(t)+A⊤(t)P(t)+Q(t)]. The function
V (t,e, θ̃) is continuous and continuously differentiable everywhere in R3, except on the set
Ω = {(e, θ̃)∈R3 |e=0}, where it is not Lipschitz continuous and V̇ is not well defined for
the partial derivative φ ′(e). Notice that when e=0 in isolated points it implies that α(e)=

φ ′(e)φ(e) and ζ̇ =φ ′(e)A(t)ζ . Then, the time-derivative of V takes the form: V̇ (t,e, θ̃)=

ζ⊤[ Ṗ(t)+φ ′(e)P(t)A(t)+φ ′(e)A(t)⊤P(t) ]ζ , at the points where V is differentiable, which
implies that V̇ (t,e, θ̃)=−φ ′(e)ζ⊤Q(t)ζ =−1/2

(
|e|−1/2 +2

)
ζ⊤Q(t)ζ . Notice that |e1|

1
2 ≤

||ζ ||2, with ||ζ ||22 = ζ⊤ζ = |e|+2|e| 3
2 + e2 + ||θ̃ ||22 as the Euclidean norm of ζ . Thus, V̇ may

be upper bounded as follows: V̇ (t,e, θ̃)≤−c3 (1/2)(||ζ ||2 +2||ζ ||22). This expression holds
when the trajectories of system errors are outside of the set Ω, and it indicates that V̇ <0 in
the complement of the set Ω. To remain on the set Ω for a given time interval t∈ [t, t +T0], it
is necessary that e(t)=0 and Γl θ̃(t)=0 during that interval, which violates the persistent
excitation (PE) condition. Then, it follows from Zubov’s theorem Poznyak (2010) that the
origin is asymptotically stable. For a more detailed proof, please consult Boubaker and Iriarte
(2017); Moreno and Guzman (2011).



5.1 Parameters Identification 85

5.1.2 Spring Parameters Identification

Here, we address the balancing and hopping motion control problem for a spring-loaded
inverted pendulum (SLIP) based robot leg, in the presence of uncertainties and external
disturbances. We consider a real-world scenario where a given monopod robot suffers a
failure in its embedded array of spring-damper pairs during the landing phase. Some factors
that cause viscoelastic elements to fail are: fatigue, inadequate materials, poor manufacturing
processes, improper service and environmental effects. Then, using the finite time algorithm,
the robot can achieve a successful landing and balancing, while performing an efficient
tracking control for its absolute angular position (as presented in Chapter IV), even in the
presence of such failure modes.

Figure 5.1 Block diagram of the proposed balance control strategy.

The control strategy is presented in Fig. 5.1, where the algorithm is used to estimate the
external force generated by a viscoelastic element (spring plus dashpot), located between the
robot leg and foot, identifying its elastic and viscous coefficients. The stability analysis of the
overall closed-loop system is demonstrated by using the Lyapunov stability theory. Numerical
simulations are included to illustrate the performance and feasibility of the proposed control
methodology.

Robot Model

The employed robot is shown in Fig. 5.2, and is similar to the robot introduced in Chapter
IV. The links’ mass and length parameters are given as follows: m1 =0.2kg, m2 =0.5kg,
m3=2.0kg, l1=0.2m, l2=0.3m, and l3=0.5m. Each link i is modelled as a uniform thin
rod, which means that the CoM is half way along the rod, and the rotational inertia about the
CoM is Ii=mi l2

i /12 for i=1,2,3. Joint 2 is passively actuated by an array of two parallel
and identical springs with stiffness and damping coefficients of 1000Nm−1 and 8Nsm−1



5.1 Parameters Identification 86

Figure 5.2 Legged robot model: joint variables, lengths and masses.

each, which results in an under-damped system. The total stiffness is appropriate for a legged
robot to make small hops of around 1m and is soft enough that Joint 2 moves significantly
during landings and fast balancing movements. In other words, the stiffness is low enough to
interfere significantly with the actions of the balance controller.

The tracking results are compared with rigid leg robot (similar to the results shown in
Chapter IV) obtained from the springy-leg robot by locking Joint 2 in the position it takes
when the robot is balanced, the torso is horizontal (so qa = 0), and the spring is holding the
weight of the upper leg and torso, which works out as q2=−0.0282m.

Balance Controller

As described in the previous chapter, the goal of the balance controller is to calculate a
suitable value for

...
L to ensure that qa = q1 + q3 follows a given desired signal qc, while

maintaining the robot’s balance. Now, recalling equation (4.23) from previous chapter to
obtain τ3 (necessary torque to achieve the

...
L obtained from the controller), and assuming that



5.1 Parameters Identification 87

Ks and Ds are both uncertain applied to the absolute tracking problem, we have:
0 H01 H02 H03

0 H11 H12 H13

0 H21 H22 H23

−1 H31 H32 H33




τ3

q̈1

q̈2

q̈3

 =


−

...
L/g−C0

−C1

F̂s −C2

−C3

 , (5.7)

where F̂s is the estimated spring-damper force, and the equation can be solved for both τ3

and q̈3. Next subsection introduces a state estimator (or observer) to provide an accurate
estimate of the internal force Fs, according to (5.7), by identifying the stiffness and damping
coefficients, Ks and Ds, of the viscoelastic element located at the Joint 2, while the springy-leg
robot is balancing and tracking a given position desired signal.

HOSM Observer

Considering the practical case in which one of the pairs of the spring-damper system fails
due to the rupture of the spring in the landing phase and the internal force Fs drops down
(e.g., 50%), affecting the robot’s ability to balance and hop. Then, we propose a high-order
sliding mode (HOSM) observer to ensure a successful landing, balancing, and steering for the
springy-leg robot while it estimates the stiffness and damping coefficients of the viscoelastic
element. It is worth noticing that the controller introduced in Azad and Featherstone (2013)
can be applied to the proposed control problem given by (5.7) for similar balancing and
trajectory tracking tasks. However, less accuracy is expected since the torque is directly
computed from the control law without compensating the robot dynamics.

Let us introduce the following notation:

• H and C denote respectively the inertia matrix and the gravity, Coriolis and centrifugal,
and friction forces for the springy-leg robot, similar to (4.1);

• qx and qy are extra prismatic joints used to describe the position of the robot’s foot
with respect to the world frame;

• positions, velocities and accelerations of the robot are described by the vectors q, q̇

and q̈ respectively, where q=
[
qx qy q1 q2 q3

]⊤
and so on;

• the virtual vector y=
[
qx qy q1 q2 qa

]⊤
satisfies q̇= T ẏ and q̈= T ÿ, where T is a

mapping matrix similar to the matrix defined in (4.13), and ẏ and ÿ denote the velocity
and accelerations of the virtual vector y;



5.1 Parameters Identification 88

• τ =
[
0 0 0 0 τ3

]⊤
denotes the torque produced by the balance controller;

• F =
[
0 0 0 Fs 0

]⊤
denotes the internal force generated by the spring-damper element.

Then, similarly to (4.5) and using the aforementioned notation, the motion dynamics for
the springy-leg robot can be rewritten simply as Featherstone (2017):

ÿ = (HT )−1
[
τ +F −C

]
, (5.8)

or, in a more detailed manner, as:

ÿ = (HT )−1
[
τ−C

]
+(HT )−1


0 0
0 0
0 0

−q2 −q̇2

0 0


[

Ks

Ds

]
, (5.9)

which may be written more compactly as

ÿ = f (q, q̇,τ3)+Γ(q, q̇)θ , (5.10)

where f (·, ·, ·) is a nonlinear matrix function, Γ(·, ·) is the regressor matrix and θ =
[

Ks Ds

]⊤
denotes the vector of uncertain parameters to be identified. Here, without loss of generality,
we assume that Γ(·, ·) is measurable and bounded in norm i.e., 0<Γm≤||Γ(q, q̇) ||≤ΓM < ∞

for ∀q, q̇, and satisfies the persistent excitation (PE) condition (Poznyak, 2010). Selecting the
last coordinate of the acceleration vector ÿ in (5.10) we obtain:

q̈a = fl(q, q̇,τ3)+Γl(q, q̇)θ , (5.11)

where fl(·, ·, ·) is a nonlinear scalar function obtained from the last row of f (·, ·, ·) and
Γl =

[
Γl1 Γl2

]
is a regressor vector obtained from the last row of the regressor matrix Γ(·, ·).

Here, the objective is to estimate θ using a nonlinear parameter identification algorithm
provided that q̇a and Γl are both measurable from the system signals. Then, let us briefly
address the high-order sliding mode (HOSM) observer approach based on the finite-time
algorithm and briefly describe its convergence properties. A complete explanation for the
key features of the HOSM observer approach can be found in Boubaker and Iriarte (2017);
Moreno and Guzman (2011).



5.1 Parameters Identification 89

According to (5.11), a finite-time parameter identification algorithm can be described by:

¨̂qa = −k1φ(e)+Γl(q, q̇) θ̂ + fl(q, q̇,τ3) , (5.12)

˙̂
θ = −α(e)

[
k2 0
0 k3

]
Γ
⊤
l (q, q̇) , (5.13)

where k1,k2,k3 are positive gains, e= ˙̂qa − q̇a is the parameter estimation error where q̇a is
obtained from the sum of joint velocities q̇1 and q̇3 (both assumed to be measurable), ˙̂qa

is the absolute angular velocity estimated by the super-twisting or the fixed-time observer
algorithms (Boubaker and Iriarte, 2017), θ̂ is the vector of uncertain parameters to be
identified by using the gradient-type adaptation law given by (5.13). Then, it is possible
to define the parameter identification error θ̃ = θ̂−θ to be identified by using the gradient-
type adaptation law given by (5.13). Finally, φ(e) and α(e) are nonlinear functions of the
parameter estimation error e defined in equations (5.6) and (5.5).

Simulation Results

In this section, we present the simulation results of an experimental case in which the
springy-leg robot lands with a velocity of −5 ms−1 along the y-axis. This is similar to falling
from a height of 1.3 m from the foot to the ground. At the touch-down, one of the springs
breaks at t = 0.0114s when q2 is compressed by 70 mm dropping the spring array’s force
by 50%. Next, q2 reaches the maximum compression at 164 mm due to the low stiffness in
the spring’s array, producing a small hop after all the elastic energy is released, and lifting
the robot qy = 0.45 m between the foot and the ground. When the robot lands for a second
time the spring compresses 62 mm, and the balance controller is able to stabilize the system,
and then executes a motion command consisting of a sequence of ramps and sinusoids. The
estimator and the balance controller work collectively during the whole experiment, and the
dynamic simulation of the springy-leg robot can be seen in Gamba et al. (2021).

