2,319 research outputs found

    Distributed estimation with partially overlapping states based on deterministic sample-based fusion

    Get PDF

    Distributed Estimation Using Partial Knowledge about Correlated Estimation Errors

    Get PDF
    Sensornetzwerke werden in vielen verschiedenen Anwendungen, z. B. zur Überwachung des Flugraumes oder zur Lokalisierung in Innenräumen eingesetzt. Dabei werden Sensoren häufig räumlich verteilt, um eine möglichst gute Abdeckung des zu beobachtenden Prozesses zu ermöglichen. Sowohl der Prozess als auch die Sensormessungen unterliegen stochastischem Rauschen. Daher wird oftmals eine Zustandsschätzung, z. B. durch ein Kalmanfilter durchgeführt, welcher die Unsicherheiten aus dem Prozess- und Messmodel systematisch berücksichtigt. Die Kooperation der individuellen Sensorknoten erlaubt eine verbesserte Schätzung des Systemzustandes des beobachteten Prozesses. Durch die lokale Verarbeitung der Sensordaten direkt in den Sensorknoten können Sensornetzwerke flexibel und modular entworfen werden und skalieren auch bei steigender Anzahl der Einzelkomponenten gut. Zusätzlich werden Sensornetzwerke dadurch robuster, da die Funktionsfähigkeit des Systems nicht von einem einzigen zentralen Knoten abhängt, der alle Sensordaten sammelt und verarbeitet. Ein Nachteil der verteilten Schätzung ist jedoch die Entstehung von korrelierten Schätzfehlern durch die lokale Verarbeitung in den Filtern. Diese Korrelationen müssen systematisch berücksichtigt werden, um genau und zuverlässig den Systemzustand zu schätzen. Dabei muss oftmals ein Kompromiss zwischen Schätzgenauigkeit und den begrenzt verfügbaren Ressourcen wie Bandbreite, Speicher und Energie gefunden werden. Eine zusätzliche Herausforderung sind unterschiedliche Netzwerktopologien sowie die Heterogenität lokaler Informationen und Filter, welche das Nachvollziehen der individuellen Verarbeitungsschritte innerhalb der Sensorknoten und der korrelierten Schätzfehler erschweren. Diese Dissertation beschäftigt sich mit der Fusion von Zustandsschätzungen verteilter Sensorknoten. Speziell wird betrachtet, wie korrelierte Schätzfehler entweder vollständig oder teilweise gelernt werden können, um eine präzisere und weniger unsichere fusionierte Zustandsschätzung zu erhalten. Um Wissen über korrelierte Schätzfehler zu erhalten, werden in dieser Arbeit sowohl analytische als auch simulations-basierte Ansätze verfolgt. Eine analytische Berechnung der Korrelationen zwischen Zustandsschätzungen ist möglich, wenn alle Verarbeitungsschritte und Parameter der lokalen Filter bekannt sind. Dadurch kann z. B. ein zentraler Fusionsknoten die die Korrelation zwischen den Schätzfehlern rekonstruieren. Dieses zentralisierte Vorgehen ist jedoch oft sehr aufwendig und benötigt entweder eine hohe Kommunikationsrate oder Vorwissen über die lokale Verarbeitungsschritte und Filterparameter. Daher wurden in den letzten Jahren zunehmend dezentrale Methoden zur Rekonstruktion von Korrelationen zwischen Zustandsschätzungen erforscht. In dieser Arbeit werden Methoden zur dezentralen Nachverfolgung und Rekonstruktion von korrelierten Schätzfehlern diskutiert und weiterentwickelt. Dabei basiert der erste Ansatz auf der Verwendung deterministischer Samples und der zweite auf der Wurzelzerlegung korrelierter Rauschkovarianzen. Um die Verwendbarkeit dieser Methoden zu steigern, werden mehrere wichtige Erweiterungen erarbeitet. Zum Einen schätzen