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Summary 

The results of analysing images reveal a lot of important information. In most cases, 

the information lies at the sharp transitions of intensity between pixels. When images 

are blurred, the information of images may be lost because the sharp transition of 

intensity between pixels becomes the smooth transitions of intensity in an area, 

thereby resulting in blurring. Deblurring has been an interesting problem during the 

last few decades in many areas such as: manufacturing industry, medical or satellite 

image analysis, and astronomy. However, deblurring is a challenging task because of 

its ill-posed inverse characteristics and lack of information about blurring 

phenomenon and its cause. 

  In this thesis, a new adaptive image model is introduced to deal with the 

deblurring problem. The proposed model which is constructed from a variant 

distributed line field is called LiFeAIM, which stands for Line Field based Adaptive 

Image Model. We use the model in a denoising algorithm to examine its goodness in 

image restoration. The experimental result is competent when comparing with the 

existing denoising algorithms. The convergent condition and convergent speed of the 

proposed denoising algorithm are also studied. We then use the model to construct 

blind deblurring algorithms by applying the Variational Bayesian approach developed 

in this thesis. In these blind deblurring algorithms, the covariance matrix of image is 

not assumed to be circulant and cannot be diagonalised by Fourier transform. Hence, 

the proposed deblurring algorithms must calculate the inversion of very huge 

matrices. To solve this numerical calculation problem, we propose and prove several 
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theorems to make the implementation of algorithms practical and to accelerate the 

computational speed. We also investigate the sensitivity of proposed algorithms to 

noise and initial parameters. Moreover, we apply the cross validation method to 

increase the accuracy of blurring estimation. 

  We make a comparison among the blind deblurring algorithms which use the 

Variational Bayesian approach and different image models such as Total Variation 

model, Simultaneous Auto-Regression model, and LiFeAIM. The experimental result 

show that the adaptive image models, Total Variation model and LiFeAIM, are more 

effective in deblurring. 

 

Keywords: blind deblurring, ill-posed inverse problem, line field, LiFeAIM, 

Variational Bayesian approach, blurring estimation, original image estimation, 

circulant matrix, cross validation. 
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Chapter 1  

Introduction 

1.1. Blurred image and point spread function (PSF) 

The digital technology we have today allows us to capture a scene in a thousandth of a 

second. The graphic information we obtained is stored as a digital image. A digital 

image is a two-dimensional matrix of pixels which reflects a real scene at a specific 

view through an optical lens on the image plane of camera. However, sometimes, for 

various reasons (e.g. long shutter time of camera), each pixel of the captured image 

may end up as a combination of adjacent regions in the actual scene instead of a 

single region. When this happens, we get a blurred image of the captured scene and 

this combination is characterized by a kernel blurring function, called the Point 

Spread Function (PSF). On the blurred image, most details and patterns of the real 

scene are lost due to the reduction of intensity transition between pixels, which 

demarcates different individual regions in the scene. Consequently, we are unable to 

obtain the expected clear information from the blurred image. 

   This blurring phenomenon can happen due to different reasons. For example, 

we may get a blurred photographic image because the camera is not held steadily 

during the exposure. A blurred image may also be the result of the object movement 

or the out-of-focus phenomenon. Specifically, in astronomy, a blurred image can be 

caused by the movement of the air between the camera and the object. With various 
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causes, the blurring problem is obviously an issue in many areas, such as in 

manufacturing, medical image registration, satellite domain, and astronomy. 

  To solve the blurring problem, the “original” image, reflecting the real scene 

without blurring phenomenon, must be estimated from captured image with some 

prior knowledge about the real scene and the PSF. This is known as the deblurring 

task which will be discussed in the next section. 

1.2. Deblurring problem and noise effect 

It is essential to model the blurring process first before dealing with the inverse 

problem, the deblurring process. The blurring process can be represented 

mathematically by the following equation: 

 fhg    (1.1) 

where g is the captured image; h is the PSF; and f is the original image. 

 From equation (1.1), we have only one equation with two unknown variables - 

the PSF and the original image - for solving the deblurring problem. Thus, to estimate 

the original image, we must know the PSF. Instead of finding the blurring kernel 

function, most previous studies assumed that the PSF was known. Then, the original 

image was estimated by solving the inverse problem in frequency domain [01-03], in 

time – frequency domain [04-08], or in spatial domain [09-17]. However, even if the 

PSF is known, deblurring is still not an easy task because it is an ill-posed inverse 

problem. For that reason, a small noise in the observed image is amplified and affects 

dramatically the deblurring result. When dealing with the deblurring problem, we 

should therefore consider the denoising problem at the same time. Unfortunately, 

these two tasks are conflicting with each other. While denoising tends to make the 
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image less contrastive at some noisy pixels, deblurring increases the contrast of the 

image to make details clearer. This situation makes the deblurring problem more 

challenging for researchers during the last few decades. 

  However, the above mentioned studies [01-17] are incomplete because the 

PSF is unknown and needs to be estimated in all cases. Some researchers tried to 

solve the problem completely without making the assumption about PSF. Some 

studies tried to estimate the PSF in a separate algorithm for some specific cases, such 

as: camera moving uniformly in horizontal direction, and object being out-of-focus 

[18-27]. A few recent studies integrated the estimation of the PSF and the original 

image in a unique algorithm, called a blind deblurring algorithm [28-33]. These 

authors proposed an iterative algorithm in which the estimates are gradually 

improved. 

   Although estimating the PSF is a remarkable contribution of the above 

studies, none of these blind deblurring algorithms consider an adaptive image model 

which describes the high variation of intensity around the edges. It is well-known that 

the edges are the key elements of the image as the real scene can be sketched out by 

edges. However, the position of the edges is difficult to determine in a blurred image 

because the sharp transition at edges becomes smoother in an area, called the edge 

areas. Thus, it would be of interest to use an adaptive image model in the deblurring 

problem in order to carefully treat the edge areas in the deblurring problem. This 

thesis will propose a new adaptive image model based on the line field and use it to 

construct blind deblurring algorithms. 



 

 - 9 - 

1.3. Objectives 

The main objective of this thesis is to attempt to solve the deblurring problem using a 

new adaptive image model. We will estimate the clear image of the real scene from 

only one noisy blurred image of this scene. In our context, the blurring phenomenon is 

characterized by a spatially invariant PSF and the contaminated noise is an additive 

white Gaussian random process. The specific objectives of the thesis are: 

 To construct an adaptive image model based on the line field model. 

 To examine the proposed model’s performance for image restoration by using 

it for the denoising problem. 

 To solve the deblurring problem using the proposed model and the Variational 

Bayesian (VB) approach. The VB approach enables us to estimate both the 

original image and PSF. Thus, the deblurring problem can be solved as a 

whole. 

 To demonstrate the efficiency of the adaptive image models in dealing with 

the deblurring problem by comparing the results of different deblurring 

algorithms which use the same approach but with different image models. 

  The proposed adaptive image model has two advantages in dealing with 

deblurring problem. Firstly, this model is implemented in the spatial domain that 

enables us to deal with denoising and deblurring at the same time. It is therefore well 

suited for this ill-posed inverse problem. Secondly, in our image model, the 

conditional variance, characterizing for the local variation of light intensity, is a 

varying parameter instead of a constant. This parameter is calculated from a random 

process - the line field of image. Therefore, it gives us a powerful tool to restore the 

edges, containing most of the lost information in the blurred image, by applying the 
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stochastic theory in calculating the existence probability of edges. The stochastic 

theory is indispensable in this case because it is difficult to determine exactly the 

position of edges in a blurring problem. 

  To explore the efficiency of the proposed model in deblurring, our proposed 

blind deblurring algorithm will be compared with three other blind deblurring 

algorithms using the VB approach. Two among these algorithms are constructed from 

the Total Variation (TV) image model which is an adaptive image model. The other 

one, which uses Stimulate Autoregressive (SAR) model, is adopted from the work of 

Molina et al. [30]. These three algorithms use some approximation so that they can be 

implemented in the frequency domain. It is expected that the algorithms using 

adaptive image models, the TV model and the model proposed in this thesis, would 

yield better results. 

1.4. Outline of the thesis 

Chapter 2 reviews the state-of-art in deblurring. A lot of deblurring studies which 

have been done in the past few decades are classified following the domains that the 

deblurring process involved, such as: the spatial domain, the Fourier domain, and the 

wavelet domain. Chapter 3 introduces a new image model which is constructed from 

the line field. Since denoising is simpler and often incorporated into deblurring 

process, a denoising algorithm is constructed to examine the goodness of this model 

before it is used in Chapter 4 for deblurring. In Chapter 4, several theorems are also 

proposed and proven to help in accelerating the proposed deblurring algorithms. The 

experimental result of the proposed deblurring algorithms is presented in Chapter 5 

with different types of blurring cause. The cross validation approach is also combined 

with the proposed algorithms to reduce the effect of noise during the estimation of 
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blurring matrix. Chapter 6 compares the restoration results of four blind deblurring 

algorithms using the Variational Bayesian approach. Two among them are our 

proposed algorithms using the Total Variation model and the proposed image model 

in Chapter 3. The other two are the recent deblurring studies using the Simultaneous 

Auto-Regression model and the Total Variation model. The efficiency of these image 

models in deblurring is compared while they are used to construct the deblurring 

algorithms with the same approach and carry out experiments in the same condition. 

The work reported in this thesis is concluded in the last chapter, which also gives 

suggestions for future work. 



 

 - 12 - 

Chapter 2  

Literature Review 

2.1. Introduction 

There are three common kinds of blurring systems: single input- single output (SISO), 

single input – multi output (SIMO), and multi input – multi output (MIMO) system. 

In the SIMO system, one camera registers several images of the same scene under 

different environmental conditions. This case only occurs in some specific 

applications [34-37]. The most common case of MIMO blurring system is a blurred 

colour image [38-40]. The spectral channels of the colour image are, then, blurred by 

the same blurring function. However, the different channels may be contaminated by 

different noise signals. Depending on the correlated characteristics of the noise 

signals, these channel signals are processed dependently or independently. In the 

review of the state of the art below, we are only interested in the single input – single 

output (SISO) system because it is the blurring system of interest and the most 

common one in research, as well as in reality. In the SISO blurring system, the 

original image is restored from only one blurring grayscale image. It is also notable 

that the study of the SISO system is a basic step for solving the MIMO system when 

each channel of MIMO system is considered as a SISO system.  

  The blurring problem is a very common problem as blurring phenomenon 

occurs in many areas, such as: manufacturing industry, medical image registration, 

satellite domain, or astronomy. As a result, many researchers have studied the 
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deblurring problem during the last few decades. The state-of-the-art of deblurring 

problem may be classified in many different ways. An image deblurring algorithm 

may be classified as a non-iterative or an iterative deblurring algorithm, a non-

parametric or a parametric deblurring algorithm, and global or spatial deblurring 

algorithm [41]. Deblurring studies also can be classified following the methodology 

which is used, such as: à priori blur identification methods, ARMA parameter 

estimation methods, non-parametric methods based on high order statistics, methods 

using wavelet transform, methods using neural network [42-44]. 

  In this chapter, the review of deblurring studies will be introduced following 

the domain in which the deblurring process is implemented. A deblurring algorithm is 

presented in section 2.3 where the deblurring process is implemented in the image 

domain, called the spatial domain. Meanwhile, a deblurring algorithm is presented in 

section 2.4 where the deblurring process is implemented in the frequency domain, 

also called the Fourier domain, or in the time – frequency domain, called the wavelet 

domain. However, all blind deblurring algorithms are described in a separate section, 

section 2.5, to show our interest in the blind deblurring problem. The general 

mathematical formulation of the blurring problem is briefly introduced in the next 

section. 

2.2. Problem formulation of image deblurring 

Denote g and f as the observed and original images, respectively, and h as a spatially 

invariant blurring function. Then the blurred image can be modeled by the following 

equation: 

 fhvufvyuxhyxg
vu


,

),(*),(),(  (2.1) 
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 This inverse problem is an ill-posed inverse problem in which small errors 

(noise) in g will be dramatically amplified in the estimate of original image f. Hence, 

it is necessary that the blurring model should take noise into account, i.e. 

  nfhg   (2.2) 

 where 



n ~ N(0, n
2)  is assumed to be a white Gaussian noise with zero mean and 

variance 2

n . A white Gaussian noise is an identical and independent distributed (i.i.d) 

Gaussian noise. 

 Beside a few studies dealing with spatially variant blurs [45-49], most 

deblurring studies are interested in the blurring problem caused by the spatially 

invariant blurring function because of its simplicity and wide application. In this case, 

the multiplying operator between h and f becomes a convolution. Since our work 

concerns the spatially invariant blurring function in this thesis, the “deconvolution 

stage” term is used, from now on, to indicate the inverse process in which a sharper 

image is estimated from the blurred observation g. This term is used to distinguish 

from the denoising stage in cases where the deblurring algorithm consists of two 

stages, the deconvolution and denoising stages. If the deblurring algorithm does not 

separate the deconvolution and denoising tasks, the “deconvolution” term is 

equivalent to deblurring.  

  To simplify the deblurring problem, many researchers have assumed that the 

blurring function was known. Hence the original image was estimated by constructing 

an inverse filter of h and using the observed image g as its input. As mentioned in the 

previous section, these deblurring studies can be classified into two main branches 

following different domains in which the deconvolution task is implemented. The first 

branch includes studies which implement the deconvolution task in the spatial 
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domain, the original domain. The second branch includes studies which implement 

the deconvolution task in the frequency domain or in the time –frequency domain, the 

transformed domain. The studies of the first branch has an advantage in the possibility 

of combining the deconvolution task and the denoising task into a unique stage. The 

studies implementing the deconvolution task in the frequency domain take an 

advantage in the computational time with an assumption of circulant matrix. 

Meanwhile, the studies implementing the deconvolution task in the time – frequency 

domain have an advantage in suppressing the noise effectively while still preserve the 

detail of the image. Each of these branches will be introduced in the following 

sections with some examples of typical studies. 

2.3. Deconvolution in the spatial domain 

 To implement the deconvolution and denoising tasks together, some authors have 

proposed deblurring algorithms in the spatial domain. As mentioned above, the 

Fourier domain is good for the deconvolution problem in terms of computation time 

while the wavelet domain is effective in the denoising problem. However, to restore a 

noisy blurred image, constructing a hybrid algorithm based on both transforms leads 

to the separate implementation of each task. Hence, the performance of the algorithm 

is limited. This limitation can be avoided by implementing deconvolution and 

denoising in the spatial domain at the same time. On the other hand, by adopting the 

implementation in the spatial domain, the important information of image, such as 

edges, can be carefully processed. This idea has been developed by many researchers 

and gives promising results. These studies can be classified in two main groups. One 

follows the regularised method, and the other employs the Bayesian framework. 
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2.3.1. Regularised methods 

The regularised method is used in many ill-posed inverse applications. Each algorithm 

of this method is characterised by an energy function. The target of the regularised 

method is to find an estimate which minimises the energy function. In the image 

deblurring problem, the energy function is usually composed of two terms as follows: 

 )()(
2

ffhgfJ   (2.3) 

   The first term of the right-hand side of the equation is the data fitting term 

which is related to noise affecting the data. The second term is the regularisation term 

which is the product of a regularisation coefficient   and a non-negative potential 

function )( f . The potential function )( f is used to guarantee the smoothness and 

sharpness of the restored image. It normally consists of a quadratic form of the 

differential between each pixel and its neighbouring pixels. This differential term 

helps to keep the smoothness at the smooth regions of the restored image in this ill-

posed inverse problem. However, this term may also yield to over-smoothing the 

edges of the restored image. To achieve better deblurring result, regularised 

deblurring studies usually treat the edge regions of blurred images specifically or add 

some other terms into the potential function to sharpen the edges. These studies are 

called edge-preserving regularisation. Some examples of the added terms are the total 

variation of images [10], and the anisotropic diffusion equation [50]. 