In this simulation, we use the ode23t solver from MATLAB with relative tolerance set to
10−6 and other parameters chosen at their default values. Although the balance controller
assumes that the foot never loses contact nor slips with the ground, in the simulation we have
included the ground-contact model presented in Chapter IV.

The balance controller and the online estimator are switched on from the beginning of the
simulation. The behavior over time of the controller’s state variables and estimation variables
are depicted respectively in Fig. 5.3 and Fig. 5.4. The poles of the controller are λ1=−20,
λ2=−20, λ3=−20, and λ4=−1/Tc, all expressed rads−1. The gains of the estimator are:



5.1 Parameters Identification 90

k1=10.83, chosen so that it ensures the persistent excitation condition, k2=9.9×103 and
k3=18.26, which are selected according to the magnitude of θ and the desired convergence
rate of θ̂ . The estimated parameters θ̃ and e are initialized to zero at the beginning of the
simulation when Ks=2000 Nm−1 and Ds=16 Nsm−1 at the spring’s array.

Figure 5.3 Evolution of the controller’s state variables from the moment of landing until
the robot has settled. The left side scale corresponds to L̈, L̇ and L, and the right side scale
corresponds to qa. The shaded zone shows the time interval during which the foot has lost
contact with the ground because of the small hop.

From Fig. 5.3, it can be seen that qa is initially pushed to about 0.08 rad by the momentum
of the landing before swinging slightly negative. Next, it rises to nearly 0.32 rad during the
hop (shaded area) and then moves back to approximately −0.21 rad at the second landing.
Finally, after a small bounce at t = 1.085s, the absolute joint qa is driven close to zero.

In figure 5.4, it is possible to observe some oscillations in D̂s between 1.274, 14.93
and 10.9 Nsm−1 before the hop (shaded area). This oscillatory behavior may arise due to
the lack of persistent excitation of q̇a between the rupture point (t=0.0114 s) and the hop
(t = 0.1456s). q2 only shrinks and expands once during this period. Notice that θ̂ (K̂s and
D̂s) tends to drift away when the persistent excitation (q̇a ≈ 0) is absent or very small, and



5.1 Parameters Identification 91

Figure 5.4 Evolution of the estimator’s parameters from the moment of landing until the
robot has settled. The left side scale corresponds to K̂s and D̂s, and the right side scale
corresponds to e. The shaded zone shows the time interval during which the foot has lost
contact with the ground because of the small hop.

the system continues moving due to the elastic energy on the spring (spike drift between
1.15 s and 1.25 s in Fig. 5.4).

The failure occurs at t=0.0114 s when the q2 compresses to 70 mm. After the rupture,
the force produced by the spring’s array drops 50% to Ks=1000 Nm−1 and Ds=8 Nsm−1,
the estimated K̂s decreases to 550 Nm−1 and creates a small overshoot just before the hop
(shaded area).

Then, the robot’s foot loses contact with the ground (small hop) between t=0.1456 s and
t=0.7510 s, and reaches the maximum height of 0.45 m between the foot and the ground.
This flight period is shown shaded in both Fig. 5.3 and Fig. 5.4. The balance controller
does not know that the foot has left the ground, and continues using the model described
in the previous chapter, which assumes that the robot’s foot is always on the ground. On
the other hand, it is assumed that the observer knows the position and velocity of the whole
system in the world frame. Although this assumption is difficult to fulfill on real applications



5.1 Parameters Identification 92

and may need external sensors like cameras that are always watching the robot, the scope
of these results is to give a benchmark of the best observer’s response when all the robot
states are available. During the flight period, the controller’s and estimator’s stability are not
significantly affected by the lack of ground contact, and the robot has come to rest within
about 1 s after the second landing. Notice that the balance controller is assumed to know
the orientation of the robot at all times, e.g., using an onboard IMU, so it always knows the
correct values of q1 and q̇1.

At t = 2.011 s the desired signal qc switches from zero to a sequence of ramps and
sinusoids similar to the one mentioned in subsection 4.4.2 that asks the robot to make
large and fast motions. The control sequence starts with three ramps between 0 and 0.8 rad
at a speed of 3 rads−1, followed by a long ramp from 0.8 rad to −0.6 rad at −2.5rads−1,
followed by two more ramps at speeds of 2.5rads−1 and −1rads−1, followed by three cycles
of a sine wave at 1 Hz. Fig. 5.5 plots this portion of the action sequence.

Two zeros are introduced to the desired signal at −20 rads−1, as mentioned in (4.21).
For this springy-leg robot, Tc varies between 0.1562 s at qa = −0.6 rad and 0.2507 s at
qa = 0.8 rad in this action sequence. The rigid-leg response is obtained from a separate
simulation in which the initial conditions are set as close as possible to the actual state of the
springy-leg robot at t = 2.011 s. The behavior of the signals is shown in Fig. 5.5.

4 6 8 10 12 14

sec

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ra
d

Figure 5.5 Absolute motion tracking performance of the balance controller. qc is the original
desired signal, qt denotes the theoretical response of the balance controller if the plant was
really linear, qa (springy) is the actual response of the absolute joint on the springy-leg robot,
and qa (rigid) denotes the actual response on the rigid-leg robot.

In Fig. 5.5, it can be seen that there are some significant tracking errors, particularly at
the beginning and end of the ramps. Three main factors contribute to such errors: (i) the
balance controller assumes that the plant in Fig. 4.2 is linear when in reality it is not; (ii)
for simplicity, the acausal filter uses values of Tc calculated for a balanced configuration at



5.1 Parameters Identification 93

each instant instead of a leaning configuration; (iii) at each of the balance configurations
used to calculate Tc, it assumes that q2 is constant for the whole tracking when in fact it
oscillates around 10% and reaches a peak of 20%, causing tracking inaccuracies as shown in
Figures 5.5 and 5.6. At a given moment, we can see that a difference occurs at the end of the
second ramp, around 4.8s, where the springy-leg response shows a small amount of ringing
that dies away in about 0.5s. There is also a little bit of ringing at the end of the long ramp.
However, considering the under-damped nature of the spring-damper pair in the leg, there is
remarkably little ringing overall, and what little there is dies away quickly.

Figure 5.6 Motion of the foot and spring during landing and tracking of the desired signal in
Fig. 5.5.

Figure 5.6 shows the motion of the spring and the foot along the y-axis during landing
(shaded area) and tracking of the command sequence (after the shaded area). At the landing
phase, the spring reached a compression peak of about 16.7cm, which is 33.4% of the leg
length. During the tracking task, the spring compression varied in a range of 5.5cm, which
is 11% of the leg length. At the foot position (along with the y-axis) graph, it is possible



5.1 Parameters Identification 94

to observe the hop that occurred after the spring’s rupture; it also shows that the robot lost
contact with the ground around seven times during the tracking phase.

4 6 8 10 12 14
-40

-20

0

20

40

%

4 6 8 10 12 14

sec

-0.4

-0.2

0

0.2

0.4

ra
d
 s

-1

Figure 5.7 Figure a shows the evolution of the error related to the estimations θ̃ . Figure b
shows the observer’s injected term error e response. Both graphs display information from
the tracking phase shown in Fig. 5.5.

In previous simulations, the balance controller has presented a certain robustness to
inaccuracies at the spring force estimation below 25%. Figure 5.7 shows the evolution in
time of the estimated error in percentage (eK for the stiffness coefficient error, and eD for
the damping coefficient error), and the observer’s injected term error e during the tracking
phase, eK presents two peak variations of −28.68% and −27.36% at t = 7.7s and t = 10.9s
respectively, which coincides with the instants that present larger error at the injected term.
These drifts can be correlated to the lack of PE. Moreover, as the damping coefficient
contributes less to the dynamics of the system, it seems to be more difficult to have a stable
estimation of it than the stiffness.

Then, in this experimental case, we can conclude that the balance controller combined
with an HOSM observer has accomplished three tasks simultaneously using only a single



5.2 Conclusion 95

actuator: balance the robot, follow the commanded signal, and suppress vibrations, even
in the presence of uncertainties in the stiffness and damping coefficients of the viscoelastic
element.

5.2 Conclusion

This chapter has studied to what degree a springy leg may affect the performance of the
balance controller presented in Gamba and Featherstone (2021), combined with a HOSM
observer presented in Moreno and Guzman (2011) when a failure occurs in the spring-loaded
device, which loses 50% of its stiffness due to a spring fracture. This strategy aims to
keep the robot in balance in the presence of large and fast motions, as well as parametric
uncertainties. It was shown that the balance controller can cope with large, fast motions that
occur during landing, including small bounces (Figures 5.3 and 5.4). Moreover, it can track
large, fast motion commands even with a noisy spring force estimation after landing, with
almost the same accuracy that could be achieved if the leg was rigid (Fig. 5.5). The drifts
at the observer estimation do not significantly reduce the balance controller performance at
landing, balancing, and tracking, which gives a sense of certain robustness to inaccuracies in
the spring model.

The next chapter will analyze the estimation performance of the absolute orientation
acquired from three different IMUs subject to continuous low-intensity impacts (4g maximum
acceleration along the z-axis). Similar to mounting the IMU at a running robot.



Chapter 6

IMU Bouncing Test

The feasibility of highly athletic motions on real robots relies on the behavior of the existing
hardware when executing this kind of task. In contrast to rovers and drones, a monopod
robot needs to produce leaps and hops for moving along the ground. Consequently, the study
of how well these sensors perform in such bouncing conditions is critical for the proper
operation of the robot.

One of the technological objectives of the Skippy project was to measure the performance
of off-the-shelf components such as encoders and IMUs when subjected to the kinds of
motion that a highly athletic robot might experience, like bouncing, landing, etc. In this
sense, testing and analyzing the response of different IMUs subject to continuous bouncing
applications is also part of this study. The principal purpose of this test is to discover whether
or not exposure to prolonged bouncing motion causes the IMU’s estimate of its orientation to
become inaccurate.

In the IMU bouncing test, it is necessary to find the most suitable peripherals for facilitat-
ing the mechanical and control implementation. The controller should guarantee the proper
execution of the control loop and data acquisition at the specified frequency. It also needs to
allow online monitoring, logging, and control during the experiment execution. Finally, at
the end of the test, the application should have the option to save the logged data in a .mat
file for further analysis in MATLAB.