verteilte Sensorknoten häufig den Zustand desselben Systems. Jedoch unterscheiden sie sich in ihrer lokalen Berechnung, indem sie unterschiedliche Zustandsraummodelle nutzen. Ein Beitrag dieser Arbeit ist daher die Verallgemeinerung dezentraler Methoden zur Nachverfolgung in unterschiedlichen (heterogenen) Zustandsräumen gleicher oder geringerer Dimension, die durch lineare Transformationen entstehen. Des Weiteren ist die Rekonstruktion begrenzt auf Systeme mit einem einzigen zentralen Fusionsknoten. Allerdings stellt die Abhängigkeit des Sensornetzwerkes von einem solchen zentralen Knoten einen Schwachpunkt dar, der im Fehlerfall zum vollständigen Ausfall des Netzes führen kann. Zudem verfügen viele Sensornetzwerke über komplexe und variierende Netzwerktopologien ohne zentralen Fusionsknoten. Daher ist eine weitere wichtige Errungenschaft dieser Dissertation die Erweiterung der Methodik auf die Rekonstruktion korrelierter Schätzfehler unabhängig von der genutzten Netzwerkstruktur. Ein Nachteil der erarbeiteten Algorithmen sind die wachsenden Anforderungen an Speicherung, Verarbeitung und Kommunikation der zusätzlichen Informationen, welche für die vollständige Rekonstruktion notwendig sind. Um diesen Mehraufwand zu begrenzen, wird ein Ansatz zur teilweisen Rekonstruktion korrelierter Schätzfehler erarbeitet. Das resultierende partielle Wissen über korrelierte Schätzfehler benötigt eine konservative Abschätzung der Unsicherheit, um genaue und zuverlässige Zustandsschätzungen zu erhalten. Es gibt jedoch Fälle, in denen keine Rekonstruktion der Korrelationen möglich ist oder es eine Menge an möglichen Korrelationen gibt. Dies ist zum Einen der Fall, wenn mehrere Systemmodelle möglich sind. Dies führt dann zu einer Menge möglicher korrelierter Schätzfehler, beispielsweise wenn die Anzahl der lokalen Verarbeitungsschritte bis zur Fusion ungewiss ist. Auf der anderen Seite ist eine Rekonstruktion auch nicht möglich, wenn die Systemparameter nicht bekannt sind oder die Rekonstruktion aufgrund von begrenzter Rechenleistung nicht ausgeführt werden kann. In diesem Fall kann ein Simulationsansatz verwendet werden, um die Korrelationen zu schätzen. In dieser Arbeit werden Ansätze zur Schätzung von Korrelationen zwischen Schätzfehlern basierend auf der Simulation des gesamten Systems erarbeitet. Des Weiteren werden Ansätze zur vollständigen und teilweisen Rekonstruktion einer Menge korrelierter Schätzfehler für mehrere mögliche Systemkonfigurationen entwickelt. Diese Mengen an Korrelationen benötigen entsprechende Berücksichtigung bei der Fusion der Zustandsschätzungen. Daher werden mehrere Ansätze zur konservativen Fusion analysiert und angewendet. Zuletzt wird ein Verfahren basierend auf Gaußmischdichten weiterentwickelt, dass die direkte Verwendung von Mengen an Korrelationen ermöglicht. Die in dieser Dissertation erforschten Methoden bieten sowohl Nutzern als auch Herstellern von verteilten Schätzsystemen einen Baukasten an möglichen Lösungen zur systematischen Behandlung von korrelierten Schätzfehlern. Abhängig von der Art und den Umfang des Wissens über Korrelationen, der Kommunikationsbandbreite sowie der gewünschten Qualität der fusionierten Schätzung kann eine Methode passgenau aus den beschriebenen Methoden zusammengesetzt und angewendet werden. Die somit geschlossene Lücke in der Literatur eröffnet neue Möglichkeiten für verteilte Sensorsysteme in verschiedenen Anwendungsgebieten