  In an edge – preserving algorithm, called ARTUR - [11], an auxiliary variable 

was added into the ordinary potential function )( f  to make the optimum energy 

problem to be solved easily. The study provided the general form of the added term 

for )( f , a strictly convex and decreasing function. The most important contribution 

of this study is the proving of convergence of the proposed algorithm under some 
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assumptions. The study also described several deblurring experiments with three 

different edge-preserving potential functions and showed promising results. 

  While the ARTUR algorithm added the auxiliary variable to the potential 

function, the segmentation - based regularisation algorithm, proposed by Mignotte 

[13], used a segmentation technique to preserve the edges. In this algorithm, the 

potential function was constructed from the difference between a pixel and the 

average of partition regions instead of that between it and its neighbours. The partition 

regions were determined from an initial image which was estimated by the Wiener 

inverse filter. 

  The Total Variation model was assessed to be efficient in preserving the sharp 

contours and block features of images. By assuming that the total variation of images 

had an upper bound, the total variation of images was included in the potential 

function of a regularised deblurring algorithm [10]. The theory of sub-gradient 

projections was applied in this study to reduce the computational intensity of the 

optimisation problem. 

   It should be noted that the deblurring algorithm following this method must 

choose a suitable value for the regularisation coefficient . This is a challenge of the 

regularised method. Another challenge in using this method is to determine an 

appropriate potential function to preserve the edge of image as much as possible. 

2.3.2. Bayesian methods 

The main idea of Bayesian methods is to draw inferences which take into account of 

the prior distribution of parameters of interest. The Bayesian inferences are then used 

to make decision or to estimate the hidden data from a particular observed data set 

[51]. The most common methods using Bayesian inferences are Maximum Likelihood 
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(ML) and Maximum à posteriori (MAP). Some examples of deblurring studies using 

Bayesian methods are introduced in this section. 

 Note that f and g are the original and observed images, respectively, as stated 

above. The MAP approach is based on the basic Bayes’ formula as given in the 

equation below:  

  
)(

)()(

gp

fpfgp
gfp    (2.4) 

  If there are unknown parameters in the above probability distributions, these 

parameters, denoted as  ,  are necessary to be estimated. The probability of 

unknown parameters   is added to the formula as in equation (2.5): 

  
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
   (2.5) 

  In general, the probability of the observed image g given the original image f 

and the parameters   is the distribution of noise which is assumed to be white 

Gaussian. The probability of the original image f given  and the probability of   

depend on the prior knowledge about the image and assumptions about the image 

model. As these probabilities are often in the exponential form, the criterion function 

of algorithms is constructed from their logarithm. The target of algorithms using MAP 

approach is to estimate f and   in order to optimise the likelihood probability or the 

posterior probability. 
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whereas, 

 )()(),(log),,(  pfpfgpgfJB   
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or: 

 ),(log),,(  fgpgfJ B  

Depending on different assumptions about the image model, many studies have been 

developed in this framework. 

  Using the maximum à posteriori (MAP) approach, a deblurring algorithm was 

established with the modified Iterative Conditional Mode (ICM) and Simulated 

Annealing (SA) scheme [38]. The proposed deblurring algorithm was extended from 

the original ICM and SA algorithm which was investigated very widely in the 

denoising problem. The proposed algorithm used compound Gauss-Markov random 

fields, including the intensity field, the line field of the image, and the noise field. 

Although the global convergence of the original ICM-SA algorithm was proven, that 

of the modified ICM - SA algorithm was very complex to prove. 

  Another example of an algorithm using the line field in deblurring was the 

deblurring algorithm with a new adaptive image model [14]. The parameters of this 

image model were determined from four line processes which are oriented following 

the horizontal, vertical, diagonal, and sub-diagonal directions. The Gaussian 

distribution of these line fields was characterized by an inverse variance which was 

assumed to be a Gamma random variable and updated during the iterative steps of the 

algorithm. This assumption did not restrict the result of algorithm because the inverse 

variance parameter would be updated during the iterative steps of algorithm. This 

proposed algorithm had a challenge of determining the variation of parameters in the 

Gamma distribution during iterations to improve its convergence. 

  The MAP approach and Markov random field was also used in [09, 52] to 

construct a deblurring algorithm. This algorithm decomposed the blurred noisy 
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observation into two sub-images and treated the edges and smooth regions of 

observed image separately. The shift-variant regularisation was applied at the edges 

while the shift-invariant regularisation was applied at the smooth regions.  The 

Sherman-Morrison matrix inversion lemma was employed to reduce the 

computational complexity. 

  As mentioned in the previous section, the Total Variation model was known as 

an efficient model in preserving the sharpness of images. This model was also used to 

modeling the image in a deblurring algorithm following the Bayesian framework [16]. 

The unknown parameters in this study were assumed to be Gamma distributed 

random variables. Although the initial distributions of these parameters were given, 

they would not affect the final restored result as these distributions were updated 

during the iteration of algorithm. 

  As wavelet transformation is an efficient tool for denoising, combining the 

wavelet domain and the spatial domain in deblurring is an interesting idea. The study 

in [15] applied the MAP approach to deconvolve the blurred noisy image in the 

spatial domain and used wavelet shrinkage to remove the noise efficiently. The 

algorithm used Fourier transform as a tool for efficient numerical computation. The 

authors indicated that the algorithm performed well with various wavelet transforms 

such as orthogonal Discrete Wavelet Transforms (DWT) and undecimated DWT. The 

results of this algorithm relied on the initial image estimated by the standard Wiener 

inverse filter in the Fourier domain. In addition, the results were also affected by an 

adjustable parameter which was the ratio between noise suppressed in the deblurring 

step and in the denoising step. 

  Beside the regularized method and the approaches in the Bayesian framework, 

constructing the inverse filter is also an interesting direction for deblurring in the 
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spatial domain [53]. It is also notable that the regularised method and the approaches 

in Bayesian framework sometimes yield the same algorithm. For instance, the 

logarithm form of the posteriori distribution in the MAP approach can be considered 

as the energy function of the regularised method. Examples of this analogue are 

studied in [54, 55] whose regularised functions can be interpreted by the MAP 

approach.  

  Deblurring in the spatial domain has an advantage in suppressing the noise and 

recovering the sharpness of the estimated image simultaneously. In the spatial 

domain, the detail of image can be recognized and treated with care. However, many 

researchers are still interested in seeking efficient deblurring algorithms in the other 

domains, such as the frequency domain and the time-frequency domain. 

2.4. Deconvolution in the transformed domain 

There are two transformed domains which are used for the deconvolution problem. 

One is the frequency domain, also called the Fourier domain, where the Fourier 

transformation is used to map data from the spatial domain to the frequency domain. 

The other is the time-frequency domain, called the wavelet domain, where the wavelet 

transformation is used to map data from the spatial domain to the time-frequency 

domain. Each domain has its own advantages in dealing with the deconvolution 

problem. 

2.4.1. Deconvolution in the frequency domain 

The Fourier transform is widely used in deblurring because the inverse of a blurring 

matrix can be found more easily in the frequency domain. With a spatially invariant 

PSF, the operator between the blurring function h and the original image f is a 
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convolution which becomes an ordinary multiplication in the Fourier domain. Hence, 

the inversion problem can be implemented very rapidly by inverting scalar 

coefficients at each frequency. The deblurring studies using this approach often use 

the inverse or Wiener inverse filter in the Fourier domain (shown below) for the 

deconvolution process and another filter for the denoising process [01-03, 56]. 

The regularised inverse filter is given by: 

)(
)(

)(
)(

2





 G

H

H
F




  (2.7) 

and the regularised Wiener inverse filter by: 

)(

)(ˆ
)(

)(
)(

2

2
2









 G

F

H

H
F

n


  (2.8) 

where,    F( ), G( ), )(ˆ F , and H( ) denote the Fourier transform of the 

original image f, observed image g, estimated image f̂  and the blurring matrix h, 

respectively, and 

   2

n  is the variance of  the white Gaussian noise.  

     is the regularisation parameter. 

   As illustrated in the above equations, a regularization parameter is usually 

added to these inverse filters to avoid the division by zero error and to reduce the 

amplification of noise. However, the regularization parameter needs to be fine-tuned 

in order to achieve the compromise between suppressing noise and preserving image 

contents. As a consequence, these filters often are not able to effectively remove 

noise. It is crucial to perform piecewise-smoothing to the estimated image after 
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deconvolution. For example, several algorithms use the Wiener filter with the Fourier 

transform for the deconvolution stage and the wavelet shrinkage for the denoising 

stage. 

 The wavelet transform is known as a powerful tool in denoising. 

Unfortunately, the wavelet transform is difficult to use directly for deconvolution 

because the problem becomes very complicated when the two-dimensional image is 

represented in four-dimensional space. Hence, the Fourier transform and wavelet 

transform have been combined into an algorithm to exploit their advantages in 

deconvolution and denoising. Some studies which have used this idea are introduced 

below. 

  An example of an algorithm which used the inverse filter in the frequency 

domain was ForWaRD algorithm, standing for Fourier –Wavelet Regularized 

Deconvolution algorithm [02]. This algorithm implemented the deconvolution process 

in the Fourier domain and the denoising process in the wavelet domain. It consisted of 

two shrinkage procedures. One was used for Fourier coefficientswhile the other was 

used for wavelet coefficients.  It was a simple and effective algorithm in comparison 

with the existing studies. However, it was challenging to find the optimal value for the 

regularization parameter balancing between the Fourier and wavelet shrinkage. If the 

regularization parameter was high, the algorithm would suppress more noise but some 

image details would be lost and vice verse. Another example of combining the Fourier 

domain and the wavelet domain was the study in [03]. This study used the Wiener 

filter in the Fourier domain and applied a shrinkage process for Fourier coefficients. 

In the wavelet domain, a Bayesian approach applied to the hidden Markov model of 

wavelet coefficients. 
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 Instead of denoising the image in wavelet domain, some studies implemented 

the denoising stage in the spatial domain while the deconvolution stage was 

implemented in the Fourier domain. For example, The LPA-ICI algorithm piecewise-

smoothed the noisy blurred image by an adaptive Local Polynomial Approximation 

(LPA) method [01]. Firstly, the deconvolution process was solved in the frequency 

domain with a regularized inverse filter. An additional term of the filter was the 

Fourier transform of the approximation kernel. Secondly, the denoising process was 

implemented in the spatial domain based on the Intersecting Confidence Intervals 

(ICI) theory. In essence, a series of adaptive window sizes were chosen for each pixel 

from different noisy deconvolution estimates corresponding to different kernels. The 

final result was the weighted average of results in different directions, which might 

lead to a slight blurring in the obtained result. By using this result as an initial 

estimate, a similar algorithm in which the regularized inverse filter was replaced by 

the regularized Wiener inverse filter was suggested. The latter algorithm improved the 

preliminary result further. However, these results also depended on the regularization 

coefficients of inverse filters. 

  The studies introduced in this section have an advantage in computational time 

as the problem of inverting a big blurring matrix becomes the inverting of scalars. 

However, their performance is limited by the value of the regularization parameter of 

inverse filters which needs to be adjusted. The parameter must be fine-tuned in order 

to achieve the compromise between removing noise and preserving the image 

contents.  Another disadvantage of these algorithms is that they often consist of two 

separate steps. The first step is deconvolution in the Fourier domain. The second is 

piece-wise smoothing the result of the first step in another domain, such as the 
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wavelet domain or the spatial domain. Therefore, the effect of noise would be 

amplified through the first step. This will limit the performance of algorithms. 

2.4.2. Deconvolution in the time - frequency domain 

The wavelet transform is an effective and powerful tool for denoising. It is well-suited 

for denoising tasks because the noise is still white Gaussian, whereas the signal 

components are concentrated into a few coefficients in the wavelet domain, also 

called the time – frequency domain [57]. This important principle is capable of 

separating the signal from noise, thereby making the wavelet transform powerful for 

estimating data with sharp discontinuities such as edges. The efficiency of this 

denoising approach depends on choosing a proper shrinkage threshold. There were 

many techniques for estimating the shrinkage threshold such as RiskShrink [58] using 

a soft-threshold operator and minimizing the mean squared error; VisuShrink [58] as a 

global optimal threshold in the minimax sense of RiskShrink; SureShrink [59] 

minimizing Stein's unbiased risk estimate; or BayesShrink [60] performing a data-

driven, subband-dependent threshold. 

  In the previous section, many deblurring algorithms use the wavelet transform 

for denoising after implementing the deconvolution stage in the spatial or the Fourier 

domain [02, 03, 15]. This section will introduce the deblurring algorithms which 

implement the deconvolution stage in the wavelet domain, the time – frequency 

domain [04-08]. 

  Although the wavelet transform has an advantage in denoising in comparison 

with the Fourier transform, deblurring using the wavelet transform is more difficult 

because the convolution between the blurring function h and the original image f does 

not become a multiplication in the wavelet domain. Hence, the inversion problem is 
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almost impractical in the wavelet domain. To deal with this computational problem, 

some studies simplify the problem by adding assumptions of wavelet coefficients and 

use iterative methods to solve the optimization problem.  

  Similar to deconvolution studies in the spatial domain, most deconvolution 

studies in the wavelet domain used the Bayesian framework or the regularised 

method.  An example of studies using the Bayesian framework and the discrete 

wavelet transform was the generalised expectation maximisation deblurring algorithm 

[06]. This algorithm examined different types of Gaussian scale mixture densities to 

describe the prior distribution of wavelet coefficients, such as Laplace, Hardy, 

Jeffreys, generalized Gaussian, and garrote density. To solve the optimisation 

problem of MAP, this study used the expectation maximisation method and the 

second-order stationary iterative method. 

  Another example of studies applying the Bayesian framework for the wavelet 

coefficients of image is reported in [07]. This study used the MAP approach and the 

dual-tree complex wavelet transform. To simplify the problem, the prior distributions 

of wavelet coefficients of images are assumed to be independent. In addition, the 

variances of the real and imaginary parts of each wavelet coefficient are assumed to 

be equal. The conjugate gradient method is applied to solve the optimisation problem. 

  The regularised method in the time-frequency domain was used in an adaptive 

regularisation deblurring algorithm [05]. The weakness of the regularised method was 

how to choose the appropriate regularised coefficient. In this algorithm, the 

regularised coefficient was determined in the adaptively regularised constraint total 

least squares method. To reduce the computational effort, the study considered only 

one-level wavelet decomposition. 



 

 - 27 - 

  As described above, there are many deblurring studies which use different 

approaches and are implemented in different domains. Each algorithm has its own 

advantage in deblurring and gives promising restored results. However, the above 

mentioned studies are incomplete because they assume that the blurring function h 

was known. In fact, the blurring function is unknown and needs to be estimated in all 

cases. Some studies which try to solve the problem completely will be presented in 

the next section.  