In this chapter, we develop a test rig to explore the behavior of three different IMU
sensors subject to continuous bouncing. This task was performed by the Skippy team and I
contributed to the realization of the experiment by:

• Coordinating the purchase of the actuation system;



6.1 Experimental Setup 97

• Developing the low-level and high-level code presented in the sbRIO development
board (NI, 2021b) to control the solenoid and log the measurements obtained from the
optical encoder and one IMU;

• Finding the ideal filter used for post-processing the measured data for the respective
analysis.

• Providing support during the experiments and data analysis.

Due to time constraints, It wasn’t possible to expand the logging code for the other two IMUs
on the SbRIO, and so the data was captured using different devices.

Our main objective in this chapter is to test the orientation estimation of different IMU
sensors subject to simultaneous bouncing conditions, which are common in legged systems
subject to running and hopping activities.

6.1 Experimental Setup

The apparatus consists of a long rod connected to a rotational actuator, and three IMUs
mounted at the other end. The actuator moves the rod up and down in a vertical plane. The
IMUs travel up and down in a circular arc with a large radius, imitating a hopping movement.

This experiment was performed using a one meter carbon fiber rod with a diameter of
twenty millimeters and a wall thickness of 0.5mm connected to a rotatory solenoid (Magnet-
Schultz GmbH, 2021). Some 3D-printed parts and an aluminum hub were used to complete
the mechanical design of the test rig. At the base, an optical encoder (RLS, 2021) is placed
to obtain the angular position of the rod during the experiment. The experiment requires
mounting the three different IMUs (BOSCH, 2021; LORD Sensing Microstrain, 2021a;
VectorNav, 2021) at the end of the rod. The controller was implemented on the sbRIO-9637
development board from NI using the software LabVIEW (NI, 2021a). The board was
configured based on a "Supervisory Control and Data Acquisition" (SCADA) architecture to
monitor online the acquired data and store it if needed. Two extra devices (Arduino, 2021;
LORD Sensing Microstrain, 2021b) were used to complete the logging of all the IMUs. The
complete setup is shown in figure 6.1, and it is divided into the actuation system, the sensors,
and the controller and data acquisition systems.



6.1 Experimental Setup 98

Figure 6.1 Vertical view of the experimental setup.

6.1.1 Actuation system

In the actuation system, there is a Rotary Solenoid Type G DR (GDR075X20A61-S1)
(Magnet-Schultz GmbH, 2021) powered by a Pololu G2 High-Power Motor Driver (Pololu,
2021), which is controlled by the sbRIO-9637 development board (NI, 2021b). The solenoid
directly actuates the carbon fiber tube as shown in figure 6.2.

6.1.2 Sensors

In the sensors system, there is one optical encoder and three different IMUs. The three IMUs
are mounted on a custom-made 3D-printed support (Fig. 6.3) to allow them to have the y-axis
aligned with the rotation axis of the solenoid. The data collected from the IMUs are the
compensated linear accelerations, the compensated angular velocities, and the quaternions.
The measured quaternions are offline converted into Euler angles.



6.1 Experimental Setup 99

Figure 6.2 Base view of the experimental setup.

Optical Encoder

The angular position of the tube is measured employing an AksIM-2 absolute position
encoder (RLS, 2021), sampled at 500Hz by sbRIO-9637 development board (NI, 2021b).

VN-100

The Vectornav VN100 (VectorNav, 2021) is the IMU able to measure the higher linear accel-
eration (16g). It is sampled at 500Hz by the sbRIO-9637 board using the SPI communication
protocol. The IMU has a custom-made PCB, and this IMU is intended to be used in the
highly athletic monopedal robot called Skippy (Featherstone, 2021).

3DM-GX5-15

The Lord MicroStrain 3DM-GX5-15 (LORD Sensing Microstrain, 2021a) can measure linear
accelerations up to 8g and it is configured to stream data at 500 Hz continuously over the
recommended standard 232 (RS232 (Han and Kong, 2010)) serial communication protocol
to the software provided by the vendor (LORD Sensing Microstrain, 2021b). The IMU
communicates using the RS232 protocol over a universal serial bus (USB) cable connected
to the host computer.

BN0055

The Bosch BNO055 (BOSCH, 2021) is assembled on a DFRobot breakout (DFRobot, 2021).
Although DFRobot breakout is discontinued, the BNO055 chip can be found in breakouts



6.1 Experimental Setup 100

Figure 6.3 Vertical view of the IMUs mounted at the end of the carbon fiber rod.

with identical characteristics provided by other vendors, such as Adafruit (Adafruit, 2021). It
is the cheapest among the tested IMUs (it costs a few tens of euros). This device has been
configured at the lowest linear acceleration range (4g) to have the highest possible resolution
at the measurements. An arduino UNO board (Arduino, 2021) samples the device at 100Hz
by using the I2C communication protocol. The idea of this setup is to compare professional
and expensive acquisition systems with hobbyist and cheap ones.

6.1.3 Controllers

The three independent data acquisition systems are activated simultaneously by a LabVIEW
virtual instrument (VI). When the start button is pressed in the host’s VI, the FPGA starts
logging the VN100 and sets to high a digital output connected to the Arduino Uno to start
sampling. The signal returns to low when the user interrupts the logging at the host’s VI. The
host’s VI also provides the logging timestamp used in the SensorConnect software to save
the captured data.



6.2 Experiment Description 101

SbRIO 9637

The sbRIO-9637 board (NI, 2021b) has analog and digital inputs/outputs, a dual-core CPU,
and a programmable FPGA (Xilinx, 2021). The board was configured based on a Supervisory
Control and Data Acquisition (SCADA) architecture, where the FPGA oversees performing:

• The SPI communication;

• The PWM logic;

• The necessary signal conditioning.

The board’s CPU uses these measurements to control the solenoid and sends them to the host
using network streams. Finally, the host runs a Human-Machine-Interface (HMI) to monitor
online the acquired data. The application also allows the user to clear, hold and save the logs
in a .mat file for further analysis of the data collected.

Arduino UNO

The Arduino Uno board (Arduino, 2021) acquires the data from the Bosch BNO055 sensor
and sends them to the PC through a serial interface. The PC then stores the data in a .csv file.

Host Computer

A host computer runs the software SensorConnect (LORD Sensing Microstrain, 2021b)
provided by the vendor. The IMU Lord MicroStrain 3DM-GX5-15 communicates using the
RS232 protocol over a USB cable connected to the one of the computer’s port.

6.2 Experiment Description

The experiment continuously bounces the tube off the rubber bands and actuates the solenoid
in the same direction of the rod’s motion only when the rod’s angle (measured by the encoder)
is in a specified range (see Fig.6.4). The lower bound of this range is when the rod is about to
touch the rubber bands, and the upper bound depends on the desired maximum acceleration
at the bounce. The idea is to have a smooth transition between the touchdown and flying
phases, which are the two components of the continuous bouncing behavior of a hopping
robot.

The experiment starts by logging the sensors with the rod at a rest position for about
one minute and nineteen seconds. Then, the rod is manually pushed downwards to start the



6.3 Results 102

3.335 3.34 3.345 3.35 3.355

minutes

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

ra
d

-100

-80

-60

-40

-20

0

20

40

60

80

100

%

Figure 6.4 Actuation Logic. The blue line is the angle measurement obtained from the
encoder, and the red line denotes the duty cycle of the PWM signal controlling the solenoid.
The left-side scale applies to the encoder measurement, and the right-side scale applies to the
solenoid’s duty cycle.

bouncing motion, which continues for about three minutes and ten seconds. Finally, the
solenoid is switched off, so that the bouncing ceases, and the system continues logging the
sensors for one and a half minutes. After the data is captured, the measurements obtained from
the encoder and the Euler rotations about the y-axis from the three IMUs are synchronized
offline for further analysis. See figures 6.5 and 6.6.

6.3 Results

This experiment aims to analyze the estimation performance of the absolute orientation
acquired from the IMUs subject to continuous low-intensity impacts, similar to mounting
the IMU on a running robot. Due to the physical setup, all the tested IMUs have the y axis
aligned with the rotation axis of the solenoid; this angle is directly obtained from the encoder



6.3 Results 103

1.32 1.33 1.34 1.35 1.36 1.37 1.38

minutes

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

ra
d

encoder

VN100

3DM-GX5-15

BNO055

Figure 6.5 Synchronized measurements obtained from the encoder and the three IMUs at
the beginning of the bouncing motion.

and is used as a reference to compute the rotation angles measured by the IMUs. Hence, the
main focus is to study the difference between the angular position measured by the encoder
and the angular rotation about the y-axis estimated by the IMUs. An error is calculated
between the IMU’s (rotation about the y-axis) and the encoder’s measurements (see figure
6.7). During the experiment, the rod presented a minor bending while it hits the rubber
bands. This bending behavior causes a slightly bigger rotation at the IMUs compared with
encoder measurements (see the bottoms peaks of the VN-100 and GX5 IMUs responses in
figure 6.6 before t = 4.46min). The error at the two remaining rotation axes (x and z axes)
is the difference between the initial and final orientations because the sensors do not move
about those axes during the experiment. The continuous bouncing of the specimen causes a
periodic component in the y-axis errors. This component has been removed from the error
graphs by a zero-phase low pass filter (the errors are displayed in figures 6.8 and 6.9 for
the x and z axes). The filtered signals indicate the orientation drift of each IMU during the
complete experiment (figures 6.7, 6.8 and 6.9).



6.3 Results 104

4.46 4.47 4.48 4.49 4.5 4.51 4.52 4.53 4.54 4.55 4.56

minutes

-0.2

-0.1

0

0.1

0.2

0.3

0.4

ra
d

encoder

VN100

3DM-GX5-15

BNO055

Figure 6.6 Synchronized measurements obtained from the encoder and the three IMUs at
the end of the bouncing motion.

In this experiment, the maximum value of linear acceleration along the z-axis is 4g. All
three IMUs have been tested under the same conditions.

Figure 6.7 shows the filtered orientation error response about the y axis. In this graph,
the three IMUs have an error very close to zero before the bouncing motion t = 1.327min.
During the bouncing motion, the VN-100 IMU drifts to a minimum value of −0.007rad
(−0.4011deg) at 1.924min, and a maximum value of 0.019rad (1.0886deg) at 4.239min;
the GX5 IMU drifts to a minimum value of −8.76×10−4 rad (−0.0502deg) at 1.045min
(which is before the bouncing begins), and a maximum value of 2.28×10−3 rad (0.1306deg)
at 4.253min; and the BNO055 IMU exhibits a maximum drift of 0.2775rad (15.8996deg)
at 4.144min. These drifts can also be seen in figure 6.6 at the end of the bouncing motion.
At the end of the bouncing motion, at t = 4.47min, the VN-100 and GX5 IMUs succeed in
reducing the drift to a value close to zero; the BNO055 IMU error touches the zero value
and converges to a 0.01123rad (0.6434deg) offset (the sensor failed to recover the right
orientation).