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Decentralized kalman filter approach for multi-sensor multi-target tracking problems

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Doğru pozisyon ve hedeflerin sayısı hava trafik kontrol ve füze savunması için çok önemli bilgilerdir. Bu çalışma, çoklu sensorlü çoklu hedef takibi sistemlerindeki veri füzyonu ve durum tahmini problemlerı için dağıtık Kalman Filtreleme Algoritması sunmaktadır. Problem, radar olarak her biri kendi veri işleme birimine sahip aktif sensörlerin hedef alanını gözlemlemesini esas almaktadır. Bu durumda her bir sistemin iz sayısı olacaktır. Çalışmada önerilen dağıtık Kalman Filtresi, başta füze sistemleri olmak üzere savunma sistemlerinde hareketli hedeflerin farklı sensörlerle izlerini kestirmek ve farklı hedefleri ayrıd etmek için kullanmaktır. Önerilen teknik, çoklu sensör sisteminden gelen verileri işleyen iki aşamalı veri işleme yaklaşımını içermektedir. İlk aşamada, her yerel işlemci kendi verilerini ve standart Kalman filtresi ise en iyi kestirimi yapmak için kullanılmaktadır. Sonraki aşamada bu kestirimler en iyi küresel bir kestirimi yapmak amacıyla dağıtık işlem modunda elde edilir. Bu çalışmada iki radar sistemi iki yerel Kalman filtresi ile uçakların pozisyonunu kestirmek amacıyla kullanılmakta, ardından bu kestirimler merkez işlemciye iletilmektedir. Merkez işlemci doğrulama maksadıyla bu bilgileri birleştirip küresel bir kestirim üretmektedir. Önerilen model uygulama olarak dört senaryo üzerinde test edildi. İlk senaryoda, tek bir hedef iki sensor tarafından izlenirken, ikincisinde, iki hedeften oluşan uzay herhangi bir sensor tarafından izlenmekte, üçüncüsünde, iki hedefin de herhangi bir sensor tarafından aynı anda izlenmesi, son olarak ise iki sensörden her birinin toplam üç hedeften herhangi ikisini izlediği senaryo göz önüne alınmıştır. Önerilen tekniğin performansı hata kovaryans matrisi kullanılarak değerlendirildi ve yüksek doğruluk ve optimal kestirim elde edildi. Uygulama sonuçları önerilen tekniğin yeteneğinin, yerel sensörlerce belirlenen ortak hedeflerin merkezi sistem tarafından ayırd edilebildiğini göstermiştir.For air traffic control and missile defense, the accurate position and the numbers of targets are the most important information needed. This thesis presents a decentralized kalman filtering algorithm (DKF) for data fusion and state estimation problems in multi-sensor multi-target tracking system. The problem arises when several sensors carry out surveillance over a certain area and each sensor has its own data processing system. In this situation, each system has a number of tracks. The DKF is used to estimate and separate the tracks from different sensors represent the targets, when the ability to track targets is essential in missile defense. The proposed technique is a two stage data processing technique which processes data from multi sensor system. In the first stage, each local processor uses its own data to make the best local estimation using standard kalman filter and then these estimations are then obtained in parallel processing mode to make best global estimation. In this work, two radar systems are used as sensors with two local Kalman filters to estimate the position of an aircraft and then they transmit these estimations to a central processor, which combines this information to produce a global estimation. The proposed model is tested on four scenarios, firstly, when there is one target and the two sensors are tracking the same target, secondly, when there are two targets and any sensor is tracking one of them, thirdly, when there are two targets and any sensor is tracking both of them and finally, when two sensors are used to track three targets and any sensor tracks any two of them. The performance of the proposed technique is evaluated using measures such as the error covariance matrix and it gave high accuracy and optimal estimation. The experimental results showed that the proposed method has the ability to separate the joint targets detected by the local sensors

    Linear Estimation in Interconnected Sensor Systems with Information Constraints

    Get PDF
    A ubiquitous challenge in many technical applications is to estimate an unknown state by means of data that stems from several, often heterogeneous sensor sources. In this book, information is interpreted stochastically, and techniques for the distributed processing of data are derived that minimize the error of estimates about the unknown state. Methods for the reconstruction of dependencies are proposed and novel approaches for the distributed processing of noisy data are developed

    Linear Estimation in Interconnected Sensor Systems with Information Constraints

    Get PDF
    A ubiquitous challenge in many technical applications is to estimate an unknown state by means of data that stems from several, often heterogeneous sensor sources. In this book, information is interpreted stochastically, and techniques for the distributed processing of data are derived that minimize the error of estimates about the unknown state. Methods for the reconstruction of dependencies are proposed and novel approaches for the distributed processing of noisy data are developed

    A Hierarchical Architecture for Cooperative Actuator Fault Estimation and Accommodation of Formation Flying Satellites in Deep Space