2.5. Blind deblurring - the dual problem 

To estimate the original image from the observation, it is crucial to know the blurring 

function. In practice, the blurring function is unknown and it is very difficult to 

determine the blurring function from a degraded observation. The works which deal 

with this problem are called blur identification. However, blur identification and 

image restoration are two dual problems where one is estimated given the other and 

vice versa. Thus, we need a unified approach to solve the two problems jointly. The 

problem of restoring the original image without complete knowledge of blurring 

function is called blind deblurring.  

  There are two typical approaches for the blind deblurring problem. In the first 

approach, the blur identification procedure is realized in a separate step to estimate the 

blurring function. Then, any available deblurring method is used to estimate the 

original image. In the second approach, the blur identification and the image 

restoration procedure are incorporated in a unifying algorithm. They could be often 

estimated alternatively in an iterative algorithm. The precision of estimation will be 

improved through each step. These two approaches will be introduced below. 
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2.5.1. Blur identification  

To deal with the blind deblurring problem, some studies estimated the blurring 

function, or the PSF, and used an available deblurring algorithm in the literature to 

examine the accuracy of PSF estimation through the restored image. In these studies, 

the PSF is often investigated as a specific case, such as the uniform horizontal moving 

blur, the out-of-focus blur, and the truncated Gaussian blur. These PSFs are assumed 

to have specified parametric forms and determined by one or several parameters. 

Their characteristic parameters may be the blur extent, the defocused radius, the 

blurring radius, or the variance of the coefficients. Some examples of specific blurring 

models are given below. 

  When there is the horizontally uniform relative movement between the camera 

and the captured object, the PSF has the following form: 
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 where d is the extent of the motion. 

 When there is the out-of-focus phenomenon in capturing the object, the PSF is 

characterized as: 
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where R is the radius of the out-of-focus function. 

  When the movement of the air between the camera and the object affects the 

process of image registration, called the air turbulence phenomenon, the PSF is 

modeled as follows: 
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where  R is the extent of the blur, and  2  is the variance of this distribution. 

  There were various approaches which were used in blur identification. Some 

approaches are listed here. For instance, the maximum likelihood method was applied 

in the three above described models to determine the PSF [2]. The autocorrelation of 

the shadowed image, which was constructed from the blurred observation, was used 

to estimate the blur extent of a horizontally uniform blur in [25]. The ADALINE 

neural network was used to determine the elements of PSF where the blur extent was 

roughly estimated [20]. Although the blurring model in this study was constructed in a 

general form theoretically, only the non-uniform straight motion blur was considered 

in their numerical experiments to limit the complexity of the network. The residual 

spectral matching approach was used to determined the blur extent of some one-

parameter blurring models in [26, 27]. 

  In all these studies, several specific mathematical types of PSF were 

considered. These studies were often limited and could hardly be generalized. On the 

other hand, the image restoration process was employed from an available work in the 

literature. Hence, they lack the interaction between the PSF estimation and the 

original image estimation, of which result would affect that of the other, and vice 

verse. A few studies filled this gap by integrating the estimation of the PSF and the 

original image in a unique algorithm, called a blind deblurring algorithm. This was 

often an iterative algorithm in which the estimates were gradually improved. 
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2.5.2. Blind deblurring- Unifying algorithms  

The blind deblurring algorithms, in which both the blurring function and the original 

image were unknown and need to be estimated, were often derived in the spatial 

domain. There were also the blind deblurring algorithms derived in the Fourier 

domain [31], in which the blind deblurring problem in the study was equivalent to 

factorizing a two-dimensional polynomial. However, this algorithm was complex, 

unstable, and analysed only the noiseless observation. Some blind deblurring 

algorithms derived in the spatial domain would be introduced below. 

  Although the blind deblurring algorithms do not impose the assumption of a 

known PSF, they may require more prior knowledge about the original image. For 

example, they assume that the image is in the form of an object lying on a uniform 

contrast background and the object’s support is known. Hence, the constraint is that 

the pixel outside the support would be replaced by a value corresponds to the grey 

level of background. The Iterative Blind Deconvolution (IBD) method [33] is one 

among the reported works using this assumption. The algorithm estimates the 

convolution matrix by a regularized Wiener inverse filter provided that the original 

image is approximately estimated; and vice versa. Each time the convolution matrix 

(image) is found in the Fourier domain, it is transformed to the spatial domain by the 

inverse Fourier transform to impose blur (image) constraints on it. 

  Another example of blind deblurring algorithms imposing special constraints 

on the original image is NAS-RIF algorithm [32], which stands for Non-negative And 

Support constraints Recursive Inverse Filter algorithm. This study assumed that the 

image showed an object on a uniform black, gray, or white background and that the 

object had a finite support. The cross validation method was employed in the case 
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where the support size of the original object was unknown. Although the convergence 

of the algorithm was guaranteed, the restored result was not robust to noise.  

  A new approach used recently in blind deblurring studies is the Ensemble 

Learning approach. In this approach, not only the hidden data, the PSF and the 

original image, but also their model parameters are considered as random variables. 

All the prior distributions of the hidden data and the model parameters are given and 

approximated by simpler distributions. The approximated distributions are estimated 

by the Kullback-Leibler divergence [61]. Different blind deblurring algorithms will be 

derived when different prior distributions and approximated distributions are used. 

For instance, in [29, 30], the original image and PSF were modeled by simultaneous 

auto-regressive models and approximated by Gaussian distributions, while the model 

parameters were modeled and approximated by Gamma distributions. However, the 

covariance of the hidden data must be circulant to reduce the computational 

complexity. Slightly different to Ensemble Learning approach, the approach in this 

study, termed Variational Bayesian approach, updates the approximate distributions 

of model parameters through each iteration. 

  Similar to Ensemble Learning approach, a generalisation of Expectation-

Maximisation is reported in [24] to construct a blind deblurring algorithm. This study 

uses the Kullback-Leibler divergence to bypass the main difficulty in applying the 

Expectation-Maximisation method. In this study, the model parameters are considered 

as the deterministic variables rather than the random variables. In fact, the result of 

this study is the same as that of the blind deblurring algorithm which uses Ensemble 

Learning approach and the uniform distributions of model parameters. Similar to the 

previous described algorithm, this algorithm also assumes that the covariance of 
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hidden data and model parameters were circulant to reduce the computational 

complexity. 

  Although estimating the PSF is a remarkable contribution of the above studies, 

none of these blind deblurring algorithms consider an adaptive image model which 

describes the high variation of intensity at edge areas. It is well-known that edges are 

the key elements of the image as the real scene can be sketched out by edges. 

However, the position of the edges can hardly be determined in a blurred image 

because the sharp transition at edges becomes smoother in an area, called the edge 

areas. Thus, it would be of interest to use an adaptive image model in the deblurring 

problem in order to carefully treat the edge areas in the deblurring problem. That is 

our motivation to start the research which is reported in this thesis. In the course of 

our research, a blind deblurring algorithm using an adaptive image model is reported 

by Babacan et al. in 2009 [62]. The difference between this algorithm and the one 

reported in Chapter 6 is that this algorithm uses the conjugate gradient method to 

calculate the covariance matrices of hidden data. More details of this algorithm will 

be mentioned in Chapter 6. 

  There are some other techniques used in the blind deblurring problem, such as 

the neural network and the Vector Quantisation approach. However, these techniques 

are only applicable in some specific cases where the training database is available. For 

example, the training database is used to establish a codebook in the Vector 

Quantisation approach or to train the network in the neural network [63-65]. 

2.6. Summary 

Numerous deconvolution studies with assumption of known PSF were introduced in 

the above sections with the advantages and disadvantages of their approaches stated. 
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In particular, the inverse filters in the frequency domain have the advantage in 

computational time but their result was limited due to the need in tuning the value of 

their regularization parameter. The regularized approach and Bayesian framework 

were used in the deconvolution studies in the spatial domain as well as the studies in 

the wavelet domain. The limitation of the regularized approach was due to the 

necessity to choose the appropriate value of regularization parameters while the 

Bayesian approach assumed the prior knowledge about the original image. Although 

many deblurring studies were reported in the literature, only few of them dealt with 

the blind deblurring problem. 

  In this thesis, the Bayesian inference is used to construct unifying algorithms 

for blind deblurring problem. The variational approach is combined with the Bayesian 

inference, named the Variational Bayesian approach, in order to minimize the effect 

of the prior information. Two adaptive image models are considered in this work as 

the prior information to construct different blind deblurring algorithms. The use of 

adaptive image models results in high computational load but it is useful in deblurring 

because these models treat the sharp intensity transition of image carefully. 
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Chapter 3  

Denoising Using Line-Field Based 

Adaptive Image Model 

3.1. Introduction 

In Chapter 1, we have pointed out that denoising plays an important role in the 

deblurring problem. For example, the results in Figure 3-1 show the effect of noise on 

the deblurring process by using a standard Wiener filter to restore original images 

from two blurred images. Both observations are the blurred Lena image. One of them 

is noise-free while the other is contaminated by a white Gaussian noise. The 

restoration result of the latter is worse than that of the former as shown in Figure 3-1 

(b) and (d). Hence, it is crucial to process noise pixels carefully when restoring a 

blurred image. In this chapter, we discuss the denoising of a purely noisy image while 

preserving its details before dealing with the deblurring problem in the next chapter. 

Specifically, we construct a new adaptive image model in this chapter and use it to 

deal with the denoising problem. Then, the proposed model will be employed in the 

next chapter for the deblurring task. 

  As mentioned in the last chapter, wavelet transform is a powerful tool for 

denoising [58-60, 66-70], thanks to the consistent characteristic of the white noise 

through the wavelet transform. However, image patterns are too complex to analyse in 

the transformed domain. Hence, denoising algorithms in wavelet domain may be 

difficult to integrate with the other image processing algorithms such as segmentation, 
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deconvolution, and recognition. Besides, the implementation of wavelet and inverse 

wavelet transformation is also a time consuming computational process. Thus, the 

denoising approach in the spatial domain would be more competent in these 

applications because it is easier to be integrated with the other image processing tasks 

which are related to image pattern analysis. For these reasons, we choose to process 

the image in the spatial domain. 

 

Figure 3-1. The effect of noise in deconvolution problem: the blurred image (a), the 

blurred noisy image (b) by the horizontally uniform blur with blurring extent d=11 

and noise variance σn = 20, and their deconvolution results (c), (d) by the standard 

inverse Wiener filter in Matlab. 

  The denoising algorithms in the spatial domain were based on the idea of 

locally smoothing the image with different smoothing coefficients. These algorithms 
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could be regarded as spatially adaptive filters [71-74]. An example of smoothing 

filters in denoising was the median filter. The disadvantage of median filters was that 

some important details of image at transition areas may be lost. Considerable works 

have overcome this effect by switching among several median-filters based on some 

criteria [75-77]. Recently, Katkovnik [78] has proposed an efficient denoising method 

using the local polynomial approximation (LPA) with the adaptive window size 

estimated by the intersection of confidence intervals (ICI) rule. These algorithms 

might be applied to smooth out the image in various directions. The estimated image 

was finally determined by the average of the restored results following different 

directions to avoid the bias effect. 

  Getting inspiration from the similarity in the locally dependent characteristic 

of the image and the Markov chain, Besag [79] has proposed a probabilistic 

mathematical model for image processing tasks. By adding a virtual random process 

to this model, Geman and Geman [80] have made the model more powerful in 

removing the noise while preserving the details of the image since the added random 

process has driven the smoothing process appropriately. Applying different iterative 

schemes, such as Simulated Annealing (SA) scheme [80] or Iterated Conditional 

Modes (ICM) scheme [81], to the later model has resulted in efficient denoising 

algorithms that have had a better capability to preserve the details of the image [82, 

83]. However, because of the convergence condition, these algorithms required 

hundreds of iterations with considerable computational time. 

  In this chapter, by using the Markov model with a variant distribution line 

field instead of the original line field, we propose an algorithm that may distinguish a 

pixel at the edge of image from noisy pixels. Hence, the noise is removed more 

effectively while details of the image are preserved. Specifically, from the modified 
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line field, we reconstruct an adaptive image model based on Besag’s model. In this 

model, its variance is not a constant but varies through the image. The fact that the 

variance is high at the “potential” edge pixel helps to preserve the high transition 

between edge pixels. This potential of each pixel is determined based on the line field. 

As a result, the denoising algorithm constructed from the proposed model has a good 

capability to detect the noise. Therefore, the convergence speed is accelerated and the 

computational time is reduced significantly. 

3.2. Markov random field and image modeling 

From the concept of the Markov chain, Besag [79] has developed a spatially 

interacting random process and proposed a valid probability structure for it. This 

spatial random process is called the Markov random field. For instance, we consider a 

2D Markov chain  
1..i i n

F f


  , where i is a simple site index alternated for the two 

site indices. According to Besag's model, its conditional probability may have the 

form as given in eq. (3.1): 

 








 
ij

nnnjiijjiiiiji ffGffffGfffGfPijffP ),...,(......),()(exp)0(: 1..11

 (3.1) 

where ):0()0( ijffPP ji   

  G-functions are chosen arbitrarily subject to the condition that they are only 

non-null at site i and its neighbours. The conception of neighbourhood will be 

described more clearly later when we apply this probability structure to modeling the 

image. 
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  From this general form, we are able to construct more specific models. 

Considering a simple case in which the first order terms ( )i iG f and the second order 

terms ( )ij i jG f f  are linear, and the others are equal to zero, we obtain an auto-normal 

model: 

 



























 



2

22 2

1
exp

2

1
:

ij

jiji

ii

ji ffijffP 


  (3.2) 

in which:  
ij  is equal to zero unless j is a neighbour of i.

ij  implies the strength 

of an imaginary bond between i and its neighbour j. 

  2

i  is the conditional variance of the image model which characterises 

the local difference around the site i. 

  Due to the analogy of locally dependent characteristics between the Markov 

random field and the image, this structure can be used to model the image. In image 

modeling, the intensity matrix of the image is considered as a Markov random field. 

Then, the conditional variance 2

i  of the above model is a parameter characterizing 

the local smoothness around the pixel i. Hence, it is obvious that 2

i  should be small 

at the smooth area and large at the edge of the image. The neighbours of a pixel are 

defined as the pixels around it. There are many neighbourhood models with different 

sizes of the neighbour set. For example, we have the first-, second-, or third-order 

neighbourhood model as shown in Figure 3-2. The first order model was preferred in 

many previous works since it required the least computational time. Unfortunately, 

using the first order model tends to cause the vertically and horizontally directional 

effect. Hence, in our studies, we consider the second order neighbourhood model to 
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avoid this effect. Higher order neighbourhood models can be used but they will 

require more computational effort. 

 

Figure 3-2. Different neighbourhood models: the first (a), second (b) and third (c) 

order neighbourhood model. 

3.3. Line field with variant distribution  

From Besag's model, Geman and Geman [80] have constructed a new model by 

combining the original model with another Markov random field. In this new model, 

the image is regarded as a pair of 2-D Markov random fields, the intensity field F and 

the line field L. While F is a real random process representing the intensity at each 

pixel, L is an imaginary random process representing the virtual bond between pixels. 