6.3 Results 105

0 1 2 3 4 5

minutes

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

ra
d

VN100

3DM-GX5-15

BNO055

Figure 6.7 Filtered orientation error response about the y axis.

Figure 6.8 shows the filtered orientation error response about the x axis. In this chart, the
GX5 IMU error varies between −6.5×10−4 rad (−0.0376deg) and 3×10−4 rad (0.0172deg)
during the whole motion. However, during the bouncing motion, the VN-100 IMU drifts to a
maximum value of 0.0035rad (0.2005deg) at 1.82min and a minimum value of −0.0316rad
(−1.8105deg) at 4.368min; and the BNO055 IMU drifts to a minimum value of −0.1231rad
(−7.0531deg) at 4.299min. At the end of the bouncing motion, at t = 4.47min, the VN-100
succeeds in reducing the drift to a value close to zero; the BNO055 IMU error touches the
zero value and converges to a −4.537×10−3 rad (−0.26deg) offset.

Figure 6.9 shows the filtered orientation error response about the z-axis. This plot shows
that the three IMUs suffer a significant drift, the GX5 IMU performed better than the other
two, but the final offset is still big. At this point, we do not have a technical explanation for
this behavior; we believe that it could be related to the test apparatus or the environment.



6.3 Results 106

0 1 2 3 4 5

minutes

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

ra
d

VN100

3DM-GX5-15

BNO055

Figure 6.8 Filtered orientation error response about the x axis.

|Ex| |Ey| |Ez| Resolution Repeatability
IMU

(rad) (deg) ( rad) (deg) ( rad) (deg) ( rad) (deg) ( rad) (deg)

VN100 0.0316 1.81 0.0190 1.09 0.0747 4.28 0.0009 0.05 0.0035 0.2

3DM-GX5-15 0.0007 0.04 0.0023 0.13 0.0127 0.73 0.0002 0.01 0.0035 0.2

BNO055 0.1231 7.06 0.2775 15.90 0.0606 3.47

Table 6.1 Absolute value of the maximum error about each axis for the three IMUs. Errors
in red denote that it surpassed the resolution and repeatability tolerances in the data sheet.
Blank spaces denote that the information was not available.

Table 6.1 shows the absolute value of the maximum error about each axis for the three
IMUs, where the values in red denote that it surpassed the resolution and repeatability
tolerances given the IMU’s data sheet. The minimum difference that the device can mea-
sure (resolution) and repeatability (the closeness of agreement among several consecutive
measurements) tolerances were obtained from the sensor’s datasheet for the VN100 and
3DM-GX5-15 IMUs. It was not possible to find these values for the BNO055 device. The
results about the x and y axes show that the 3DM-GX5-15 IMU was the unique one capable



6.4 Conclusion 107

0 1 2 3 4 5

minutes

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

ra
d

VN100

3DM-GX5-15

BNO055

Figure 6.9 Filtered orientation error response about the z axis.

of having an absolute error below the repeatability range; the BNO055 IMU showed the
largest errors.

6.4 Conclusion

This chapter aimed to analyze the estimation performance of the absolute orientation acquired
from the IMUs subject to continuous low-intensity impacts (4g maximum acceleration along
the z-axis), similar to mounting the IMU at a running robot. According to the obtained
results, all three IMUs suffered a certain amount of drift during the experiment. In summary,
the IMU that had the worst performance was the BNO055, and it can be because of its low
price, compared with the other two IMUs. On the other hand, the VN-100 demonstrated
a better performance but experienced a drift during the bouncing motion. The GX5 IMU
achieved the best performance during the experiment. Although, at the orientation estimation
about the z-axis, we observed an unusual behavior on all the IMUs. In contrast with the other



6.4 Conclusion 108

two IMUs, the BNO055 IMU was the only one that couldn’t recover the initial orientation
after the bouncing motion had stopped; the maximum offset presented was about 0.5deg
that maybe into the precision range of the sensor. After doing a quick survey about the IMU
prices in the market, we have found that the GX5 IMU costs about three times the price of
the VN100 IMU, and the VN100 IMU costs about twenty-five times the BNO055 price. In
this sense, there is a clear relationship between price and orientation precision.



Chapter 7

Conclusion

This thesis explored the feasibility of hopping, landing, and balancing with a springy leg
monopod in the presence of uncertainties at the spring parameters. The key idea was to
develop a balance controller capable of accurately controlling the robot in executing fast
trajectory tracking; and an optimization tool for trajectory optimization applications.

Chapter two presented a strategy to accurately control a monoped robot during the
launching motion to produce a leap. A DOC-Legendre-Gauss-Radau method was developed
to obtain this motion profile. Then, a launch controller was designed based on the balance
theory presented in Featherstone (2017) to produce the optimized motion on the robot. The
presented strategy was compared with the approach introduced by Azad and Featherstone
(2013) in terms of optimality and accuracy. In this context, it was demonstrated that by
formulating the boundary value problem as a nonlinear programming problem, it is possible
to find a quicker and smoother motion than the timed-reversal technique used in Azad
and Featherstone (2013). And that it is also possible to design a controller for driving the
robot accurately during the launching. The proposed controller succeeded in reproducing
the desired motion satisfying the mechanical and torque constraints imposed during the
launching optimization with a small error (0.13%) at the take-off instant.

The third chapter presented a numerical solution for finding motion profiles and spring
parameters applied to a spring-loaded monopod robot at landing. The first section reviewed
an analytical approach to obtain the spring parameters for a linear mass-spring-damper system
subject to a gravityless mass impact scenario. The reviewed procedure aimed to reduce the
maximum impact force considering the maximum spring displacement. The second section of
this chapter introduced a numerical strategy to find the motion profile and spring parameters
for a spring-loaded monopod robot that minimizes the peak force at landing; this was the
main topic of this chapter. After running the optimization, the optimizer found the progressive



110

nonlinear spring optimal for this task rather than the regressive one. The nonlinear spring
reached a slightly higher spring force, but the ground reaction force and actuator torque were
lower than the linear one. The results in this chapter have demonstrated the complexity of the
landing task facing a spring-loaded monoped robot. The results showed that the robot with a
nonlinear progressive spring can increase the robot’s ability to perform a soft landing with
less electrical power. It’s also showed the possibility of solving trajectory optimization and
parameter optimization problems by using the orthogonal collocation methods implemented
in conjunction with the Rigid Body Dynamics Algorithms (Featherstone, 2008).

Chapter four investigated the effect of a springy leg on the balance controller described
in Featherstone (2017, 2018), which aimed to achieve and maintain balance in the presence
of large, fast motions. The balance controller can cope with the large, fast motions that
occur during landing, including small bounces, and tracking large, fast motion commands
after landing with almost the same accuracy as could be achieved if the leg were rigid. It
also showed that the balance controller could suppress vibrations caused by the spring. This
chapter also showed the possibility of performing an absolute motion tracking, not only
controlling the angle of the actuated joint q3 but also the angle of the passive joint q1 by
introducing a state mapping for the balance controller given as (4.13). It also demonstrated
that the varying-linear plant constructed by the controller does not need to know about
the dynamics introduced by the spring. Although these dynamics are taken into account
when calculating the system’s states and mapping the controller’s output to a joint torque or
acceleration command.

The fifth chapter studied to what degree a springy leg may affect the performance of
the balance controller (Gamba and Featherstone, 2021), combined with a HOSM observer
(Moreno and Guzman, 2011) when a failure occurs in the spring-loaded device, which loses
50% of its stiffness due to a spring breakage. This strategy succeeds in keeping the robot’s
balance in the presence of large and fast motions, as well as parametric uncertainties. Some
estimation drifts at the observer estimation did not significantly reduce the balance controller
performance at landing, balancing, and tracking, which gives a sense of certain robustness to
inaccuracies in the spring model.

Chapter six aimed to analyze the estimation performance of the absolute orientation
acquired from the IMUs subject to continuous low-intensity impacts (4g maximum accel-
eration along the z-axis), similar to mounting the IMU om a running robot. According to
the obtained results, the three IMUs suffered a certain kind of drift during the experiment.
In summary, the IMU that had the worst performance was the BNO055, which was the
cheapest of the three IMUs tested. On the other hand, the VN-100 demonstrated a better



111

performance but experienced a drift during the bouncing motion. The GX5 IMU achieved
the best performance during the experiment. Although, at the orientation estimation about
the z-axis, we observed an unusual behavior on all threee IMUs. In contrast with the other
two IMUs, the BNO055 IMU was the only one that couldn’t recover the initial orientation
after the bouncing motion had stopped; the maximum offset presented was about 0.5deg,
which may be into the precision range of the sensor.

Some proposed topics for further investigation and development involve:

• Complete the design and construction of the Skippy robot.

• Implement the balance controller in a real spring-loaded robot.

• Obtain a motion profile for a hop and execute with the launching controller on a real
robot.

• Implement a parameter identification approach for estimating the plant parameters
needed by the balance controllers to overcome uncertainties at dynamic parameters of
the robot, like inertia, masses, and position of CoM.

• Design and validate through experiments a 3D balance controller for one-support point
robots to achieve high-performance motions.

• Investigate the effect of a series elastic element in the actuated joint.

• Explore the extension of the balance controller to systems with compliant mechanisms.

• Perform the IMU hooping test for more aggressive hopping motions, maximum linear
acceleration of 8g or 16g along the IMU’s z-axis.



References

Adafruit (2021). Bno055 absolute orientation sensor. https://learn.adafruit.com/
adafruit-bno055-absolute-orientation-sensor. Last access. Oct. 26th 2021.

Adetola, V. and Guay, M. (2008). Finite-time parameter estimation in adaptive control of
nonlinear systems. IEEE Transactions on Automatic Control, 53(3):807–811.

Ahmad, N., Ghazilla, R. A. B. R., Khairi, N. M., and Kasi, V. (2013). Reviews on various
inertial measurement unit (imu) sensor applications. In SiPS 2013.

Aleksic-Veljkovic, A., Madić, D., Veličković, S., Herodek, K., and Popović, B. (2014).
Balance in young gymnasts: Age-group differences. Facta Universitatis Series Physical
education and Sport, 12:289–296.

Allione, F., A., B. R. P. S., Gkikakis, E., and Featherstone, R. (2021). Mechanical shock test-
ing of incremental and absolute position encoders. In 2021 20th International Conference
on Advanced Robotics, pages 384–391.