    Get PDF
    A new cooperative fault accommodation algorithm based on a multi-level hierarchical architecture is proposed for satellite formation flying missions. This framework introduces a high-level (HL) supervisor and two recovery modules, namely a low-level fault recovery (LLFR) module and a formation-level fault recovery (FLFR) module. At the LLFR module, a new hybrid and switching framework is proposed for cooperative actuator fault estimation of formation flying satellites in deep space. The formation states are distributed among local detection and estimation filters. Each system mode represents a certain cooperative estimation scheme and communication topology among local estimation filters. The mode transitions represent the reconfiguration of the estimation schemes, where the transitions are governed by information that is provided by the detection filters. It is shown that our proposed hybrid and switching framework confines the effects of unmodeled dynamics, disturbances, and uncertainties to local parameter estimators, thereby preventing the propagation of inaccurate information to other estimation filters. Moreover, at the LLFR module a conventional recovery controller is implemented by using estimates of the fault severities. Due to an imprecise fault estimate and an ineffective recovery controller, the HL supervisor detects violation of the mission error specifications. The FLFR module is then activated to compensate for the performance degradations of the faulty satellite by requiring that the healthy satellites allocate additional resources to remedy the problem. Consequently, fault is cooperatively recovered by our proposed architecture, and the formation flying mission specifications are satisfied. Simulation results confirm the validity and effectiveness of our developed and proposed analytical work

    Learning Visual Patterns: Imposing Order on Objects, Trajectories and Networks

    Get PDF
    Fundamental to many tasks in the field of computer vision, this work considers the understanding of observed visual patterns in static images and dynamic scenes . Within this broad domain, we focus on three particular subtasks, contributing novel solutions to: (a) the subordinate categorization of objects (avian species specifically), (b) the analysis of multi-agent interactions using the agent trajectories, and (c) the estimation of camera network topology. In contrast to object recognition, where the presence or absence of certain parts is generally indicative of basic-level category, the problem of subordinate categorization rests on the ability to establish salient distinctions amongst the characteristics of those parts which comprise the basic-level category. Focusing on an avian domain due to the fine-grained structure of the category taxonomy, we explore a pose-normalized appearance model based on a volumetric poselet scheme. The variation in shape and appearance properties of these parts across a taxonomy provides the cues needed for subordinate categorization. Our model associates the underlying image pattern parameters used for detection with corresponding volumetric part location, scale and orientation parameters. These parameters implicitly define a mapping from the image pixels into a pose-normalized appearance space, removing view and pose dependencies, facilitating fine-grained categorization with relatively few training examples. We next examine the problem of leveraging trajectories to understand interactions in dynamic multi-agent environments. We focus on perceptual tasks, those for which an agent's behavior is governed largely by the individuals and objects around them. We introduce kinetic accessibility, a model for evaluating the perceived, and thus anticipated, movements of other agents. This new model is then applied to the analysis of basketball footage. The kinetic accessibility measures are coupled with low-level visual cues and domain-specific knowledge for determining which player has possession of the ball and for recognizing events such as passes, shots and turnovers. Finally, we present two differing approaches for estimating camera network topology. The first technique seeks to partition a set of observations made in the camera network into individual object trajectories. As exhaustive consideration of the partition space is intractable, partitions are considered incrementally, adding observations while pruning unlikely partitions. Partition likelihood is determined by the evaluation of a probabilistic graphical model, balancing the consistency of appearances across a hypothesized trajectory with the latest predictions of camera adjacency. A primarily benefit of estimating object trajectories is that higher-order statistics, as opposed to just first-order adjacency, can be derived, yielding resilience to camera failure and the potential for improved tracking performance between cameras. Unlike the former centralized technique, the latter takes a decentralized approach, estimating the global network topology with local computations using sequential Bayesian estimation on a modified multinomial distribution. Key to this method is an information-theoretic appearance model for observation weighting. The inherently distributed nature of the approach allows the simultaneous utilization of all sensors as processing agents in collectively recovering the network topology

    An investigation of methods of surface estimation with application to the interpolation of antenna patterns

    Get PDF
    The problem of estimating a surface from a set of discrete measurements lying along straight lines is considered. This situation arises when one attempts to determine the S-Band antenna gain pattern for the Space Shuttle, from measurements taken at several ground stations. The results of previous investigators concerned with the performance of surface approximation techniques for the present application, are extended in this study by examining the case where the data samples are corrupted by measurement noise. Results have been obtained using least-squares approximation with bicubic B-spline basis functions, and for an interpolation algorithm in conjunction with a spatial smoothing filter. Because of the nature of the data acquisition and the impracticality of the least-squares algorithm when many sample points are used, the application of the Kalman filter to the surface estimation problem is discussed, although no numerical results were obtained using this approach. It is shown that a direct application of Kalman filter theory yields a filter algorithm which would be extremely difficult to implement. Based on the applications of reduced-order, suboptimal filters to image processing, a suboptimal approximation to the Kalman filter, applied to the surface estimation problem, is considered. The use of a decentralized estimation approach to this problem is briefly examined --Abstract, page ii
    corecore