The line field of an image is constructed from the intensity field of that image. If there 

is "no difference" between the intensity of a pixel and that of its neighbour, it is said 

that there does not exist a bond between them ( ( , ) 0)l i j  ; otherwise ( ( , ) 1)l i j   (as 

shown in Figure 3-3). Then, the line field is a binary random field. By adding the line 

field to Besag’s image model, the pixel at the edge can be distinguished from pixels in 

the smooth areas and noisy pixels, thanks to the number of bonds between that pixel 

and its neighbours. The combination between the line field and Besag’s model is 

realized by connecting the original model with a Gibbs distribution which is 

represented in the following equation: 
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in which,  G is the intensity field of the observed image; 

 F and L are the intensity field and the line field of the original image; 

 U is the energy function of the original image which is determined 

from the line field and neighbourhood system; 

 T is called the temperature parameter of the model. 

  

Figure 3-3. Line-field model: the neighbours of a pixel and the bonds between them 

l(i,j)=1 if the bond exists between i and j; otherwise l(i,j)=0. 

 Connecting the posterior distribution in eq. (3.3) with the prior distribution in 

eq. (3.2) gives us an idea of calculating the parameters 
ij  and 2

i  from the line field 

L. In this section, we first introduce our modified line field which will facilitate our 

effort in defining the image model in our own way. The next section will then clarify 

how to combine a Markov random field and a Gibbs distribution in image modeling. 

  The line field of an image is constructed from its intensity field. In the model 

suggested by Geman and Geman [80], the probability of the existence of a line 

between two pixels ( ( , ) 1)l i j   is an invariant distribution which covers the whole 
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variation interval of intensity difference. It may lead to the confusion between a noise 

and a pixel at the edge. For instance, the pixels of thin edges which lie within a 

smooth region will be highly and potentially considered as noisy pixels. 

 

Figure 3-4. The smoothness of image at a pixel. 

  The inspiration of our line distribution comes from the fact that the intensity of 

each pixel in an image should be close to that of some pixels amongst its eight nearest 

neighbours. In other words, the image is smooth at each pixel in some direction. For 

example, in Figure 3-4 the image is smooth at the center pixel in two directions 

(North-East and South) which are shown by the arrows. Following this rule, pixels in 

an image can be classified into three categories: 

 The pixel in the region where the pixels are of the same intensity is smooth in 

all eight directions; 

 The pixel at the edge can be smooth in some directions, for instance, in the 

directions along the edge; 

 A noisy pixel which is generally not smooth in all directions. 

 Therefore, a noise-free pixel could be distinguished from a noisy pixel based 

on the difference of intensity between a pixel and its neighbours; this idea is related to 

the line field concept. However, different from the line field suggested in [80], this 

thesis proposes a new virtual line field distribution. The 95% confidence interval of 
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the existence of the proposed virtual line covers partially the variation interval of 

intensity difference. Since the 95% confidence interval covers only a limited interval 

of intensity difference we need to construct an iterative algorithm in this case. The 

probability distributions of the line cover different intervals of intensity difference at 

each iterative step k so that their combination must cover the whole variation interval 

of intensity difference (see Figure 3-5). The proposed distribution of the line has the 

following form: 

         
 

  








 



2

22

1
exp,,:,,, kff

k
jinmnmlfjilP ji 


   (3.4) 

where, ( )k and 2 ( )k
 are the mean and the variance of the line field distribution at 

step k, respectively. As shown in Figure 3-5, 2 ( )k
 and ( )k  decrease with respect 

to k. These parameters will be determined in our experimental work. 

 

Figure 3-5. Probability distribution of the line at various iterative steps k. 

3.4. Line-Field based Adaptive Image Model (LiFeAIM) 

From the proposed line field above, we reconstruct the image model described in eq. 

(3.2) with parameters ij  and 2

i  calculated from the proposed line field. As stated 
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above, the fact that 
ij  is non zero implies a bond between pixel i and pixel 

j ( ( , ) 1).l i j  Then, l(i,j) could be used as a term included in 
ij . On the other hand, it 

is assumed that the observed value of intensity at a pixel is most reliable if there is no 

difference between its intensity and that of its neighbours. From eq. (3.2), we deduce 

the condition imposed on
ij  as follows: 

1ij

j i




   (3.5) 

Hence, the parameter 
ij  could be written as: 
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    (3.6) 

  We now determine the conditional variance 2

i , which characterizes the local 

smoothness around the pixel i. We should notice that 2

i  increases when scanning 

from a smooth area toward its boundaries, which are the edges within the image. 

Therefore, it is essential to identify whether or not a pixel lies on an edge. A new 

coefficient will be defined to distinguish between a point at the edge and a noisy 

pixel: 
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where N  is the number of neighbours around the pixel i and 2

l is the variance of the 

distribution of the number of lines around a pixel. i , called the noisy coefficient, 

varies in the interval [0, 1]. It is high if there is noise at the pixel i and low otherwise. 
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In contrast, 2

i  should be low at a noisy pixel. For instance, 2

i  may be chosen to be 

proportional to (1- i ) as shown in the following equation: 

2 2(1 )i n i       (3.8) 

where σn is the standard deviation of the contaminated noise. 

   We now use the probability structure (3.2) for modeling the image with the 

parameters
ij  and 2

i  determined above. Similar to the model in eq. (3.3), the 

simulated annealing scheme is applied to this image model: 
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 (3.9) 

  The simulated annealing scheme is related to the temperature parameter T(k) 

which controls the convergence speed of the algorithm. When T(k) decreases slowly 

with respect to the iteration step k, the random process will be forced towards an 

minimal energy configuration. The meaning of T(k) comes from physical processes, 

such as the cooling down process of metal. The high temperature T(k) induces the 

chaotic phenomenon in which the neighbourhood elements has a loose bond. On the 

other hand, the low temperature T(k) induces tighter bonds between the 

neighbourhood elements which results in a more stable appearance. In the cooling 

down process, the temperature T(k) should decrease slow enough to let the elements 

(atoms) arrange into the right positions as in the metal crystallographic structure. 

Similarly, to guarantee the convergence of the iterative algorithm, it is shown that the 

temperature T(k) should satisfy the bound [80]: 

 
 1log 
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  In this equation, the constant c is independent to the step k and is capable of 

controlling the speed of convergence. It is necessary to choose an appropriate value of 

c to achieve the desired precision while requiring as little effort as possible in 

computation. In this thesis, the parameter T(k) is assigned directly by the bound: 

 
 1log 


k

c
kT    (3.11) 

3.5. Denoising algorithm using LiFeAIM 

  The denoising problem is modeled as follows:  

nfg   (3.12) 

in which, g is the observed image; 

 f is the noisy-free image; 

 n  is the additive white Gaussian noise, ),0(~ 2

nNn  . 

Hence, the conditional probability of the observed image given that the original image 

is a Gaussian distribution: 
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The problem is solved by using the maximum à posteriori (MAP) approach. 

Following the MAP approach, we apply the Bayesian formula: 

):()():,( ijffPfgPijfgfP jiijii      (3.14) 

  From equations (3.9), (3.13) and (3.14), we have the conditional probability of 

the intensity at a pixel given in eq. (3.15) below: 
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or:   
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Since eq. (3.16) has a quadratic form, our optimisation problem is solved easily by 

taking the derivative of both sides of eq. (3.16) with respect to fi and finding fi. The 

optimal solution is obtained as follows: 
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  In eq. (3.17) the noise variance term 2

n  has been omitted. In other words, to 

estimate the original image from the noisy one, it is not necessary to know its noise 

variance. Therefore, the algorithm which is established from this equation is a blind 

denoising algorithm. Moreover, it is known that 1ij

j i




 . Eq. (3.17) may be 

rewritten as follows: 
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  Hence, we can see that the result is, in fact, a weighted-mean filter whose 

inputs are the observed intensity at the calculated pixel and its selective neighbours. 

Actually, the selected neighbours are its neighbouring pixels which have bonds with it 
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( ( , ) 1).l i j  Based on this filter, an iterative algorithm is proposed in the next section 

to denoise the 2D image. 

3.6. Experimental results 

To use eq. (3.17) in an iterative algorithm, we need to modify it to an appropriate 

form. The image estimate at step k+1 will be calculated from the image estimate at 

step k. The modified formula is given below: 
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    (3.19) 

 Following the theoretical developments above, we now propose an iterative 

algorithm to solve the denoising problem: 

Algorithm 1: 

 Step 1: Set k=1; 

 Step 2: Define the variance 2 ( )k
and the mean ( )k of the modified line 

field distribution, and the temperature T(k); 

 Step 3: Calculate the binary line field l(i,j) following eq.(3.4); 

 Step 4: Determine the parameters
ij  and 2

i  following eq. (3.6) and (3.8); 

 Step 5: Estimate the intensity at each pixel from eq. (3.19); 

 Step 6: Set k:=k+1 and go to step 2 if the stop criterion is not satisfied. For 

simplicity, we define the maximum number of iteration steps as the 

termination criterion. In the other word, the algorithm is terminated after a 

specific loop number .loopN  
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Figure 3-6. The relationship between the constant c of T(k) and the noise deviation σn. 

 The accuracy and effectiveness of the algorithm are determined from choosing 

the appropriate parameters T(k), 2 ( )k
and ( )k . In our experiments, the constant c 

of parameter T(k) is changed according to the noise variance 2

n , while ( )k and 

2 ( )k
 decrease with respect to k

-2
 as follows: 
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Figure 3-7. The noise-free Lena image (top-left), the noisy image (top-right) σn=20 

(PSNR=22.14dB), and the results of denoising processes using equation (30) with the 

original (bottom-right) (PSNR=29.70dB) and modified (bottom-left) 

(PSNR=30.77dB) line field. 

  Through experiments, we find the optimal relationship between the noise 

variance and the constant c of the "temperature" T(k) so that the algorithm gives the 

best denoising result. This relationship, which is shown in Figure 3-6, corresponds to 

eight experiments using the popular image such as: "Lena", "boat", "Barbara", "rice", 

"flinstones", "fingerprint", "peppers", and "cameraman". These images are available at 

[84]. The experiments were run with various noise variances to find the best value of 

temperature T(k) in each case. For all these cases, the relationship between the 

constant c and the noise variance is likely to be a hyperbolic curve. We generate a 

hyperbolic function which is approximated with the average value getting from these 

experiments. The generated function can be used to determine the parameters T(k) in 

the step 2 of our algorithm given the noise variance.  
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Table 3.1 PSNR[dB] results of VisuShrink [58], SureShrink [59], BayesShrink [60], 

equation (30) with Geman's line field and the proposed algorithm. 

 10n  20n  30n  

Noisy Image 28.18 22.14 18.62 

VisuShrink 28.76 26.46 25.14 

SureShrink 33.28 30.22 28.83 

BayesShrink 33.32 30.17 28.48 

Equation (30) 31.78 29.70 28.12 

Our algorithm 34.18 30.77 28.95 

 

 To compare effectively with the existing methods, the proposed algorithm is 

applied in denoising the Lena image corrupted by additive white noises with different 

variances (as shown in Figure 3-7). The image size is 512×512 pixels. The 

experimental results were compared with those of the other methods in term of Peak 

Signal Noise Ratio (PSNR): 

2

2
10log

ˆ

MAX
PSNR

f f





  

 where f̂ is the estimates of the original image f , and MAX is the maximum possible 

value of the image intensity. 

The quantitative performance comparison in Table 3.1 shows that our method is 

highly competent with denoising techniques appeared in the literature such as 

VisuShrink, SureShrink, BayesShrink. Moreover, our proposed algorithm, which is 

realized without involving the wavelet and wavelet inverse transformation, requires 

less effort on computation. In addition, the modified line field, whose distribution is 

changed at each iteration, helps to increase the convergence speed and to reduce the 

computational time significantly. Another advantage of the algorithm is that the 

terminating criterion is reached after about ten iterations. This fact makes our 
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algorithm to have little effect on the edge area of images while removing effectively 

the noise. 

 To compare with denoising approaches in the spatial domain, the proposed 

algorithm is also implemented with various images such as: Lena, cameraman, bridge, 

boat, house, mountain, Zelda, rice, bird, goldhill, flinstones, library, frog, mandrill, 

washsat and compared with the LPA-ICI method in various criteria such as: 

 Maximum absolute error (MAX): the infinity norm 

 Mean Absolute Error (MAE): the 1-norm 

 Root Mean Square Error (RMSE): the 2-norm (Euclidean norm) 

 Mean Square Error (MSE): the square of Euclidean norm. 

 Peak Signal to Noise Ratio (PSNR): the logarithm form of Euclidean norm. 

Table 3.2. . Compare the denoising results of our proposed algorithm (printed in bold) 

and LPA-ICI algorithm [78]. 

Image n  PSNR MSE RMSE MAE MAX 

L
en

a
 

10 34.48 34.30 23.19 24.18 4.82 4.92 3.45 3.52 49.92 49.59 

15 32.41 32.37 37.32 37.68 6.11 6.14 4.31 4.37 71.49 49.72 

20 30.95 30.96 52.20 52.15 7.22 7.22 5.04 5.07 76.76 77.23 

25 29.78 29.65 68.43 70.56 8.27 8.40 5.71 5.80 138.63 84.21 

30 28.90 28.45 83.78 92.95 9.15 9.64 6.30 6.55 164.57 122.60 

ca
m

er
a
m

a
n

 10 33.07 32.01 32.06 40.91 5.66 6.40 3.75 4.46 45.98 74.34 

15 30.75 29.87 54.71 66.98 7.40 8.18 4.77 5.54 74.89 66.68 

20 29.33 28.28 75.93 96.66 8.71 9.83 5.55 6.47 74.70 80.04 

25 28.13 26.83 100.08 134.99 10.00 11.62 6.38 7.53 84.88 104.57 

30 27.00 25.36 129.79 189.23 11.39 13.76 7.21 8.84 123.55 138.85 

b
ri

d
g

e 

10 29.13 29.69 79.39 69.82 8.91 8.36 6.93 6.44 51.94 78.19 

15 27.17 27.51 124.66 115.33 11.17 10.74 8.64 8.31 74.89 62.72 

20 25.85 26.07 169.25 160.82 13.01 12.68 10.02 9.76 72.24 87.09 

25 24.85 24.88 213.08 211.43 14.60 14.54 11.22 11.18 80.76 80.69 

30 24.06 23.96 255.06 261.03 15.97 16.16 12.26 12.31 85.33 94.36 

h
o
u

se
 

10 34.55 33.88 22.80 26.62 4.77 5.16 3.40 3.74 34.73 37.43 

15 32.61 32.08 35.66 40.32 5.97 6.35 4.13 4.44 74.89 47.23 

20 31.29 30.86 48.33 53.35 6.95 7.30 4.74 5.03 68.27 54.69 

25 30.13 29.45 63.14 73.87 7.95 8.60 5.41 5.77 91.29 81.80 

30 29.06 28.15 80.68 99.63 8.98 9.98 6.04 6.61 123.55 106.75 
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m
o

u
n

ta
in

 10 25.69 27.80 175.44 107.98 13.25 10.39 9.68 8.11 85.77 215.53 

15 24.20 25.88 247.49 167.75 15.73 12.95 11.39 9.82 108.19 216.33 

20 22.99 24.04 326.44 256.31 18.07 16.01 12.93 12.15 132.23 214.85 

25 22.05 22.61 405.12 356.19 20.13 18.87 14.28 14.24 142.55 214.97 

30 21.35 21.45 476.22 465.99 21.82 21.59 15.39 16.20 184.74 210.17 
ze

ld
a
 

10 35.07 35.29 20.23 19.22 4.50 4.38 3.43 3.30 49.92 56.94 

15 33.19 33.68 31.18 27.89 5.58 5.28 4.19 3.92 71.49 63.58 

20 31.85 32.44 42.44 37.09 6.51 6.09 4.84 4.47 76.76 72.46 

25 30.79 31.27 54.15 48.48 7.36 6.96 5.40 4.98 138.63 83.95 

30 30.01 29.79 64.82 68.28 8.05 8.26 5.89 5.81 164.57 96.66 

b
o

a
t 

10 32.35 32.21 37.81 39.10 6.15 6.25 4.65 4.76 49.92 56.15 

15 30.38 30.28 59.56 60.95 7.72 7.81 5.69 5.82 71.49 61.56 

20 28.95 28.83 82.88 85.12 9.10 9.23 6.61 6.75 76.76 86.97 

25 27.87 27.58 106.14 113.65 10.30 10.66 7.38 7.62 138.63 103.71 

30 27.03 26.54 128.97 144.22 11.36 12.01 8.08 8.52 164.57 114.45 

ri
ce

 