Alsharif, O., Ouyang, T., Beaufays, F., Zhai, S., Breuel, T., and Schalkwyk, J. (2015).
Long short term memory neural network for keyboard gesture decoding. In 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
2076–2080.

Anand, A. S., Zhao, G., Roth, H., and Seyfarth, A. (2019). A deep reinforcement learning
based approach towards generating human walking behavior with a neuromuscular model.
In 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids),
pages 537–543.

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., and Diehl, M. (2018). CasADi
– A software framework for nonlinear optimization and optimal control. Mathematical
Programming Computation.

Ankaralı, M. M., Saranlı, U., and Saranlı, A. (2010). Control of Underactuated Planar
Hexapedal Pronking through a Dynamically Embedded SLIP Monopod. In 2010 IEEE
International Conference on Robotics and Automation, pages 4721–4727, Anchorage AK,
USA.

Arduino (2021). Arduino Uno Board. https://store.arduino.cc/products/arduino-uno-rev3.
Last access. Oct. 3rd 2021.

Arslan, O., Saranli, U., and Morgul, O. (2009). An approximate stance map of the spring
mass hopper with gravity correction for nonsymmetric locomotions. In Proceedings -
IEEE International Conference on Robotics and Automation, pages 2388 – 2393.

https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor
https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor
https://store.arduino.cc/products/arduino-uno-rev3


References 113

Azad, M. (2014). Balancing and hopping motion control algorithms for an under-actuated
robot. PhD thesis, Australian National University. Research School of Engineering.

Azad, M. and Featherstone, R. (2013). Balancing and Hopping Motion of a Planar Hopper
with One Actuator. In 2013 IEEE International Conference on Robotics and Automation,
pages 2027–2032, Karlsruhe, Germany.

Azad, M. and Featherstone, R. (2016). Angular Momentum based Balance Controller for an
Under-actuated Planar Robot. Autonomous Robot, 40:93–107.

Batts, Z., Kim, J., and Yamane, K. (2017). Untethered One-Legged Hopping in 3D Us-
ing Linear Elastic Actuator in Parallel (LEAP). In 2016 International Symposium on
Experimental Robotics, pages 103–112, Tokyo, Japan.

Benallegue, A., Mokhtari, A., and Fridman, L. (2006). Feedback linearization and high
order sliding mode observer for a quadrotor uav. In International Workshop on Variable
Structure Systems, 2006. VSS’06., pages 365–372.

Benson, L. C., Ahamed, N. U., Kobsar, D., and Ferber, R. (2019). New considerations for
collecting biomechanical data using wearable sensors: Number of level runs to define a
stable running pattern with a single imu. Journal of Biomechanics, 85:187–192.

Berkemeier, M. D. and Fearing, R. S. (1998). Sliding and Hopping Gaits for the Underactu-
ated Acrobot. IEEE Transactions on Robotics and Automation, 14(4):629–634.

Berkemeier, M. D. and Fearing, R. S. (1999). Tracking Fast Inverted Trajectories of the
Underactuated Acrobot. IEEE Transactions on Robotics and Automation, 15(4):740–750.

Biegler, L., Cervantes, A., and Wachter, A. (2002). Advances in simultaneous strategies for
dynamic process optimization. Chemical Engineering Science, 57:575–593.

Biegler, L. T. (2010). Nonlinear Programming. Society for Industrial and Applied Mathe-
matics.

Bolzon, G., Fedele, R., and Maier, G. (2002). Parameter identification of a cohesive crack
model by kalman filter. Computer Methods in Applied Mechanics and Engineering,
191(25):2847–2871.

BOSCH (2021). BNO055. https://www.bosch-sensortec.com/products/smart-sensors/
bno055/. Last access. Oct. 26th 2021.

Boubaker, O. and Iriarte, R. (2017). The Inverted Pendulum in Control Theory and Robotics:
From Theory to New Innovations. Control, Robotics and Sensors. Institution of Engineering
and Technology.

Briot, S. and Gautier, M. (2013). Global identification of joint drive gains and dynamic
parameters of parallel robots. Multibody System Dynamics, 136.

Caron, F., Duflos, E., Pomorski, D., and Vanheeghe, P. (2006). Gps/imu data fusion using
multisensor kalman filtering: introduction of contextual aspects. Information Fusion,
7(2):221–230.

https://www.bosch-sensortec.com/products/smart-sensors/bno055/
https://www.bosch-sensortec.com/products/smart-sensors/bno055/


References 114

Cervantes, A. and Biegler, L. T. (2009). Optimization strategies for dynamic systems. In
Floudas, C. A. and Pardalos, P. M., editors, Encyclopedia of Optimization, Second Edition,
pages 2847–2858. Springer.

Chanchareon, R., Sangveraphunsiri, V., and Chantranuwathana, S. (2006). Tracking control
of an inverted pendulum using computed feedback linearization technique. In 2006 IEEE
Conference on Robotics, Automation and Mechatronics, pages 1–6.

Chen, C.-T. (1998). Linear System Theory and Design. Oxford University Press, Inc., USA,
3rd edition.

Chen, H., Wensing, P. M., and Zhang, W. (2020). Optimal control of a differentially flat
two-dimensional spring-loaded inverted pendulum model. IEEE Robotics and Automation
Letters, 5(2):307–314.

Cho, H. T. and Jung, S. (2003). Balancing and position tracking control of an inverted
pendulum on a x-y plane using decentralized neural networks. In Proceedings 2003
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003),
volume 1, pages 181–186 vol.1.

Corigliano, A. and Mariani, S. (2004). Parameter identification in explicit structural dynamics:
performance of the extended kalman filter. Computer Methods in Applied Mechanics and
Engineering, 193(36):3807–3835.

Davila, J., Fridman, L., and Poznyak, A. (2006). Observation and Identification of Mechanical
Systems via Second Order Sliding Modes. In 2006 International Workshop on Variable
Structure Systems, pages 232–237, Alghero, Italy.

DFRobot (2021). Gravity: Bno055+bmp280 intelligent 10dof ahrs. https://www.dfrobot.
com/product-1793.html. Last access. Oct. 26th 2021.

Di Carlo, J., Wensing, P. M., Katz, B., Bledt, G., and Kim, S. (2018). Dynamic locomotion in
the mit cheetah 3 through convex model-predictive control. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1–9.

Dierks, T. and Jagannathan, S. (2011). Online optimal control of nonlinear discrete-time
systems using approximate dynamic programming. Journal of Control Theory and Appli-
cations, 9:361–369.

Dierks, T. and Jagannathan, S. (2012). Online optimal control of affine nonlinear discrete-
time systems with unknown internal dynamics by using time-based policy update. IEEE
Transactions on Neural Networks and Learning Systems, 23(7):1118–1129.

Dinev, T., Xin, S., Merkt, W., Ivan, V., and Vijayakumar, S. (2020). Modeling and control of
a hybrid wheeled jumping robot. 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS).

Driessen, J. J. M., Gkikakis, A. E., Featherstone, R., and Singh, B. R. P. (2019). Experimental
Demonstration of High-Performance Robotic Balancing. In 2019 International Conference
on Robotics and Automation, pages 9459–9465, Montreal, Canada.

https://www.dfrobot.com/product-1793.html
https://www.dfrobot.com/product-1793.html


References 115

Efimov, D., Fridman, L., Raïssi, T., Zolghadri, A., and Seydou, R. (2012). Interval estimation
for lpv systems applying high order sliding mode techniques. Automatica, 48(9):2365–
2371.

Fan, Y., Liu, S., and Belabbas, M.-A. (2020). Mid-air motion planning of robot using heat
flow method with state constraints. Mechatronics, 66:102323.

Fang, A. C. and Pollard, N. S. (2003). Efficient synthesis of physically valid human motion.
ACM Trans. Graph., 22(3):417–426.

Featherstone, R. (2008). Rigid Body Dynamics Algorithms. Springer-Verlag, Berlin, Heidel-
berg.

Featherstone, R. (2015). Quantitative Measures of a Robot’s Ability to Balance. In Proceed-
ings of Robotics: Science and Systems, Rome, Italy.

Featherstone, R. (2016). Quantitative Measures of a Robot’s Physical Ability to Balance.
The International Journal of Robotics Research, 35(14):1681–1696.

Featherstone, R. (2017). A Simple Model of Balancing in the Plane and a Simple Preview
Balance Controller. The International Journal of Robotics Research, 36(13-14):1489–
1507.

Featherstone, R. (2018). A New Simple Model of Balancing in the Plane. In Bicchi A.
and Burgard W. (eds) Robotics Research (vol. 2), pp. 167–183, Springer Proceedings in
Advanced Robotics, vol. 3, Springer, Cham.

Featherstone, R. (2021). The Skippy Project. http://royfeatherstone.org/skippy. Last access:
Aug. 30th 2021.

Featherstone, R. (2022). The Ring Screw Mechanism. http://royfeatherstone.org/ringscrew/
index.html. Last access: Jan. 26th 2022.

Fevre, M., Wensing, P. M., and Schmiedeler, J. P. (2020). Rapid bipedal gait optimization in
casadi. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2020, Las Vegas, NV, USA, October 24, 2020 - January 24, 2021, pages 3672–3678. IEEE.

Finlayson, B. A. (1980). Orthogonal collocation on finite elements—progress and potential.
Mathematics and Computers in Simulation, 22(1):11–17.

Frintrop, S., Rome, E., and Christensen, H. I. (2010). Computational visual attention systems
and their cognitive foundations: A survey. ACM Trans. Appl. Percept., 7(1).

Gajamohan, M., Merz, M., Thommen, I., and D’Andrea, R. (2012). The Cubli: A Cube that
can Jump up and Balance. In Proceedings of the 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3722–3727, Vilamoura, Portugal.

Gamba, J. D. and Featherstone, R. (2021). Balancing on a Springy Leg. In 2021 IEEE
International Conference on Robotics and Automation, Xi’an, China.

Gamba, J. D., Leite, A. C., and Featherstone, R. (2021). Robust balancing control of a
spring-legged robot based on a high-order sliding mode observer. In 2020 IEEE-RAS 20th
International Conference on Humanoid Robots (Humanoids), pages 384–391.

http://royfeatherstone.org/skippy
http://royfeatherstone.org/ringscrew/index.html
http://royfeatherstone.org/ringscrew/index.html


References 116

Gamba, J. D., Leite, A. C., and Featherstone, R. (2021). Robust Balancing Control of a
Spring-legged Robot based on a High-order Sliding Mode Observer. https://youtu.be/
OfSZMrSk-PA. Last access: Sep. 10th 2021.

