2,390 research outputs found

    Hidden Markov models for wavelet-based blind source separation

    Full text link

    Wavelet Domain Image Separation

    Full text link
    In this paper, we consider the problem of blind signal and image separation using a sparse representation of the images in the wavelet domain. We consider the problem in a Bayesian estimation framework using the fact that the distribution of the wavelet coefficients of real world images can naturally be modeled by an exponential power probability density function. The Bayesian approach which has been used with success in blind source separation gives also the possibility of including any prior information we may have on the mixing matrix elements as well as on the hyperparameters (parameters of the prior laws of the noise and the sources). We consider two cases: first the case where the wavelet coefficients are assumed to be i.i.d. and second the case where we model the correlation between the coefficients of two adjacent scales by a first order Markov chain. This paper only reports on the first case, the second case results will be reported in a near future. The estimation computations are done via a Monte Carlo Markov Chain (MCMC) procedure. Some simulations show the performances of the proposed method. Keywords: Blind source separation, wavelets, Bayesian estimation, MCMC Hasting-Metropolis algorithm.Comment: Presented at MaxEnt2002, the 22nd International Workshop on Bayesian and Maximum Entropy methods (Aug. 3-9, 2002, Moscow, Idaho, USA). To appear in Proceedings of American Institute of Physic

    Doctor of Philosophy

    Get PDF
    dissertationAccurate interpretation of seismic travel times and amplitudes in both the exploration and global scales is complicated by the band-limited nature of seismic data. We present a stochastic method, Viterbi sparse spike detection (VSSD), to reduce a seismic waveform into a most probable constituent spike train. Model waveforms are constructed from a set of candidate spike trains convolved with a source wavelet estimate. For each model waveform, a profile hidden Markov model (HMM) is constructed to represent the waveform as a stochastic generative model with a linear topology corresponding to a sequence of samples. The Viterbi algorithm is employed to simultaneously find the optimal nonlinear alignment between a model waveform and the seismic data, and to assign a score to each candidate spike train. The most probable travel times and amplitudes are inferred from the alignments of the highest scoring models. Our analyses show that the method can resolve closely spaced arrivals below traditional resolution limits and that travel time estimates are robust in the presence of random noise and source wavelet errors. We applied the VSSD method to constrain the elastic properties of a ultralow- velocity zone (ULVZ) at the core-mantle boundary beneath the Coral Sea. We analyzed vertical component short period ScP waveforms for 16 earthquakes occurring in the Tonga-Fiji trench recorded at the Alice Springs Array (ASAR) in central Australia. These waveforms show strong pre and postcursory seismic arrivals consistent with ULVZ layering. We used the VSSD method to measure differential travel-times and amplitudes of the post-cursor arrival ScSP and the precursor arrival SPcP relative to ScP. We compare our measurements to a database of approximately 340,000 synthetic seismograms finding that these data are best fit by a ULVZ model with an S-wave velocity reduction of 24%, a P-wave velocity reduction of 23%, a thickness of 8.5 km, and a density increase of 6%. We simultaneously constrain both P- and S-wave velocity reductions as a 1:1 ratio inside this ULVZ. This 1:1 ratio is not consistent with a partial melt origin to ULVZs. Rather, we demonstrate that a compositional origin is more likely

    Line-Field Based Adaptive Image Model for Blind Deblurring

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Adaptive Langevin Sampler for Separation of t-Distribution Modelled Astrophysical Maps

    Full text link
    We propose to model the image differentials of astrophysical source maps by Student's t-distribution and to use them in the Bayesian source separation method as priors. We introduce an efficient Markov Chain Monte Carlo (MCMC) sampling scheme to unmix the astrophysical sources and describe the derivation details. In this scheme, we use the Langevin stochastic equation for transitions, which enables parallel drawing of random samples from the posterior, and reduces the computation time significantly (by two orders of magnitude). In addition, Student's t-distribution parameters are updated throughout the iterations. The results on astrophysical source separation are assessed with two performance criteria defined in the pixel and the frequency domains.Comment: 12 pages, 6 figure

    Viterbi sparse spike detection

    Get PDF
    pre-printAccurate interpretation of seismic traveltimes and amplitudes in the exploration and global scales is complicated by the band-limited nature of seismic data. We discovered a stochastic method to reduce a seismic waveform into a most probable constituent spike train. Model waveforms were constructed from a set of candidate spike trains convolved with a source wavelet estimate. For each model waveform, a profile hidden Markov model (HMM) was constructed to represent the waveform as a stochastic generative model with a linear topology corresponding to a sequence of samples. Each match state in the HMM represented a sample in the model waveform, in which the amplitude was represented by a Gaussian distribution. Insert and delete states allowed the underlying source wavelet to dilate or contract, accounting for nonstationarity in the seismic data and errors in the source wavelet estimate. The Gaussian distribution characterizing each sample's amplitude accounted for random noise. The Viterbi algorithm was employed to simultaneously find the optimal nonlinear alignment between a model waveform and the seismic data and to assign a score to each candidate spike train. The most probable traveltimes and amplitudes were inferred from the alignments of the highest scoring models. The method required no implicit assumptions regarding the distribution of traveltimes and amplitudes; however, in practice, the solution set may be limited to mitigate the nonuniqueness of solutions and to reduce the computational effort. Our analyses found that the method can resolve closely spaced arrivals below traditional resolution limits and that traveltime estimates are robust in the presence of random noise and source wavelet errors. The method was particularly well suited to fine-scale interpretation problems such as thin bed interpretation, tying seismic images to well logs, and the analysis of anomalous waveforms in global seismology

    Interactive volumetric segmentation for textile micro-tomography data using wavelets and nonlocal means

    Get PDF
    This work addresses segmentation of volumetric images of woven carbon fiber textiles from micro-tomography data. We propose a semi-supervised algorithm to classify carbon fibers that requires sparse input as opposed to completely labeled images. The main contributions are: (a) design of effective discriminative classifiers, for three-dimensional textile samples, trained on wavelet features for segmentation; (b) coupling of previous step with nonlocal means as simple, efficient alternative to the Potts model; and (c) demonstration of reuse of classifier to diverse samples containing similar content. We evaluate our work by curating test sets of voxels in the absence of a complete ground truth mask. The algorithm obtains an average 0.95 F1 score on test sets and average F1 score of 0.93 on new samples. We conclude with discussion of failure cases and propose future directions toward analysis of spatiotemporal high-resolution micro-tomography images
    corecore