10 32.19 31.93 39.26 41.68 6.27 6.46 4.78 5.02 43.51 36.83 

15 30.79 30.48 54.18 58.16 7.36 7.63 5.51 5.83 73.74 48.96 

20 29.55 29.35 72.14 75.49 8.49 8.69 6.26 6.53 80.69 64.51 

25 28.32 28.02 95.83 102.68 9.79 10.13 7.08 7.40 77.51 85.38 

30 27.25 26.89 122.58 132.96 11.07 11.53 7.98 8.39 123.55 91.74 

b
ir

d
 

10 36.17 35.88 15.70 16.77 3.96 4.10 2.73 2.86 30.88 39.19 

15 33.99 34.07 25.93 25.49 5.09 5.05 3.39 3.47 74.89 45.90 

20 32.52 32.45 36.37 36.98 6.03 6.08 3.98 4.08 64.06 65.49 

25 31.36 30.94 47.58 52.31 6.90 7.23 4.56 4.74 67.87 72.64 

30 30.27 29.48 61.06 73.28 7.81 8.56 5.20 5.60 123.55 91.44 

g
o
ld

h
il

l 

10 30.78 30.68 54.33 55.56 7.37 7.45 5.62 5.66 52.48 75.54 

15 28.79 28.69 85.98 87.91 9.27 9.38 6.96 7.09 74.89 79.62 

20 27.38 27.40 118.88 118.36 10.90 10.88 8.14 8.19 72.47 82.36 

25 26.45 26.27 147.29 153.33 12.14 12.38 9.04 9.22 86.73 91.74 

30 25.69 25.36 175.59 189.48 13.25 13.77 9.84 10.18 116.22 87.87 

li
b

ra
ry

 

10 28.98 28.74 82.31 86.87 9.07 9.32 6.26 6.58 63.62 218.72 

15 26.97 26.74 130.59 137.74 11.43 11.74 7.83 8.63 85.67 223.86 

20 25.50 25.03 183.45 204.10 13.54 14.29 9.25 10.40 102.94 228.14 

25 24.43 23.56 234.63 286.21 15.32 16.92 10.46 12.23 123.12 212.23 

30 23.44 22.22 294.62 389.85 17.16 19.74 11.67 14.10 177.30 220.24 

fr
o

g
 

10 26.57 29.23 143.11 77.62 11.96 8.81 9.53 6.93 74.33 75.56 

15 25.97 27.18 164.34 124.53 12.82 11.16 10.14 8.83 76.51 90.00 

20 25.41 25.92 187.21 166.51 13.68 12.90 10.75 10.19 88.29 77.53 

25 24.92 24.99 209.60 206.07 14.48 14.36 11.29 11.26 114.50 102.13 

30 24.49 24.29 231.43 242.06 15.21 15.56 11.78 12.09 120.37 109.82 

F
li

n
ts

to
n

es
 10 31.19 30.87 49.44 53.25 7.03 7.30 5.13 5.47 56.26 93.12 

15 29.08 28.61 80.38 89.60 8.97 9.47 6.36 6.95 80.89 96.03 

20 27.46 27.00 116.61 129.74 10.80 11.39 7.53 8.27 92.91 89.42 

25 26.19 25.58 156.49 180.12 12.51 13.42 8.66 9.64 138.63 101.40 

30 25.13 24.35 199.35 238.82 14.12 15.45 9.72 11.05 164.57 125.25 

m
a
n

d
ri

ll
 10 28.57 29.24 90.41 77.43 9.51 8.80 7.40 6.74 55.81 76.12 

15 26.42 26.94 148.18 131.50 12.17 11.47 9.32 8.81 80.26 96.26 

20 24.87 25.26 211.86 193.81 14.56 13.92 11.01 10.63 90.14 95.79 

25 23.79 23.99 271.98 259.29 16.49 16.10 12.38 12.19 128.62 120.01 

30 23.03 22.97 323.30 327.84 17.98 18.11 13.45 13.66 164.57 109.68 
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w
a

sh
sa

t 

10 33.70 34.17 27.75 24.88 5.27 4.99 3.96 3.79 45.81 63.37 

15 32.34 32.70 37.90 34.93 6.16 5.91 4.54 4.45 73.01 96.75 

20 31.51 31.73 45.92 43.65 6.78 6.61 4.97 4.88 88.47 92.02 

25 30.77 30.87 54.52 53.24 7.38 7.30 5.37 5.26 138.63 87.04 

30 30.26 29.77 61.26 68.50 7.83 8.28 5.68 5.83 164.57 95.86 

  

  From Table 3.2, we find that our results are as good as those of the LPA-ICI 

algorithm [78]. Some extracted results which are shown in Figure 3-8 demonstrate 

that the performances of the two algorithms are approximately the same. Visual 

observations show that the LPA-ICI result is often smoother than ours since it used 

the polynomial approximation approach, which tends to suppress minor variations in 

“flat regions”. However, if we use a standard Wiener filter to deconvolve the denoised 

image by our algorithm and LPA-ICI algorithm, our result is slightly better than that 

of LPA-ICI algorithm. This deconvolution experiment does not aime to hide the fact 

that LPA-ICI is better than our denoising algorithm in some cases as mentioned 

above. 

PSNR results of our algorithm and LPA-ICI algorithm
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Figure 3-8. PSNR results of our proposed algorithm and LPA-ICI algorithm. 
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3.7. Concluding remarks 

The Markov random field is an appropriate tool for modeling the image. Adding the 

line field to the model makes it more powerful in processing the image while 

preserving image details. Our suggested line field has a variant distribution whose 

sum covers the whole variation interval of intensity difference. It helps to distinguish 

between the noisy pixel and the edge pixels. Hence, reconstructing an adaptive image 

model based on the modified line field enables us to model the image more 

appropriately and effectively. 

  The experimental results show that our method is highly competent with the 

denoising techniques reported in the literature such as VisuShrink, SureShrink, 

BayesShrink [58-60]. Moreover, our proposed algorithm is fast because it is 

elaborated directly on the spatial domain and converges after about ten iterations. On 

the other hand, our experimental results are quite competent in comparison with those 

of the LPA-ICI algorithm, a very good denoising algorithm in spatial domain 

reported. 

  The adaptive image model constructed in this chapter, called LiFeAIM, will 

be used to deal with the deblurring problem in the next chapter. 
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Chapter 4  

Deblurring Algorithms  

Using the Proposed LiFeAIM 

and Variational Bayesian Approach 

4.1. Introduction 

 The blind deblurring problem can be considered as a kind of blind source separation 

problem. This problem is to separate the original signals from their observed mixtures 

while there is no information or little information about the original signals and the 

mixing process. It is often solved with the assumption that the original signals are 

independent.  

  A recent approach to solve the blind source separation is the Ensemble 

Learning approach [61], which is an approach in the Bayesian framework. This 

approach uses a set of hypotheses (or models) about the hidden data instead of only 

one hypothesis (or model) about it. When one hypothesis (or model) fails, the 

algorithm is still able to choose an appropriate hypothesis (or model) from the 

remaining ones. Hence, the Ensemble Learning approach is very effective for 

problems with little prior information such as the blind source separation problem. 

There are many successful applications in using the Ensemble Learning approach for 

blind source separation, such as: the cocktail party problem, music separation from a 

concert, and reflection removal. 
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  There are two types of Ensemble Learning, the fixed-form Ensemble Learning 

and the free-form Ensemble Learning. The latter, also named the Variational Bayesian 

approach in this thesis, is more flexible than the former. The next section will 

introduce the development of the Variational Bayesian approach from the Bayesian 

formula and the application of this approach into the blind deblurring problem. 

4.2. Variational Bayesian approach 

4.2.1. Bayesian framework 

In Bayesian framework, there are approaches finding the hidden data by maximizing 

the conditional probability of the hidden data given the observed data. This 

probability is calculated by the Bayesian formula of posterior probability. In our 

problem, it can be expressed as follows: 

 
   

)(

,,
,

gp

hfphfgp
ghfp   (4.1) 

where, the original image f and the kernel blurring function h are hidden data; and 

  the blurred image g is the observed data; 

   ghfp ,  is the posterior probability of the hidden data given the observed 

data; 

   hfp ,  is the prior information about the hidden data; 

   hfgp ,  is called the likelihood which is the conditional probability of the 

observed data given the hidden data. 



 

 - 57 - 

  The classical approach of Bayesian framework which uses this formula is the 

Maximum à Posteriori (MAP).  In this approach, the best hidden data is found to 

maximise the posterior probability  ghfp , . The problem of MAP approach is how to 

choose an appropriate prior distribution of the hidden data. If the prior information is 

not chosen properly, applying this approach may end up with a local optimum or 

divergence. 

  To overcome the above limitation of MAP approach when only a little prior 

information of hidden data is given, the prior distribution of the hidden data is not fix 

but varying in an iterative algorithm. Hence, the prior which approximates the 

distribution of the hidden data best would be chosen. Following this idea, the 

Ensemble Learning approach uses the prior distribution of the hidden data in 

parametric form. The prior distribution of the hidden data will be changed when the 

parameters of the prior of hidden data are re-estimated at each iterative step by 

maximising the posterior probability of the hidden data and the parameters given the 

observed data. Thus, both the prior information of the hidden data and the prior 

information of the parameters are required in the Ensemble Learning approach. The 

optimisation problem in Ensemble Learning approach is solved by using the 

Kullback-Leibler divergence, which will be described in the next section. The 

approach is named Ensemble Learning because both the hidden data and the 

parameters are re-estimated at each iterative step. 

  Once again, in the Ensemble Learning approach, the issue of choosing the best 

prior distribution of these parameters i  is raised. To approach this issue, the prior 

distribution of parameters i  is also written in the parametric form. The best prior 

distribution of these parameters will be selected from a class of distributions. By 
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doing so, all the prior of hidden data and model parameters is variant. The theory of 

this free – form Ensemble Learning approach can be found in [85]. This approach, 

called Variational Bayesian approach in this thesis, is briefly described in the next 

section.  

4.2.2. Variational Bayesian approach 

In the Variational Bayesian approach, it is assumed that all hidden data and 

parameters are independent random variables. In this thesis, the hidden data are the 

original image f and the kernel blurring function h, while the parameters of the prior 

of hidden data are denoted i . Hence, with the above-mentioned independent 

assumption, our prior information is represented by the following equation: 

       

     



i

iphpfp

phphfphfp



,,,

  (4.2) 

where  is the set of parameters i . 

The posterior probability, then, can be written as shown in eq. (4.3): 

 
   

       

)(

,,

)(

,,,,
,,

gp

phpfphfgp

gp

hfphfgp
ghfp i

i








  (4.3) 

  To solve our problem, we need to maximise the above equation. However, in 

general, there is no closed form solution for this optimisation problem. Hence, to 

solve the problem, the true posterior distribution  ghfp ,,  is approximated by a 

simpler distribution  ,,hfq . The approximate distribution  ,,hfq  is also 

separable, i.e.        
i

iqhqfqhfq ,, . The approximate solution of this 

optimisation problem can be found by using the Kullback-Leibler divergence [61]. 
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The Kullback-Leibler divergence between the true posterior distribution  ghfp ,,  

and the approximate distribution  ,,hfq  is determined by the following equation: 

   
 
 

 
 

        
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








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






























,,

,,

,,

)(,,
log,,

,,

,,
log,,

Hf
i

i

Hf

KL

dfdhd
phpfphfgp

gphfq
hfq

dfdhd
ghfp

hfq
hfqpqD



 (4.4) 

  With the assumption about independence of the hidden data, the parameters, 

and the observation, the probability )(gp  of the observation can be taken outside the 

integral in the above equation. It is proven that the Kullback-Leibler divergence is 

non-negative and equal to zero when    ghfphfq  ,,,, . Hence, the 

approximate distribution  ,,hfq  is found by minimising the Kullback-Leibler 

divergence with respect to    ,, hqfq and  iq  . The optimum solution of eq. (4.4) is 

given by [61]: 

       
)()(

,,loglogexp



qhq

hfgpfpEconstfq       

       
)()(

,,loglogexp



qfq

hfgphpEconsthq  

           
)()()(

,,logexp
iqfqhqii hpfphfgpEpconstq


   (4.5) 

where i is the subset of  after i is removed. 

  It is noted that the optimum solution is not given directly in eq. (4.5) but 

obtained by iteratively estimating the hidden data f, h and the parameters Θ  using eq. 

(4.5). Another notable remark of the above equation is that it does not give the value 

of the hidden data and the parameters directly but their approximate distribution. 

From these approximate distributions, we can estimate the hidden data and the 
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parameters by their expectation and covariance. To calculate the approximate 

distributions in eq. (4.5), it is necessary to know the likelihood probability of the 

observed image g and the prior information of the original image f, the blurring 

function h, and the parameters Θ. All the prior information will be given in the 

following sections. 

4.3. Prior information 

4.3.1. Observation model 

As we assume that the contaminated noise is a white Gaussian random signal, the 

likelihood of the observation can be represented as follows: 

  









22/

2
exp,, fhgconsthfgp nN

nn


   (4.6) 

in which, βn
-1

 is the variance of the contaminated noise; g and f are the observed and 

original data written in the vector form 1×N by lexicographically re-ordering the 

observed and original images; and h is the blurring function written in the vector form 

1×N. 

  The observation g is assumed to be blurred by a spatially invariant blurring 

function h. Then, the convolution fh  may be rewritten in the matrix form as 

shown in the following equation:  

Hffh   (4.7) 

 where H is a block-Toeplitz matrix [86] derived from the blurring function h. 

Hence, the observation model is rewritten in eq. (4.8): 
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  









22/

2
exp,, Hfgconsthfgp nN

nn


   (4.8) 

As a block-Toeplitz matrix can be approximated and considered as a circulant matrix 

which is diagonalised by the Fourier transform. In this work, H is processed as a 

circulant matrix whose first row is Th . The latter rows of H are created by shifting 

one element of its preceding row to the right. 