Garg, D., Patterson, M., Hager, W. W., Rao, A. V., Benson, D. A., and Huntington, G. T.
(2010). Brief paper: A unified framework for the numerical solution of optimal control
problems using pseudospectral methods. Automatica, 46(11):1843–1851.

Garćıa-Alarćon, O., Puga-Guzman, S., and Moreno-Valenzuela, J. (2012). On parameter
identification of the furuta pendulum. Procedia Engineering, 35:77–84. International
Meeting of Electrical Engineering Research 2012.

González, C., Barasuol, V., Frigerio, M., Featherstone, R., Caldwell, D., and Semini, C.
(2020). Line walking and balancing for legged robots with point feet. 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 3649–3656.

Green, P., Cross, E., and Worden, K. (2015). Bayesian system identification of dynamical
systems using highly informative training data. Mechanical Systems and Signal Processing,
56-57:109–122.

Grizzle, J. W., Moog, C. H., and Chevallereau, C. (2005). Nonlinear Control of Mechanical
Systems with an Unactuated Cyclic Variable. IEEE Transactions on Automatic Control,
50(5):559–576.

Hairer, E. and Wanner, G. (1996). Implementation of Implicit Runge-Kutta Methods, pages
118–130. Springer Berlin Heidelberg, Berlin, Heidelberg.

Haldane, D. W., Plecnik, M. M., Yim, J. K., and Fearing, R. (2016). Robotic Vertical Jumping
Agility via Series-elastic Power Modulation. Science Robotics, 1:1–9.

Hale, N. and Townsend, A. (2013). Fast and accurate computation of gauss–legendre and
gauss–jacobi quadrature nodes and weights. SIAM Journal on Scientific Computing,
35(2):A652–A674.

Han, X. and Kong, X. (2010). The designing of serial communication based on rs232. In
2010 First ACIS International Symposium on Cryptography, and Network Security, Data
Mining and Knowledge Discovery, E-Commerce and Its Applications, and Embedded
Systems, pages 382–384.

Hars, M., Holvoet, P., Gillet, C., Barbier, F., and Lepoutre, F. X. (2005). Quantify dynamic
balance control in balance beam: measure of 3-d forces applied by expert gymnasts to the
beam. Computer Methods in Biomechanics and Biomedical Engineering, 8(sup1):135–
136.

Hereid, A. and Ames, A. D. (2017). Frost: Fast robot optimization and simulation toolkit. In
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
719–726.

Hereid, A., Cousineau, E. A., Hubicki, C. M., and Ames, A. D. (2016a). 3d dynamic walking
with underactuated humanoid robots: A direct collocation framework for optimizing
hybrid zero dynamics. In Kragic, D., Bicchi, A., and Luca, A. D., editors, 2016 IEEE

https://youtu.be/OfSZMrSk-PA
https://youtu.be/OfSZMrSk-PA


References 117

International Conference on Robotics and Automation, ICRA 2016, Stockholm, Sweden,
May 16-21, 2016, pages 1447–1454. IEEE.

Hereid, A., Kolathaya, S., and Ames, A. D. (2016b). Online optimal gait generation for
bipedal walking robots using legendre pseudospectral optimization. In 2016 IEEE 55th
Conference on Decision and Control (CDC), pages 6173–6179.

Hereid, A., Kolathaya, S., Jones, M. S., Van Why, J., Hurst, J. W., and Ames, A. D. (2014).
Dynamic Multi-Domain Bipedal Walking with Atrias through SLIP Based Human-Inspired
Control. In 17th International Conference on Hybrid Systems: Computation and Control,
pages 263–272, Berlin, Germany.

Hindmarsh, A. C., Gresho, P. M., and Griffiths, D. F. (1984). The stability of explicit euler
time-integration for certain finite difference approximations of the multi-dimensional
advection–diffusion equation. International Journal for Numerical Methods in Fluids,
4(9):853–897.

Ibrahim, M., Kallies, C., and Findeisen, R. (2020). Learning-supported approximated optimal
control for autonomous vehicles in the presence of state dependent uncertainties. In 2020
European Control Conference (ECC), pages 338–343.

Itti, L., Dhavale, N., and Pighin, F. (2003). Realistic avatar eye and head animation using
a neurobiological model of visual attention. In Bosacchi, B., Fogel, D. B., and Bezdek,
J. C., editors, Applications and Science of Neural Networks, Fuzzy Systems, and Evolution-
ary Computation VI, volume 5200, pages 64 – 78. International Society for Optics and
Photonics, SPIE.

Iwasaki, T. and Kataoka, T. (1989). Application of an extended kalman filter to param-
eter identification of an induction motor. In Conference Record of the IEEE Industry
Applications Society Annual Meeting,, pages 248–253 vol.1.

Jiang, Y., Van Wouwe, T., De Groote, F., and Liu, C. K. (2019). Synthesis of biologically
realistic human motion using joint torque actuation. ACM Trans. Graph., 38(4).

Jin, B., Sun, C., Zhang, A., Liu, S., Hao, W., Deng, G., and Ma, P. (2017). Single leg
compliance control for quadruped robots. In 2017 Chinese Automation Congress (CAC),
pages 7624–7628.

Jovic, J., Escande, A., Ayusawa, K., Yoshida, E., Kheddar, A., and Venture, G. (2016).
Humanoid and human inertia parameter identification using hierarchical optimization.
IEEE Transactions on Robotics, 32(3):726–735.

Kajita, S. and Ott, C. (2016). Limbed systems. In Siciliano, B. and Khatib, O., editors,
Springer Handbook of Robotics, pages 419–442. Springer.

Kelly, M. (2017). An introduction to trajectory optimization: How to do your own direct
collocation. SIAM Rev., 59(4):849–904.

Kim, K.-W., Ryu, Y., and Jeon, K.-K. (2012). A kinetics analysis of tucked backward salto
on the balance beam. Korean Journal of Sport Biomechanics, 22.



References 118

Kloeser, D., Schoels, T., Sartor, T., Zanelli, A., Frison, G., and Diehl, M. (2020). NMPC
for racing using a singularity-free path-parametric model with obstacle avoidance. In
Proceedings of the IFAC World Congress.

Koenemann, J., Licitra, G., Alp, M., and Diehl, M. (2019). Openocl - open optimal control
library.

Kollarčík, A. (2021). Modeling and Control of Two-Legged Wheeled Robot. PhD thesis,
Czech Technical University in Prague. Faculty of Electrical Engineering, Department of
Control Engineering.

Kreucher, C. and Lakshmanan, S. (1999). Lana: a lane extraction algorithm that uses
frequency domain features. IEEE Transactions on Robotics and Automation, 15(2):343–
350.

Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., Koolen, T.,
Marion, P., and Tedrake, R. (2015). Optimization-based locomotion planning, estimation,
and control design for the atlas humanoid robot. Autonomous Robots, 40.

Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., Koolen, T.,
Marion, P., and Tedrake, R. (2016). Optimization-based locomotion planning, estimation,
and control design for the atlas humanoid robot. Autonomous Robots, 40(3):429–455.

Kunkel, P., Mehrmann, V., Mehrmann, V., and Society, E. M. (2006). Differential-algebraic
Equations: Analysis and Numerical Solution. EMS textbooks in mathematics. European
Mathematical Society.

Lampariello, R., Mishra, H., Oumer, N., Schmidt, P., De Stefano, M., and Albu-Schäffer, A.
(2018). Tracking control for the grasping of a tumbling satellite with a free-floating robot.
IEEE Robotics and Automation Letters, 3(4):3638–3645.

Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard, N. S. (2002). Interactive
control of avatars animated with human motion data. In Proceedings of the 29th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’02, page
491–500, New York, NY, USA. Association for Computing Machinery.

Leiva, L. A., Martn-Albo, D., and Plamondon, R. (2017). The Kinematic Theory Produces
Human-Like Stroke Gestures. Interacting with Computers, 29(4):552–565.

Lew, T., Emmei, T., Fan, D. D., Bartlett, T., Santamaria-Navarro, A., Thakker, R., and akbar
Agha-mohammadi, A. (2019). Contact inertial odometry: Collisions are your friends.

Li, M., Jiang, Z., Wang, P., Sun, L., and Sam Ge, S. (2014). Control of a quadruped robot
with bionic springy legs in trotting gait. Journal of Bionic Engineering, 11(2):188–198.

Li, W. and Wang, J. (2013). Effective adaptive kalman filter for mems-imu/magnetometers
integrated attitude and heading reference systems. Journal of Navigation, 66(1):99–113.

Liang, Y. and Feeny, B. (2006). Parametric identification of a base-excited single pendulum.
Nonlinear Dynamics, 46:17–29.



References 119

Liang, Y. and Feeny, B. (2008). Parametric identification of a chaotic base-excited double
pendulum experiment. Nonlinear Dynamics, 52:1573–269X.

Lin, Y., McPhee, J., and Azad, N. L. (2021). Comparison of deep reinforcement learning
and model predictive control for adaptive cruise control. IEEE Transactions on Intelligent
Vehicles, 6(2):221–231.

LORD Sensing Microstrain (2021a). 3DM-GX5-15. https://www.microstrain.com/
inertial-sensors/3dm-gx5-15. Last access. Oct. 26th 2021.

LORD Sensing Microstrain (2021b). Sensor Connect. https://www.microstrain.com/software/
sensorconnect. Last access. Oct. 26th 2021.

Ma, W.-L., Hereid, A., Hubicki, C. M., and Ames, A. D. (2016). Efficient hzd gait generation
for three-dimensional underactuated humanoid running. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 5819–5825.

Ma, W.-L., Kolathaya, S., Ambrose, E. R., Hubicki, C. M., and Ames, A. D. (2017). Bipedal
robotic running with durus-2d: Bridging the gap between theory and experiment. In
Proceedings of the 20th International Conference on Hybrid Systems: Computation and
Control, HSCC ’17, page 265–274, New York, NY, USA. Association for Computing
Machinery.

Magnet-Schultz GmbH (2021). Proportional Rotary Solenoids Type G DR. https://www.
magnet-schultz.com/en/rotary-solenoids/proportional-rotary-solenoids-type-g-dr/. Last
access. Oct. 26th 2021.

Majkowska, A. and Faloutsos, P. (2007). Flipping with physics: Motion editing for acrobatics.
SCA ’07, page 35–44, Goslar, DEU. Eurographics Association.

Manns, P., Sreenivasa, M., Millard, M., and Mombaur, K. (2017). Motion optimization and
parameter identification for a human and lower back exoskeleton model. IEEE Robotics
and Automation Letters, 2(3):1564–1570.