  The convolution fh  can also be rewritten in the matrix form as the product 

of the blurring function h and a matrix derived from f: 

Fhfh   (4.9) 

where F is a matrix whose first row is Tf . The latter rows of F are created by shifting 

one element of their preceding row to the left. F is then called the left-wise circulant 

matrix. Although the left-wise circulant matrix is not diagonalised by the Fourier 

transform, we will prove later that it can be diagonalised by using the Fourier 

transformation matrix. 

4.3.2. Image model 

There are some popular image models in image restoration, such as the Auto-

Regressive model, and the Total Variation model. Chapter 6 will introduce the 

deblurring algorithms using the Simultaneous Auto-Regressive model and the Total 

Variation model. In this chapter, we use our proposed adaptive image model to 

construct blind deblurring algorithms. This model, called the Line-Field based 

Adaptive Image Model (LiFeAIM), was proposed and its performance in denoising 

has been examined in Chapter 3. The model uses the line field, which is a virtual 

random process existing between each image pixel and its eight nearest neighbours, to 
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calculate the variance of the image at that pixel. The model is represented by the 

following equation: 

 
kT

TTimN

imim BfBfconstfp

1
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exp








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









   (4.10) 

in which, im  is the parameter of image model; 

      N is the size of image, the number of pixels; 

      BfBf TT  is the matrix-form presentation of the following summation: 

     









i sj

jiji

i

ff

2

 ; 

      is is the set of eight nearest neighbours of pixel i; 

   





isj

ij

ij

ij
l

l
 ; 

    ijl is the line random variable between the pixel i and its neighbour j. 

      kT  is the temperature parameter controlling the convergence. 

Using such an adaptive image model help to handle the high transition of image 

intensities efficiently because the variance of the image model varies through pixels. 

The image model with a constant variance may flatten the intensity field of an image 

when the model is used in an iterative algorithm. 

4.3.3. Blurring model 

In this chapter, we will construct two deblurring algorithms with two different 

blurring models. One model is Gaussian distributed. The other is the Simultaneous 
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Auto-Regression model. If the former is used, the blurring function is modeled as 

follows: 

  







 hhconsthp TblM

blbl
2

exp
2/ 

  (4.11) 

in which, bl  is the parameter of blurring model; 

      M is the support size of blurring function. 

If the later is used, the probability of blurring function is given in eq. (4.12): 

  







 ChChconsthp TTblM

blbl
2

exp
2/ 

  (4.12) 

in which, bl  is the parameter of blurring model; 

      C is the circulant matrix derived from the Laplacian operator; 

      M is the support size of blurring function. 

From eq. (4.11) and eq. (4.12) it is found that the Gaussian model is only the special 

case of Simultaneous Auto-Regression model when the circulant matrix C in eq. 

(4.12) is an identity matrix. However, both models are used to construct the 

deblurring algorithms in this work to compare the performance of the proposed 

algorirhtms when more constraints are applied to the prior information. 

4.3.4. Prior of parameters 

The parameters ,, imn  and bl  of observation, image, and blurring model are 

assumed to be Gamma distributed random variables. In our study, the Gamma 

distribution is chosen to model these parameters instead of the Gaussian distribution 

because the Gamma distribution is more appropriate to model the positive parameter 
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than the Gaussian distribution. The prior distribution of parameters ,, imn   and bl  

is shown in the following equation: 

 
 
 
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




exp
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,  nblimx ,,  (4.13) 

in which, 00 xa  is the shape parameter of Gamma distribution; 

     00 xb  is the scale parameter of Gamma distribution; 

      o

xa  is the Gamma function. 

4.4. Blind deblurring algorithms using LiFeAIM 

In this section, we propose two blind deblurring algorithms using Variational 

Bayesian approach. Both algorithms use LiFeAIM as the image model and assume 

that the model parameters are Gamma distributed. The only difference between the 

two algorithms is the model of blurring function. One algorithm uses the 

Simultaneous Auto-Regression model as the prior information of blurring function. 

The other uses the Gaussian distribution for the blurring model. The former algorithm 

is called LF-SAR algorithm while the latter is called LF-G algorithm. Derivation of 

the estimates in LF-SAR algorithm is shown in detail below. For LF-G algorithm, 

only the final equations are shown since the derivation procedure is similar. 

4.4.1. Estimation of image, blurring function and model parameters 

By applying the Variational Bayesian approach introduced above, we obtain the 

optimum solution of the approximate distributions )( fq , )(hq , )( nq  , )( imq  , and 
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)( blq  . Then, the original image f , the blurring function h, and the parameters 

,, imn  and bl  are estimated by their expectation.  

From the optimum solution in eq. (4.5), we have: 
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 It is assumed that the approximate distributions )( fq of the original image is 

Gaussian. Hence, the expectation and covariance of the original image f are given in 

the equations below: 

 
  













 0

log

f

fq
ffE , and  

  
1

2

2 log
cov

















f

fq
f  (4.14) 

    
       gHEEfHHEEBfB

T

E

f

fq T

n

T

n

T

k

im 





 log
 

 
    

       gHEEHHEEBB
T

E

f

fq
ffE T

n

T

n

T

k

im 


1

0
log

























  

 
  

 
   

1

1

2

2 log
cov































HHEEBB
T

E

f

fq
f

T

n

T

k

im 


 

Denote: 
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Hence, 
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  From eq. (4.5), the optimum approximate distribution of blurring function is as 

follows: 
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   As we now estimate the blurring function h, the convolution fh  in the 

observation model will be rewritten as Fh. 
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  The approximate distribution )(hq of the blurring function is also assumed to 

be the Gaussian distribution. Hence, the expectation and covariance of the blurring 

function h are given in the equation below: 
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Similarly, denote         FEFFEFEF
T

cov . The covariance matrix and the 

expectation of blurring function can be deduced as shown in eq. (4.18-4.19): 
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        gFEhEhE
T

bl cov         (4.19) 

 Now, we estimate the parameter of image, blurring, and observation prior. 

Estimation of the parameter im  of image prior can be derived from the solution of 

approximate distribution  imq   given in eq. (4.5): 
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The approximate distributions )( xq  of parameters are assumed to be Gamma 

distributions as presented in the following form: 
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Substituting eq. (4.21) into eq. (4.20) and taking logarithm of eq. (4.20), we obtain the 

following equation: 

 

   BfBfE
T

N
babaconst

babaconst

TT

k

im

imim

o

imim

o

im

o

im

o

im

imimimimimim

2
log

2
log1log

log1log










 (4.22) 

Comparing the coefficients of both sides of eq. (4.22), we obtain the following 

results: 
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For the random variables with Gamma distributions, their expectation and variance 

are given as follows: 
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where x is a Gamma random variable. 

Hence,  
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  Similarly, we derive the expectation of the parameter bl  and n  as follows: 
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And,  
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  As we noted after eq. (4.5), the hidden data and model parameters are not 

given directly from the above estimation equations. These estimation equations are 

used to construct an iterative algorithm in which the hidden data and model 

parameters are re-estimated many times until the results converge. In these equations, 

the size of matrices is very large. We will prove several theorems in the next section, 

and apply some numerical techniques to make the computation easier and faster. 

4.4.2. Numerical computation 

We consider a blurred image which is lexicographically re-ordered into the vector 

form 1-by-N. To deblur this image, the proposed algorithm needs to manipulate N-by-

N matrices in the above estimation equations. The algorithm must especially perform 

the inversion of the big matrices in equations (4.15-4.16) and (4.18-4.19) to estimate 

the covariance matrices of the original image f and the blurring function h. The 

calculation of these inverse matrices is computational intensive in the order O(N
4
). In 

the previous studies, some approximations or assumptions are often used to 

approximate these matrices by circulant matrices. Hence, this computation problem 

can be solved by using the Fourier transform to diagonalise the circulant matrices. 

The computational order then reduces to O(N) in the Fourier domain. In this thesis, 

since the covariance matrix of image is not assumed to be circulant, the covariance 

matrix of image is not diagonalised in the Fourier domain. To deal with the inversion 

problem, this thesis applies the Matrix Inversion Lemma and proposes some new 

theorems ( Theorem 2-4 in this section) to reduce the computational effort. 
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** Image estimation: 

  Following the previous section, the expectation and covariance matrix of the 

original image are given as: 
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  The first term in the estimation equation of image covariance relates to the 

circulant matrix H. In the circulant matrix, each row is shifted one element to the right 

relative to its preceding row. We will prove later that the circulant matrix is 

diagonalised by the Fourier transformation. 

  Denote C as a circulant matrix. C can be represented as below in eq. (4.32) 

and can be written as a polynomial of matrix R as shown in eq. (4.33): 
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where  ek is the k
th

 column of the identity matrix. 

  The Fourier transform matrix is represented in the following equation: 
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where  Ni /2exp   .  

It is noted that ITTTT TT   

Theorem 1: The circulant matrix C is diagonalised by the Fourier transformation as 

follows: 
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where c is the first column of matrix C: 
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To prove this theorem we first prove that matrix R is diagonalised by the Fourier 

transformation: 

Lemma 1: DTRT T    
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th

 element of matrix DT is: 
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Hence: DTTR   

Or: DTRT T   
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Hence, TTCT is diagonal. The kk
th

 element of TTCT is: 
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Thus,  TcNdiagTCT T   
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  The second term in the estimation equation of image covariance matrix can be 

represented as a linear function of the blurring covariance matrix. More precisely: 

Theorem 2: H is a circulant matrix whose first row is Th . 
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The covariance matrix of h is assumed to be circulant. Then: 

   hNH covcov   

where N is the size of the column vector h 

Proof: (Theorem2) 

As H  is the circulant matrix whose first row equals the vector Th , each row of HH T  

is likely a convolution of h and itself. Therefore, each element (i,j) of HH T can be 

represented as following: 
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On one hand,  HE  is a circulant matrix whose first row equals to  ThE , we also 

have:  
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On the other hand, we assume that )cov(h is a circulant covariance matrix. It means 

that:   
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 The last term in the estimation equation of image covariance matrix is related 

to a big matrix B of size N-by-N with N having large value. As this term is not 

diagonalised by the Fourier transformation in general, its inversion calculation is 

highly computational intensive. Fortunately, this matrix can be decomposed into 

simpler and smaller matrices which can be inversed much faster. So, the 

computational efficiency of the algorithm will be improved. B can be decomposed in 

the following way: 

*BIB   (4.34) 
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Thus, the covariance of the original image can be rewritten as: 
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The covariance in eq. (4.35) can be calculated rapidly by applying the Matrix 

Inversion Lemma. 

Lemma 2: Matrix Inversion lemma: 
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On the other hand, 
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Hence,   
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    1111111 
 VSUVSTUSSUTVS  

Applying the Matrix Inversion Lemma into the eq. (4.35), we have: 
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  (4.36) 

** Blurring estimation: 

The covariance matrix and expectation of blurring function are written as the 

following equations: 
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        gFEhEhE
T

bl cov          

  The first term in blurring estimation equation relates to the special matrix F 

whose row is shifted one element to the left relative to its preceding row. 
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  (4.37) 

Although F is not a circulant matrix and can not be diagonalised by the Fourier 

transformation, we use another way to diagonalise this matrix by using the Fourier 

transformation matrix. We called F a left-wise circulant matrix. It is worth noting that 

a real left-wise circulant matrix is a symmetric matrix: TFF   

F can be written as a polynomial of matrices R and I
~

as follows: 

1
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2

21

~~~~ 

  N

NNN RIfRIfRIfIfF    (4.38) 

 132 eeeeR N , and  121

~
eeeeI NN   
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where ek is the k
th

 column of the identity matrix. 

Theorem 3: The left-wise circulant matrix F is diagonalised by the following 

transformation: 

 TfNdiagTFT    

where f  is the first column of matrix F: 
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To prove this theorem, we need to prove that the matrices R and I
~

are diagonalised 

by some transformations in Lemma 2 and Lemma 3. 

Lemma 3: TT DRTT    

where  )1(21 ,,,,1  NdiagD    

Proof: (Lemma 3) 
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The kl
th

 element of matrix TTD  is: 
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Hence, 
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Or:  

TT DRTT   

Lemma 4: DTIT
~~

   

where   )1)(1(121 ,,,,1
~  NNNNdiagD    

Proof: (Lemma 4) 

The kl
th

 element of matrix IT
~

 is: 
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 element of matrix TR is: 
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Hence, 

TTDIT
~~

  

Or: 

DTIT
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  

Proof: (Theorem 3) 

We have: 
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Since the matrices D
~

 and D are diagonal, TFT is diagonal. The kk
th

 element of 

TFT is: 
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Meanwhile, the k
th

 element of Tf is: 
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Thus, 

 TfNdiagTFT   

Theorem 4: F is a left-wise circulant matrix whose first column is f . 
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The covariance matrix of f is assumed to be circulant. Then: 

   fNF covcov    

where N is the size of the column vector f  
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Proof: (Theorem 4) 

As F  is the left-wise circulant matrix whose first column is the vector f , each row of 

FF T  is a convolution of f and itself. Therefore, each element (i,j) of FF T can be 

represented as following: 
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 FE  is a left-wise circulant matrix whose first column equals to  fE . It means that:  
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As )cov( f is assumed to be a circulant covariance matrix, it can be deduced: 
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Then, 
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  Appling Theorem 4 into the estimation equation of blurring covariance, we 

have: 

               1
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bln
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n   (4.39) 

To reduce the computational requirement, we also approximate the estimation of 

 hcov  by replacing  fcov  with L in eq. (4.39): 
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** Parameter estimations: 

The estimate of the image parameter is: 
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in which,         fBBtracefBEBfEBfBfE TTTTT cov  

Note that matrix B
T
B can be analysed as: 

   QBQIQBQIBB
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where IQQ
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

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  ****  (4.42) 

Besides, the covariance matrix of image  fcov can be approximated by L . Hence, 

the image parameter is approximated by the following equation: 
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 (4.43) 

  The estimate of the blurring parameter is: 
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Hence, the expectation of blurring parameter can be calculated easily in the Fourier 

domain as all component matrices in eq. (4.44) are circulant. 

  The estimate of the noise parameter is: 
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Approximating  fcov by L  and calculating  Hcov  following  hcov , we obtain the 

following equation which can be implemented in the Fourier domain: 
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 (4.46) 

4.4.3. Proposed algorithms 

4.4.3.1. LF-SAR algorithm 

Finally, we propose a new blind deblurring algorithm by using the optimum solution 

derived in section 4.4.1 and applying the theorems stated in section 4.4.2. In 

particular, the computation of circulant and left-wise circulant matrices in the 

optimum solution is feasible by applying Theorem 1 and Theorem 3 while the 

covariance of circulant and left-wise circulant matrices is replaced by simple 

expressions following Theorem 2 and Theorem 4. The proposed theorems are really 

helpful for the implementation of the proposed algorithm because calculating the big 

N-by-N matrix is replaced by calculating and storing the 1-by-N vector following 

these theorems. The proposed deblurring algorithm, called LF-SAR, is represented 

below with three iterative steps. 

LF-SAR algorithm: 

- Step 1: estimate the covariance and the expectation of f 
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- Step 2: estimate the covariance and the expectation of h 
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- Step 3: estimate the expectation of the parameters ,, imn  and bl  
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 (4.49) 

It is noted that to reduce the computational complexity, the term  fcov  in step 2 and 

step 3 is approximated by a circulant matrix  
________

cov f  as follows: 
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 (4.50) 

4.4.3.2. LF-G algorithm 

Similarly, we construct another deblurring algorithm, called LF-G algorithm, which 

uses the Gaussian distribution as the prior information of blurring function instead of 

the SAR model. Performing the derivation procedure in section 4.3.1 again and 

applying the theorems stated in section 4.3.2, we have the LF-G algorithm which also 

consists of three iterative steps as shown below: 
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LF-G algorithm:  

- Step 1: estimate the covariance and the expectation of f 
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- Step 2: estimate the covariance and the expectation of h 
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- Step 3: estimate the expectation of the parameters ,, imn  and bl  
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 (4.53) 

The term  fcov  in step 2 and 3 of LF-G algorithm is also approximated by the 

circulant matrix  
________

cov f  as shown in eq. (4.50) to reduce the computational complexity 

of the algorithm. It is noted  that  fcov  is calculated directly in step 1 of the 

algorithm to guarantee the precise estimation of the image. The approximation of this 
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term in step 2 and 3 is a tradeoff between the computational complexity of proposed 

algorithm and the performance of algorithm. To estimate the blurring function model 

parameters more precisely, the direct calculation of  fcov  in step 2 and 3 by using 

the conjugate gradient method is considered as the future task to develop this work. 

4.4.3.3. Initial value dependence 

It is noted that the parameters ,,,,, 00000

imnblimn bbaaa and 0

blb  of the prior distribution of 

,, imn  and bl  appear in the parameter estimation equations (4.49) and (4.53). 

Hence, we now analyse the initial value dependence of the two proposed algorithms. 

Eq. (4.49) and eq. (4.53) can be rewritten in term of the initial value of 

parameters ,, imn  and bl . Since these parameters are Gamma distributed, their 

initial values can be determined by the following equation: 
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 Hence, the parameter estimation equations above are rewritten in term of 
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 The confidence coefficients ,,
imn   and 

bl  represent how much the initial 

values ,, 00

imn  and 0

bl  should be trusted during the estimation of 

parameters ,, imn  and bl . The confidence coefficients are calculated by the 

following equations: 

2

0

0

N
a

a

x

x

x



 ,  nblimx  ,,  

It is interesting that the value of these confidence coefficients depends only on the 

initial parameters ,, 00

imn aa and 0

bla . Hence, if ,, 00

imn aa and 0

bla  are chosen so that the 

confidence coefficients are approximated to zero, there is almost no confidence in the 

initial values ,, 00

imn  and 0

bl . It means that the finally estimated value of model 

parameters ,, imn  and bl  depends entirely on the estimation process. 

  In the next chapter, two proposed algorithms, LF-SAR and LF-G, are used to 

carry out deblurring experiments with different types of blurring function and various 

levels of noise. The sensitivity of the algorithms to the initial values is also 

investigated by carrying out many experiments with several sets of initial values 

,, 00

imn  and 0

bl  and confidence coefficients ,,
imn   and 

bl . 
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Chapter 5  

Experimental Studies for Deblurring 

5.1. Introduction 

The LF-SAR and LF-G algorithms, developed in this thesis, which were introduced in 

Chapter 4, will be used in this chapter to restore blurred images caused by different 

types of PSF, such as: the Gaussian-shape PSF, the out-of-focus PSF, and the 

horizontally uniform PSF. All experiments carried out in this chapter use “Lena” 

image of size 512×512 pixels. Besides, some other images, such as: “cameraman”, 

“boat”, “Barbara”, “montage”, and “Flintstones” images (see Appendix A) , are also 

used to show the performance of proposed algorithms in wide range of image 

patterns. The contaminated noise used in most of these experiments is the identically 

independently Gaussian random process with variance 10
-6

. Meanwhile, the 

experiments in section 5.5 are carried out with different levels of contaminated noise 

to study the effect of noise on the deblurring result. In all these experiments, the initial 

covariance matrices of image and blurring function are zero. 

  These algorithms are iterative and stop if one among the two following criteria 

is satisfied: 

 the difference in magnitude between the image estimates of two subsequent 

steps is less than 10
-6

; 

 the number of bond (line) between pixels in the whole image is larger than a 

pre-defined threshold, 1000 in our algorithms. Since the number of edge pixels 
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in an image is limited, there is a possibility that the algorithm will end up with 

a conventional solution if the number of bond between pixels becomes so high 

during the implementation of algorithm. Thus, the number of bond (line) 

between pixels is chosen as a termination criterion so that the computational 

effort will not be wasted in this case.  

  The deblurring results of these two algorithms are compared in term of ISNR 

(Improved Signal Noise Ratio) and ISNR_h indices: 

2

2
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ff
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
   

and, 

2

2

ˆ
log10_
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
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  

 where f̂ , ĥ are estimates of the original image f and the blurring function h, 

respectively; 

  g is the noisy blurred observation; 

  hinit is the initial value of blurring function h. 

5.2. Image deblurring with the Gaussian-shape PSF  

The Gaussian-shape PSF has the general form represented in the following equation: 
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where  R is the radius of PSF; 

  2  is the variance of Gaussian-shape PSF; 
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 x, y are the indices of blurring matrix h. These indices are determined in the 

local coordinate system of each pixel. 

 

 

Figure 5-1. Deblurring results using LF-SAR algorithm and LF-G algorithm. a) the 

noisy blurred observation (Gaussian-shape PSF with variance 9, noise variance 10
-6

); 

b) deblurring result by LF-SAR; c) deblurring result by LF-G; d) a slice cut of PSF 

estimates and the real PSF. 

 The experiments in this section are carried out with six images in the same 

blurring and noisy condition. The real PSF is the Gaussian-shape PSF with variance 9 

while the initial PSF is the Gaussian-shape PSF with variance 4. The initial 

parameters of the image model, the blurring model, and the noise variance are 

a) 

c) 
d) 

b) 
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assigned the same values as those used in experiment 2 of paper [30], i.e 

6.93,10,22.0 0600  

imbln  . The confidence coefficients of these parameters are 

001.0n , 001.0bl , and 5.0im , respectively. 

Table 5.1. The ISNR and ISNR_h [dB] of the image and PSF estimated by LF-SAR 

algorithm and LF-G algorithm with the observation blurred by a Gaussian-shape PSF. 

Image 
LF-SAR LF-G 

ISNR ISNR_h ISNR ISNR_h 

Lena 3.18 8.33 1.53 -3.18 

Cameraman 2.35 7.68 0.93 2.00 

Boat 2.82 8.08 0.61 0.35 

Barbara 1.18 8.29 0.34 0.97 

Montage 2.27 7.78 0.83 2.04 

Flintstones 3.36 6.66 0.93 3.41 

 

  Table 5.1 indicates that the restored image and PSF estimate of LF-SAR 

algorithm are more accurate than those of LF-G algorithm. The image shown in 

Figure 5-1 (b) estimated by LF-SAR is clearer than the image Figure 5-1 (c) estimated 

by LF-G under visual inspection. A slice cut of PSF estimate shown in Figure 5-1 (d) 

also indicates that LF-SAR algorithm estimates the PSF much more accurately than 

LF-G algorithm does. 

  These interesting findings can be explained by the difference between the 

models of blurring function which are used in these two algorithms. In the LF-SAR 

algorithm, the Simultaneous Auto-Regression model is used to model the distribution 

of PSF. As a result, the elements of the kernel blurring matrix vary in different ways 

which depend on each element’s neighbours. In the LF-G algorithm, the independent 

Gaussian distributions are used to model the PSF. Since the covariance matrix of PSF 
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is assumed to be circulant, the variation at all elements of the kernel blurring matrix 

are the same. Thus, the LF-G algorithm is less flexible than the LF-SAR algorithm in 

approximating the real PSF. As a result, a better restored image is produced by the 

LF-SAR algorithm, which is the algorithm using the more appropriate PSF model. 

5.3. Image deblurring with the horizontally uniform PSF 

The horizontally uniform PSF is simply described in eq. (5.2): 

 











otherwise

dx
dxh

0

0
1

)(  (5.2) 

 where d is the extent of the motion. 

Table 5.2. ISNR and ISNR_h [dB] of the image and PSF estimated by LF-SAR 

algorithm and LF-G algorithm with the observation blurred by a horizontally uniform 

PSF. 

Image 
LF-SAR LF-G 

ISNR ISNR_h ISNR ISNR_h 

Lena 4.58 13.86 4.07 24.20 

Cameraman 2.39 23.58 3.95 26.39 

Boat 2.55 24.12 4.44 24.67 

Barbara 1.40 24.23 2.70 24.68 

Montage 1.67 22.72 4.60 27.54 

Flintstones 1.67 20.81 3.33 21.66 

 

 The horizontally uniform PSF in these experiments has a square support 9×9. 

The initial parameters are ,10,10 6060  bln  and 6.930 im , while their confidence 

coefficients are 001.0n , 001.0bl  and 001.0im ,  respectively. The initial PSF 

is also the Gaussian-shape PSF with variance 4. In this case, because the support size 
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of PSF is limited, the PSF estimate will be shrunk by a square window of size 9×9 and 

normalised after each iterative step. 

 

 

Figure 5-2. Deblurring results using LF-SAR algorithm and LF-G algorithm. a) the 

noisy blurred observation (horizontally uniform PSF with the support size 9×9, noise 

variance 10
-6

); b) deblurring result by LF-SAR; c) deblurring result by LF-G; d) a 

slice cut of PSF estimates and the real PSF. 

  In contrast with the result shown in Table 5.1 in the previous section, Table 

5.2 shows that the LF-G algorithm produces better results than the LF-SAR algorithm 

in this case where the blurred observation is caused by a horizontally uniform blurring 

function. This finding can have the similar explanation as presented in the previous 

a) b) 

c) d) 
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section. It is due to the difference between the models of blurring function which are 

used in the two algorithms. As the covariance matrix of PSF is assumed to be 

circulant, the independently Gaussian distributed elements of PSF always have the 

same variance. Hence, the LF-G algorithm tends to have an advantage in dealing with 

the horizontally uniform blurring function. 

5.4. Image deblurring with the out-of-focus PSF 

The kernel blurring function of out-of-focus phenomenon is modeled by the following 

equation: 

 



h(x,y) 

1

R2
x 2  y 2  R2

0 otherwise







 (5.3) 

where R is the radius of the out-of-focus PSF. 

Table 5.3. ISNR and ISNR_h [dB] of the image and PSF estimated by LF-SAR 

algorithm and LF-G algorithm with the observation blurred by an out-of-focus PSF. 

Image LF-SAR LF-G 

ISNR ISNR_h ISNR ISNR_h 

Lena 2.95 9.60 1.75 5.82 

Cameraman 2.22 7.90 2.14 6.32 

Boat 2.35 7.75 1.68 6.14 

Barbara 2.03 9.49 1.53 5.81 

Montage 2.17 7.93 2.10 6.46 

Flintstones 2.85 9.46 2.11 7.06 

 

 The real PSF in this series of experiments is an out-of-focus PSF with the 

support size 7×7. The initial PSF is assigned by an out-of-focus PSF with the support 

size 3×3. The initial parameters and their confidence coefficients are 
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6.93,10,10 06060  

imbln  , 001.0n , 001.0bl , and 5.0im , respectively. 

In these experiments, the PSF estimate is also shrunk by a square window 9×9 and 

normalised after each iterative step. The result in Table 5.3 and the visual appearance 

in Figure 5-3 show that the LF-SAR algorithm is marginally better than the LF-G 

algorithm in this case. 

 

Figure 5-3. Deblurring results using LF-SAR algorithm and LF-G algorithm. a) the 

noisy blurred observation (out-of-focus PSF with the size support 7×7, noise variance 

10
-6

); b) deblurring result by LF-SAR; c) deblurring result by LF-G; d) a slice cut of 

PSF estimates and the real PSF. 

 Comparing the deblurring results of three experiments above, the PSF 

estimation of these two latter experiments seems better than that of the first one. It is 

a) 

d) c) 

b) 
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mainly due to the shrinkage and normalisation of PSF after each iterative step. To do 

this adjustment, it must be supposed that the support size of PSF was known or 

roughly estimated in these two latter cases. 

 Besides, in all these three experiments, the least improved image is always the 

“Barbara” image. This fact may be explained by the image pattern. Since “Barbara” 

image is full of small strips and checked patterns, the alternative strips of different 

intensities are mixed up during the blurring process. Hence, it is difficult to relocate 

the sharp transitions between them. 

5.5. The robustness of algorithm with the initial parameters 

Table 5.4. Experiments with different initial parameters and confidence coefficients. 