Martin, W. C., Wu, A., and Geyer, H. (2015). Robust spring mass model running for a physical
bipedal robot. In 2015 IEEE International Conference on Robotics and Automation (ICRA),
pages 6307–6312.

McDonald-Maier, K., Glauche, V., Beckstein, C., and Blickhan, R. (2000). Controlling fast
spring-legged locomotion with artificial neural networks. Soft Computing, 4:157–164.

McFarland, C. J. and Whitcomb, L. L. (2012). A new adaptive identifier for second-order
rotational plants with applications to underwater vehicles. In 2012 Oceans, pages 1–9.

Menache, A. (1999). Understanding Motion Capture for Computer Animation and Video
Games. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition.

Mirzaei, F. M. and Roumeliotis, S. I. (2008). A kalman filter-based algorithm for imu-camera
calibration: Observability analysis and performance evaluation. IEEE Transactions on
Robotics, 24(5):1143–1156.

https://www.microstrain.com/inertial-sensors/3dm-gx5-15
https://www.microstrain.com/inertial-sensors/3dm-gx5-15
https://www.microstrain.com/software/sensorconnect
https://www.microstrain.com/software/sensorconnect
https://www.magnet-schultz.com/en/rotary-solenoids/proportional-rotary-solenoids-type-g-dr/
https://www.magnet-schultz.com/en/rotary-solenoids/proportional-rotary-solenoids-type-g-dr/


References 120

Moreno, J. A. and Guzman, E. (2011). A New Recursive Finite-Time Convergent Parameter
Estimation Algorithm. In 18th IFAC World Congress, pages 3439–3444, Milan, Italy.

Moreno, J. A. and Osorio, M. (2012). Strict Lyapunov Functions for the Super-Twisting
Algorithm. IEEE Transactions on Automatic Control, 57(4):1035–1040.

M’sirdi, N. K., Rabhi, A., Fridman, L., Davila, J., and Delanne, Y. (2006). Second Order
sliding Mode Observer for Estimation of Velocities, Wheel Sleep, Radius and Stiffness. In
2006 American Control Conference, pages 3316–3321, Minneapolis MN, USA.

Murata Manufacturing Co., Ltd. (2020). Murata BOY’s Capabilities. http://www.murata.
com/en-global/about/mboymgirl/mboy/capabilities. Last access. Oct. 3rd 2020.

Na, J., Ren, X., and Zheng, D. (2013). Adaptive control for nonlinear pure-feedback systems
with high-order sliding mode observer. IEEE Transactions on Neural Networks and
Learning Systems, 24(3):370–382.

Nassiraei, A. A., Masakado, S., Matsuo, T., Sonoda, T., Takahira, I., Fukushima, H., Murata,
M., Ichikawa, K., Ishii, K., and Miki, T. (2006). Development of an artistic robot "jumping
joe". In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
1720–1725.

Nazarahari, M. and Rouhani, H. (2021). 40 years of sensor fusion for orientation tracking via
magnetic and inertial measurement units: Methods, lessons learned, and future challenges.
Information Fusion, 68:67–84.

Nguyen, Q., Powell, M. J., Katz, B., Carlo, J. D., and Kim, S. (2019). Optimized jumping on
the mit cheetah 3 robot. In 2019 International Conference on Robotics and Automation
(ICRA), pages 7448–7454.

NI (2021a). LabVIEW. https://www.ni.com/en-us/shop/labview.html. Last access. Oct. 26th
2021.

NI (2021b). sbRIO-9637. https://www.ni.com/en-us/support/model.sbrio-9637.html. Last
access. Oct. 26th 2021.

Peters, D. A. (1997). Optimum spring-damper design for mass impact. SIAM Review,
39(1):118–122.

Pilloni, A., Pisano, A., and Usai, E. (2015). Observer-based air excess ratio control of a pem
fuel cell system via high-order sliding mode. IEEE Transactions on Industrial Electronics,
62(8):5236–5246.

Piovan, G. and Byl, K. (2012). Enforced Symmetry of the Stance Phase for the Spring-
Loaded Inverted Pendulum. In 2012 IEEE International Conference on Robotics and
Automation, pages 1908–1914, St. Paul, MA, USA.

Piovan, G. and Byl, K. (2013). Two-element control for the active slip model. In 2013 IEEE
International Conference on Robotics and Automation, pages 5656–5662.

Pololu (2021). Pololu G2 High-Power Motor Driver 24v21. https://www.pololu.com/product/
2995. Last access. Oct. 26th 2021.

http://www.murata.com/en-global/about/mboymgirl/mboy/capabilities
http://www.murata.com/en-global/about/mboymgirl/mboy/capabilities
https://www.ni.com/en-us/shop/labview.html
https://www.ni.com/en-us/support/model.sbrio-9637.html
https://www.pololu.com/product/2995
https://www.pololu.com/product/2995


References 121

Polyakov, A. and Fridman, L. (2014). Stability Notions and Lyapunov Functions for sliding
Mode Control Systems. Journal of the Franklin Institute, 351(4):1831–1865.

Pope, M. T., Christensen, S., Christensen, D., Simeonov, A., Imahara, G., and Niemeyer, G.
(2018). Stickman: Towards a human scale acrobatic robot. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 2134–2140.

Poulakakis, I. and Grizzle, J. W. (2007). Formal embedding of the Spring Loaded Inverted
Pendulum in an Asymmetric Hopper. In Proceedings of the 2007 European Control
Conference, pages 3159–3166, Kos, Greece.

Poznyak, A. (2010). Advanced Mathematical Tools for Control Engineers: Volume 1:
Deterministic Systems. Advanced Mathematical Tools for Automatic Control Engineers.
Elsevier Science.

Pugh, J. and Martinoli, A. (2007). Inspiring and modeling multi-robot search with particle
swarm optimization. In 2007 IEEE Swarm Intelligence Symposium, pages 332–339.

Quinn, P. and Zhai, S. (2018). Modeling gesture-typing movements. Human–Computer
Interaction, 33(3):234–280.

Quintero, S. A. P., Collins, G. E., and Hespanha, J. P. (2013). Flocking with fixed-wing uavs
for distributed sensing: A stochastic optimal control approach. In 2013 American Control
Conference, pages 2025–2031.

Raibert, M. (1986). Legged Robots That Balance. MIT Press, Cambridge, MA, USA.

Reher, J., Hereid, A., Kolathaya, S., Hubicki, C. M., and Ames, A. (2016). Algorithmic
foundations of realizing multi-contact locomotion on the humanoid robot durus. In WAFR.

Riese, S. and Seyfarth, A. (2012). Robustness and Efficiency of a Variable-leg-spring Hopper.
In 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and
Biomechatronics, pages 1347–1352, Rome, Italy.

Riva, M. H., Dagen, M., and Ortmaier, T. (2017). Comparison of covariance estimation
using autocovariance ls method and adaptive srukf. In 2017 American Control Conference
(ACC), pages 5780–5786.

Rizzello, G., Naso, D., Turchiano, B., and Seelecke, S. (2016). Robust position control of
dielectric elastomer actuators based on lmi optimization. IEEE Transactions on Control
Systems Technology, 24(6):1909–1921.

RLS (2021). AksIM-2™ Off-Axis Rotary Absolute Magnetic Encoder Module . https:
//www.rls.si/eng/aksim-2-off-axis-rotary-absolute-encoder. Last access. Oct. 26th 2021.

Roffel, A. and Narasimhan, S. (2014). Extended kalman filter for modal identification of
structures equipped with a pendulum tuned mass damper. Journal of Sound and Vibration,
333(23):6038–6056.

Ronquillo-Lomeli, G., Ríos-Moreno, G. J., Gómez-Espinosa, A., Morales-Hernández, L. A.,
and Trejo-Perea, M. (2016). Nonlinear identification of inverted pendulum system using
volterra polynomials. Mechanics Based Design of Structures and Machines, 44(1-2):5–15.

https://www.rls.si/eng/aksim-2-off-axis-rotary-absolute-encoder
https://www.rls.si/eng/aksim-2-off-axis-rotary-absolute-encoder


References 122

Ríos, H., Davila, J., and Fridman, L. (2012). High-order sliding mode observers for nonlinear
autonomous switched systems with unknown inputs. Journal of the Franklin Institute,
349(10):2975–3002. The Collection of the Benjamin Franklin Laureates of 2007, 2008
and 2009.

Schmutz, A., Chèze, L., Jacques, J., and Martin, P. (2020). A method to estimate horse speed
per stride from one imu with a machine learning method. Sensors, 20(2).

Schultz, G. and Mombaur, K. (2010). Modeling and optimal control of human-like running.
IEEE/ASME Transactions on Mechatronics, 15(5):783–792.

Singh, B. R. P. (2021). Angular Momentum based Balancing Control and Shock-proof Design
of Legged Robots. PhD thesis, Dept. Information Engineering, University of Pisa, Italy.

Spong, M. W. (1995). The Swing up Control Problem for the Acrobot. IEEE Control Systems
Magazine, 15(1):49–55.

Tedaldi, D., Pretto, A., and Menegatti, E. (2014). A robust and easy to implement method
for imu calibration without external equipments. In 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 3042–3049.

Terry, P., Piovan, G., and Byl, K. (2016). Towards precise control of hoppers: Using high
order partial feedback linearization to control the hopping robot frank. In 2016 IEEE 55th
Conference on Decision and Control (CDC), pages 6669–6675.

Tian, D., Gao, J., Liu, C., and Shi, X. (2021). Simulation of upward jump control for
one-legged robot based on qp optimization. Sensors, 21(5).

Todorov, E. and Jordan, M. I. (1998). Smoothness maximization along a predefined path accu-
rately predicts the speed profiles of complex arm movements. Journal of Neurophysiology,
80(2):696–714. PMID: 9705462.

Tokur, D., Grimmer, M., and Seyfarth, A. (2020). Review of balance recovery in response to
external perturbations during daily activities. Human Movement Science, 69:102546.

Toussaint, M. (2009a). Robot trajectory optimization using approximate inference. In
Proceedings of the 26th Annual International Conference on Machine Learning, ICML
’09, page 1049–1056, New York, NY, USA. Association for Computing Machinery.

Toussaint, M. (2009b). Robot trajectory optimization using approximate inference. In
Proceedings of the 26th Annual International Conference on Machine Learning, ICML
’09, page 1049–1056, New York, NY, USA. Association for Computing Machinery.

Trefethen, L. N. (2012). Approximation Theory and Approximation Practice (Other Titles in
Applied Mathematics). Society for Industrial and Applied Mathematics, USA.

Unluturk, A., Aydogdu, O., and Guner, U. (2013). Design and pid control of two wheeled
autonomous balance robot. In 2013 International Conference on Electronics, Computer
and Computation (ICECCO), pages 260–264.

Utkin, V., Poznyak, A., Orlov, Y., and Polyakov, A. (2020). Conventional and high order
sliding mode control. Journal of the Franklin Institute, 357(15):10244–10261.



References 123

Vamvoudakis, K. G. and Lewis, F. L. (2010). Online actor–critic algorithm to solve the
continuous-time infinite horizon optimal control problem. Automatica, 46(5):878–888.

VectorNav (2021). VN-100. https://www.vectornav.com/products/detail/vn-100. Last access.
Oct. 26th 2021.

Verschueren, R., Frison, G., Kouzoupis, D., van Duijkeren, N., Zanelli, A., Quirynen, R., and
Diehl, M. (2018). Towards a modular software package for embedded optimization. IFAC-
PapersOnLine, 51(20):374–380. 6th IFAC Conference on Nonlinear Model Predictive
Control NMPC 2018.

von Stryk, O. and Bulirsch, R. (1992). Direct and indirect methods for trajectory optimization.
Ann. Oper. Res., 37(1–4):357–373.

Wächter, A. and Biegler, L. T. (2006). On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program., 106(1):25–57.

Wai, R.-J. and Chang, L.-J. (2006). Adaptive stabilizing and tracking control for a nonlinear
inverted-pendulum system via sliding-mode technique. IEEE Transactions on Industrial
Electronics, 53(2):674–692.

Wensing, P. M. and Orin, D. E. (2013). High-speed Humanoid Running through Control
with a 3D-SLIP Model. In 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5134–5140, Tokyo, Japan.

Wieber, P., Tedrake, R., and Kuindersma, S. (2016). Modeling and Control of Legged
Robots. In Siciliano, B. and Khatib, O., editors, Springer Handbook of Robotics, Springer
Handbooks, pages 1203–1234. Springer.

Wooten, W. and Hodgins, J. (2000). Simulating leaping, tumbling, landing and balancing hu-
mans. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), volume 1,
pages 656–662 vol.1.

Xilinx (2021). ZYNQ. https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html.
Last access. Oct. 26th 2021.

Xinhua (2021). Chinese gymnasts finish 1-2 in women’s balance beam at Tokyo Olympics.
//www.xinhuanet.com/english/2021-08/03/c_1310105152_6.htm. Last access: Oct. 18th
2021.

Xiong, X. and Ames, A. (2018). Bipedal Hopping: Reduced-order Model Embedding via
Optimization-based Control. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3821–3828, Madrid, Spain.

Xiong, X. and Ames, A. (2020). Sequential motion planning for bipedal somersault via
flywheel slip and momentum transmission with task space control.

Xue, T., Zhao, J., and Wang, J. (2017). Motion control for variable stiffness slip model of
legged robot single leg. In 2017 Chinese Automation Congress (CAC), pages 4711–4716.

https://www.vectornav.com/products/detail/vn-100
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
//www.xinhuanet.com/english/2021-08/03/c_1310105152_6.htm


References 124

Yim, J. K., Singh, B. R. P., Wang, E. K., Featherstone, R., and Fearing, R. S. (2020).
Precision Robotic Leaping and Landing Using Stance-Phase Balance. IEEE Robotics and
Automation Letters, 5(2):3422–3429.

Yim, J. K., Singh, B. R. P., Wang, E. K., Featherstone, R., and Fearing, R. S. (2020).
Precision robotic leaping and landing using stance-phase balance. IEEE Robotics Autom.
Lett., 5(2):3422–3429.

Zhang, L., Ren, X., and Guo, Q. (2020). Balance control of a wheeled hopping robot. In
2020 39th Chinese Control Conference (CCC), pages 3801–3805.

Zhang, W., Liu, J., Cho, C., and Han, X. (2015). A hybrid parameter identification method
based on bayesian approach and interval analysis for uncertain structures. Mechanical
Systems and Signal Processing, 60-61:853–865.

Zhang, Y., wei Gong, D., and hua Zhang, J. (2013). Robot path planning in uncertain
environment using multi-objective particle swarm optimization. Neurocomputing, 103:172–
185.

Zhao, H., Horn, J., Reher, J., Paredes, V., and Ames, A. D. (2016). Multicontact locomotion
on transemoral prostheses via hybrid system models and optimization-based control. IEEE
Transactions on Automation Science and Engineering, 13(2):502–513.



Appendix A

Linear Spring Damper Design For Mass
Impact

Here, we introduce a strategy to design a linear spring-damper machine capable of minimizing
the maximum force at a mass impact after a plastic collision. The optimization exercise
presented in Peters (1997) seeks to obtain the stiffness K and damper D coefficients of a
linear spring-damper system. The author uses a dimensionless approach to optimize one
dimensionless variable ζ instead of the two coefficients K and D. The author presents a
setup that intentionally neglects the presence of gravity in order to construct a second-order
dimensionless homogeneous differential equation. Then, he obtains the optimal results based
on an analytical solution of the dimensionless equation.

Figure A.1 Mass-spring-damper system.

The mechanism of Fig.A.1 consists of a Mass (M) of 2kg connected to a spring-damper
system with stiffness K and damping D coefficients. The whole structure is clamped to the
ground without considering the gravity force g. The position of M along the y axis to the
ground is denoted by q. Its velocity is q̇ and acceleration is q̈, which is obtained by the



126

following equation:

q̈ =−K
M

q− D
M

q̇ (A.1)

Peters (1997) presents an approach to obtain the stiffness K and damping D coefficients
from minimizing the maximum force Fmax at the impact. With this method, it is also possible
to limit the impact force F by constraining the maximum displacement |q| < qmax of the
spring. The author uses the concept of nondimensional quantities to reduce the system’s
dynamic equation (eq. A.1), and achieve the parameter search by only finding one variable

ζ =
D

2
√

K M
, which is nondimensional. Then, he solves the reduced system as a second-order

homogeneous differential equation for ζ < 1,ζ = 1 and ζ > 1, these operation regions of ζ

are later analytically reduced to 0≤ ζ ≤ 1/2, leading to the optimal value of ζ = 0.40397275.
Finally, K and D can be obtained by:

K = 0.36057021
q̇2

0 M
q2

max
D = 0.48515107

q̇0 M
qmax

(A.2)

Where q̇0 denotes the initial velocity, and qmax is the maximum spring displacement. The
maximum impact force Fmax can also be obtained by,

Fmax = .52059862
M q̇2

0
qmax

(A.3)

likewise,

qmax = .52059862
M q̇2

0
Fmax

. (A.4)

For a mass M = 2kg travelling at q̇0 =−6m/s, and a maximum spring displacement of
qmax = 0.2m we have the following spring parameters,

D = 29.1091Ns/m K = 649.0264N/m (A.5)

Using the parameters obtained from equation (A.5), we have constructed a numerical
simulation using the ODE45 solver of Matlab with its default parameters to verify the optimal
parameters. Figure A.2 demonstrates the mass’s position q and velocity q̇ during the impact.
In the position graph, the spring starts at position zero and finishes at 0.3223mm, and is
moving towards zero. During the motion it reaches a minimum peak of −0.2m and positive
peak of 49.9mm. At the velocity graph, the spring starts with a velocity of −6m/s and
finishes at −27.3521mm/s. During the landing it reaches a maximum velocity of 2.163m/s.



127

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.2

-0.1

0

0.1

ra
d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sec

-6

-4

-2

0

2

ra
d
/s

Figure A.2 q and q̇ response of fig.A.1 system with a linear spring-damper for an impact of
a mass of 2kg travelling at −6m/s2.

As expected, there will always be a positive excursion in the absence of gravity, as shown
in the position graph. After the maximum displacement qmax is reached, the recovery is
approximately one-fourth of the initial displacement produced by the spring. Consequently,
figure A.3 shows a recovering force produced by the spring after achieving the maximum
force Fmax. At the beginning of the impact the force starts at 174.6544N and finishes at zero,
due to the lack of gravity. The mass experienced a maximum force of 187.3914N.

The results presented in this section give an idea about the minimum and maximum force
that can be experienced by a mass of two kilograms subject to an impact (landing after a
plastic collision) at −6m/s using an optimal spring-damper system. The next section aims
to improve the obtained results by using a spring-loaded monopod robot considering the
gravitational force. It will also demonstrate a more complex strategy to achieve the landing
and find the optimal spring results.



128

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sec

-50

0

50

100

150

200

N

Figure A.3 Vertical force F response of fig.A.1 system with a linear spring-damper for an
impact of a mass of 2kg travelling at −6m/s2.


	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Review of The State Of The Art
	1.2.1 Balancing, Tracking and Hopping
	1.2.2 Parameter Identification and High Order Nonlinear Observers
	1.2.3 Trajectory Optimization
	1.2.4 Inertia Measurement Unit (IMU) sensors and Legged Systems

	1.3 Goals and Objectives
	1.3.1 Methodology

	1.4 Contribution
	1.5 Outline

	2 Hopping
	2.1 Robot Model
	2.2 Launching Trajectory Search
	2.2.1 The Launching Instant
	2.2.2 NLP Problem Formulation
	2.2.3 Optimization Results

	2.3 Balance Controller
	2.3.1 Balancing States
	2.3.2 PID Momentum Balance Controller
	2.3.3 Balance Theory

	2.4 Trajectory Execution
	2.4.1 Launch Controller

	2.5 Conclusion

	3 Landing
	3.1 Robot Model
	3.2 Optimization
	3.3 Results
	3.3.1 Discussion

	3.4 Conclusion

	4 Balancing with a Springy Leg
	4.1 General Setup
	4.2 Balance Theory
	4.3 Controller
	4.4 Experiments
	4.4.1 Actuated Joint Tracking
	4.4.2 Absolute Tracking
	4.4.3 Launching with an Uncertain Spring

	4.5 Conclusion

	5 Non-linear Observers for balancing
	5.1 Parameters Identification
	5.1.1 Finite Time Algorithm
	5.1.2 Spring Parameters Identification

	5.2 Conclusion

	6 IMU Bouncing Test
	6.1 Experimental Setup
	6.1.1 Actuation system
	6.1.2 Sensors
	6.1.3 Controllers

	6.2 Experiment Description
	6.3 Results
	6.4 Conclusion

	7 Conclusion
	References
	Appendix A Linear Spring Damper Design For Mass Impact