Group Experiment 0

n  0

bl  0

im  
n

  
bl  

im  

1 2 0.22 10
-6

 93.6
 

0.001 0.001 0.001 

3 15.7 10
-7

/2.15 206 0.001 0.001 0.001 

4 1 1 1 0.001 0.001 0.001 

2 5 0.22 10
-6

 93.6
 

0.5 0.5 0.5 

6 15.7 10
-7

/2.15 206 0.5 0.5 0.5 

7 1 1 1 0.5 0.5 0.5 

3 8 0.22 10
-6

 1 0.5 0.5 0.001 

9 1 10
-6

 93.6
 

0.001 0.5 0.5 

10 0.22 1 93.6 0.5 0.001 0.5 

4 11 0.22 1 1 0.5 0.001 0.001 

12 1 10
-6

 1 0.001 0.5 0.001 

13 1 1 93.6 0.001 0.001 0.5 

14 0.22 10
-6

 93.6
 

0.001 0.001 0.5 

15 0.22 10
-6

 93.6
 

0.001 0.5 0.001 

16 0.22 10
-6

 93.6
 

0.5 0.001 0.001 
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  To examine the effect of the initial parameters on the restored results, a series 

of experiments were carried out. Table 5.4 shows the initial parameters and their 

confidence coefficients used in these experiments, which are divided into four groups 

following the confidence coefficients ,,
imn   and 

bl : 

 In the first group, the experiments have very small confidence coefficient 

(0.001). 

 In the second group, these coefficients have higher values. 

 In the third group, one among these three confidence coefficients is close to 

zero while the other two have higher values. 

 In the last group, two among these three coefficients are close to zero. 

In each group of experiments, the initial parameters ,, 00

imn  and 0

bl  are assigned by 

three basic parameter sets and their permutations. Two among these basic parameter 

sets are initial parameter sets used in paper [30]. The other is a conventional 

parameter set where all the initial parameters are equal to one. 

 From the previous sections, we choose the best cases to carry out the 

experiments in this part of the experiments; the LF-SAR algorithm is used in these 

experiments to restore an observation blurred by a Gaussian-shape PSF.  

   Table 5.5 shows that the restoration results are sensitive to the initial 

parameters. For instance, the conventional parameter set 1000  blimn   yields 

the worse results than the other initial parameter sets no matter what value of the 

confidence coefficients is used. In addition, the restoration result also depends on the 

confidence coefficients in some of the experiments. With the same initial parameter 

set, the experiments 2, 14, 15, and 16 produce different results because they are 

carried out with different levels of confidence on the initial parameters. 
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Table 5.5. ISNR and ISNR_h [dB] of the image and PSF estimated from a blurred 

noisy observation (Gaussian-shape PSF with variance 9, βn=10
6
) by LF-SAR 

algorithm with different initial parameters and confidence coefficients shown in Table 

5.4. 

Group Experiment 
LF-SAR& Gaussian-shape PSF 

ISNR ISNR_h 

1 
2 2.72 8.69 

3 2.45 8.53 

4 1.53 3.32 

2 
5 1.70 4.04 

6 2.03 7.30 

7 1.53 2.86 

3 
8 1.70 4.04 

9 1.80 6.35 

10 1.53 2.72 

4 
11 1.53 2.72 

12 1.80 6.79 

13 1.53 3.32 

14 3.18 8.33 

15 1.80 6.79 

16 2.66 7.79 

5.6. The noise effect 

It is known that the deblurring problem is an ill-posed inverse problem which is very 

sensitive to noise. In the previous sections, we only study the blurred observation 

contaminated by a small level of noise. Hence, in this section, experiments are carried 

out with higher levels of contaminated noise to investigate how the noise affects the 

deblurring results. 

 Table 5.6 shows the deblurring results of blurred noisy images of Lena and 

Cameraman images with the Gaussian distributed noise with variances 10
-4

, 10
-2

, 1, 

and 10
2
. There are two types of blurring functions which are involved in these 
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experiments, the Gaussian-shape PSF and the horizontally uniform PSF. The LF-SAR 

algorithm is used when the observation is blurred by the Gaussian-shape PSF. The 

LF-G algorithm is used when the observation is blurred by a horizontally uniform 

blurring function. In most of these experiments, the better estimations of image and 

PSF are produced when the contaminated noise is lower. This result is predictable and 

can be easily understood. In the case of uniform PSF, the estimate of image is still 

consistent with this rule “lower noise, better estimation”, but the rule seems 

inapplicable in estimating the blurring function. This exception is resulted from 

shrinking the kernel blurring function and normalising it at each iterative step in the 

LF-G algorithm. 

Table 5.6. ISNR and ISNR_h [dB] of the image and PSF estimated by LF-SAR 

algorithm (Gaussian-shape PSF with variance 9) and LF-G algorithm (horizontally 

uniform PSF with size support 9×9) at different levels of noise. 

Image Variance 
LF-SAR& Gaussian-shape PSF LF-G & Uniform PSF 

ISNR ISNR_h ISNR ISNR_h 

Lena 
10

-4 
3.16 8.33 3.41 10.60 

10
-2 

2.81 8.31 3.41 10.60 

1 2.13 8.21 2.98 11.26 

10
2 

2.09 4.68 1.92 13.63 

cameraman 
10

-4 
2.35 7.69 3.35 11.96 

10
-2 

2.22 7.88 3.35 11.97 

1 1.68 8.85 3.19 11.38 

10
2 

1.28 6.08 1.18 14.31 

5.7. PSF estimation using cross validation method 

As stated in the first chapter, the thesis only considers the spatially invariant blurring 

function. In this case, the kernel blurring matrices are the same at every pixel. Hence, 

if the image is divided into smaller sub-images, the kernel blurring matrix can be 



 

 - 100 - 

estimated from the sub-image by using the proposed algorithms. The kernel blurring 

matrix estimated from the sub-image may be slightly different from the one estimated 

from the full image because of the bound effect. When the observed image is noisy, 

the estimation of blurring matrix will have an error even if it is estimated from the full 

image or sub-images. By dividing the image into sub-images, we can have some 

blurring estimates which are affected by noise in different ways. Taking the weighted 

average of these blurring estimates gives us an opportunity to get a better blurring 

estimate. 

  In addition, dividing the image into sub-images also helps to reduce the 

computational time of the proposed algorithms. For instance, an observation g which 

is lexicographically re-ordered in the vector form 1×N will require the inverse 

calculation of covariance matrix N×N in our deblurring algorithm. The order of this 

calculation is O(N
 4

). If the observed image is divided into m sub-images, the similar 

process requires O(N
 4

/m
4
) computational time for each sub-image. Hence, for m sub-

images, the order of inverse calculation is O(N
 4

/m
3
). It means that the computational 

time should decrease when the number of division increases. 

  Table 5.7 shows the error of blurring estimation in percentage when each 

dimension of 2D image being divided into one to eight equal intervals. The 

experiments in this section use the LF-SAR algorithm and are carried out with the 

Gaussian-shape PSF. In general, the error of PSF estimation decreases when the 

number of sub-images increases. It is noted that the PSF estimate shown in Table 5.7 

is the average of PSFs estimated from sub-images. When the number of division 

increases, although the PSF estimate shown in Table 5.7 is smaller, the error of each 

PSF estimate from sub-images does not decrease. The experimental result also 
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confirms that the computational time of algorithm reduces when the number of 

division increases from one to eight.  

Table 5.7. Errors of PSF estimation when the image is divided into sub-images. 

No. sub-images Error of PSF estimation (%) 

1 6.56 

4 7.94 

9 

 

5.43 

16 5.52 

25 3.87 

36 3.56 

49 3.54 

64 3.68 

 

  Unfortunately, by applying the cross validation method, even though the PSF 

estimation is better by taking averages, the images estimated from sub-images are 

totally different and cannot be improved by taking averages. In addition, the error of 

image estimation from sub-images is even worse than that of restored result using 

whole image. This may be due to the bound effect which is an obvious consequence 

of image division. Hence, the PSF estimate using the cross validation method could 

only be used as a reference for the other deblurring algorithms which require 

knowledge about the blurring function. 

5.8. Concluding remarks 

From the experimental results presented above, we can derive the following notable 

remarks.  
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Firstly, the performance of the proposed algorithm was sensitive to the initial 

parameters.  

Secondly, the result of blurring estimation might be improved by applying the 

cross validation in spatially invariant blurring problem. The division of observed 

image into sub-images also helps to accelerate the computational speed of the 

proposed algorithms. However, the deblurring result of the original image which was 

estimated from sub-images was not good due to the bound effect.  

Last but not least, the Gaussian distribution and SAR model were used in our 

algorithms, as well as in most of the existing blind deblurring studies in stochastic 

approach, to model the PSF. As a result, the  algorithms performed well only when 

the blurring phenomena were caused by a smooth-shape PSF because these models 

are not capable of dealing with the PSF consisting of sharp transition. When the PSF 

had sharp transitions, the experimental result of proposed algorithms were improved 

by shrinking and normalising the PSF estimate. 
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Chapter 6  

Blind Deblurring Algorithms 

Using Variational Bayesian Approach 

6.1. Introduction 

In this section, we compare four different algorithms, all of them using the Variational 

Bayesian approach:  

 One uses the Simulated Auto-Regression (SAR) model as the prior 

information of the original image. This algorithm, called SAR algorithm, is 

introduced in [30] by Molina et al. 

 The other one is the TV algorithm which uses the Total Variation model as the 

prior information of the original image. This model is used in [16] to estimate 

the original image from its blurred observation with a known blurring 

function. We extend the work to blind deconvolution. 

 The next one is LF-SAR algorithm which uses our proposed image model in 

[87], called LiFeAIM. 

 The last one, which is proposed in [62], is similar to our TV algorithm. The 

only difference between these two algorithms is that the algorithm in [62] 

calculates the covariance matrix of image by the conjugate gradient method 

while the TV algorithm approximates it by a simpler matrix. The deblurring 

result of the algorithm in [62], denoted as TV_CG in this thesis, will be quoted 

to compare with the results of the three above algorithms which are coded by 
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ourselves. The algorithm proposed in [30] is implemented by ourselves instead 

of quoting the results shown in [30] because the authors admited that there 

were some mistyping errors in [30]. Moreover, while comparing a new 

algorithm with the algorithm in [30], the authors of [61] also showed the 

results of algorithm in [30] by implementing their own code which were very 

different from the results shown in [30] and similar to those implemented by 

us. 

It is important to note that the only difference in ideas amongst the four 

compared algorithms is the image model. In all these algorithms, the Gamma 

distribution and the SAR model are used as the prior information of the model 

parameters and the blurring function, respectively. To guarantee the same 

experimental condition for all algorithms, the LF-G algorithm proposed in Chapter 4 

is not used in the experiments in this chapter because it uses Gaussian distribution for 

the blurring model. In this chapter, two algorithms using TV model are represented in 

section 6.3. The SAR model of SAR algorithm is briefly described in section 6.2. 

More details of SAR algorithm can be found in [30]. 

6.2. Modeling image by Simulated Auto-Regression (SAR) 

model 

The Auto-Regression models are used by many researchers in image restoration [20, 

2, 23]. The Simultaneous Auto-Regression (SAR) model is one among them. This 

model can be represented by the following equation: 

  







 CfCfconstfp TTimN

imim
2

exp
2/ 

   (6.1) 

in which, N is the size of lexicographically re-ordered image f;   
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   im is the parameter of image model; 

      C is the Laplacian operator. 

  The SAR model is used in the blind deblurring algorithm of Molina et al. [30]. 

In this algorithm, the SAR model is also used as the prior information of blurring 

function, while the model parameters are assumed to be Gamma distributed. The 

deblurring result of this algorithm, called SAR algorithm, is used to compare with our 

restoration result in the thesis. However, the results of SAR algorithm, shown later in 

section 6.4 of this thesis, differ from those shown in [30] because they are coded by 

us. The difference may be due to the different orders of Fourier transforms which are 

used in their programme and ours. In the derived equations of SAR algorithm, the 

two-dimension image and blurring function are lexicographically re-ordered into the 

vector form. However, in their programme, the image and blurring function are kept 

in the original form, the matrix form. Thus, the 2D Fourier transform is used. In our 

programme, the image and blurring function are lexicographically re-ordered into the 

vector form. Then, we use the 1D Fourier transform whose order is the product of two 

dimension of the original image.   

6.3. Modeling image by Total Variation model 

6.3.1. Total Variation model  

In the Total Variation (TV) model [88], the variance of image at each pixel is 

calculated by the horizontal and vertical first order difference. The TV model can be 

approximated by the following equation: 

    fTVconstfp im

N

imim   exp
2/

 (6.2) 
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where,        
i

v

ii

h

ii fffffTV
22

 (6.3) 

h

if and v

if are the intensities of the nearest left and above neighbours of pixel 

i, respectively. 

   N is the size of the lexicographically re-ordered image f;   

 im is the parameter of image model. 

6.3.2. Blind deblurring algorithms using TV model 

We now introduce blind deblurring algorithms using TV model by applying the 

Variational Bayesian (VB) approach which is described in section 4.2. The prior 

information of blurring function and that of model parameters are the same as those 

described in section 4.3.3 and 4.3.4. However, when we apply exactly the same 

process represented in Chapter 4, it leads to an optimisation problem of the posterior 

probability  ghfp ,, : 

 
           

 gp

ppphpfphfgp
ghfp

blimnblimn ,,
,,   (6.4) 

where  nblim  ,, ; 

  nhfgp ,,  is the Gaussian distribution of the observation model; 

  blhp   is the SAR model of blurring function; 

     ,, imn pp   and  blp   are Gamma distributions of model parameters. 

  An obstacle would occur in solving this optimisation problem because  fTV  

term in the TV model  imfp   is not a quadratic form of f. To make the optimisation 

problem easier to solve,  fTV  term in this model can be bounded as proposed in 

[88] by a quadratic form of f: 
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 
   





i i

i

v

ii

h

ii

w

wffff
fTV

2

222

  (6.5) 

where iw is an arbitrary positive scalar. The equality of this inequality happens when 

we have: 

    22 v

ii

h

iii ffffw    (6.6) 

  Following this idea, the prior information of image  imfp   has a lower 

bound  imf   as shown in eq. (6.7): 

     

 im

i i

i

v

ii

h

ii
im

N

imim

f

w

wffff
constfp



















 
 

2
exp

222

2/

 (6.7) 

Hence, we define a distribution function  ghf  ,,  which is the lower bound of 

 ghfp ,,  as follows: 

 
           

 

 ghfp

gp

ppphpfhfgp
ghf

blimnblimn





,,

,,
,,



  (6.8) 

  The distribution function  ghf  ,,  is approximated by  nblimhfq  ,,,,  

using the Kullback-Leibler divergence: 

   
 
 

 
 

           


















 




















,,

,,

,,

)(,,
log,,

,,

,,
log,,

hf blimnblimn

hf

KL

dfdhd
ppphpfhfgp

gphfq
hfq

dfdhd
ghf

hfq
hfqqD



(6.9) 

where            nblim qqqhqfqhfq ,, ; 

  fq  and  hq  are assumed to be Gaussian distributions; 

  imq  ,  blq  and  nq   are assumed to be Gamma distributions. 



 

 - 108 - 

  The optimum solution of the approximate distributions    ,, hqfq  imq  , 

 blq  and  nq   are calculated following eq. (4.5). When the lower bound 

 ghf  ,,  is approximated by  ,,hfq ,  the distributions of blurring function and 

parameters,  blhp  ,  np  ,  imp  , and  blp  , are approximated by  hq ,  imq  , 

 blq  , and  nq  , respectively. Meanwhile,  imf   is approximated by  fq . 

Since  imf   is the lower bound of the image distribution  imfp  , the image 

distribution can be approximated by  fq  if the equality of eq. (6.8) occurs. The 

condition under which this equality occurs is represented in eq. (6.6), 

   22 v

ii

h

iii ffffw  . 

  Now, we estimate the original image, the blurring function and the model 

parameters following eq. (6.6) and the optimum solution shown in eq. (4.5). 

** Image estimation: 

Following eq. (4.5), the optimum approximate distribution of the original image is 

given below: 

      
     

 
nblim qqqhqnblimim hfgpfEconstfq




)(
,,,,loglogexp   

      
   

 
       

)(

2
222

)(

22

,,logloglog

hq

n

i i

i

v

ii

h

ii
im

qqhqnim

HfgE
E

w

wffff
Econst

hfgpfEconstfq
nim
















 (6.10) 

The summation  in the above equation can be rewritten in the matrix form: 

    hThvTv

i i

i

v

ii

h

ii WW
w

wffff





2

222

 

where  NiiwdiagW ..1

1)( 

 ; 
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   v and h denote matrices such that  
Ni

v

ii

v fff
..1

  and 

 
Ni

h

ii

h fff
..1

 . 

Hence, 

     
   

)(

2

2
log

hq

nhTh

im

vTv

im HfgE
E

WEWEconstfq 


  

  Since  fq  is a Gaussian distribution, the expectation and covariance matrix 

of the image are determined by eq. (6.11): 

 
  













 0

log

f

fq
ffE  , and  

  
1

2

2 log
cov

















f

fq
f  (6.11) 

  
           gHEEfHHEEfWEfWE

f

fq T

n

T

n

hTh

im

vTv

im  


 log

 

Hence, 

 
  

         1

1

2

2 log
cov





















HHEEfWEfWE

f

fq
f

T

n

hTh

im

vTv

im 

  (6.12) 

And, 

              gHEEHHEEfWEfWEfE T

n

T

n

hTh

im

vTv

im 
1

  

       gHEEffE T

ncov  (6.13) 

** Blurring estimation: 

  Similarly, the approximate distribution of blurring function has the expectation 

and covariance matrix shown in the following equations:   

               1

covcov


 CCEFEFEFEEh T

bln

T

n   (6.14) 

        gFEhEhE
T

bl cov   (6.15) 
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in which, F is the left-wise circulant matrix whose first row is Tf . 

** Parameter estimation: 

The optimum approximate distribution of parameters has the following form: 

           
)()()(

,,logexp
iqfqhqii hpfphfgpEpconstq


   

where  nblimi  ,,  

  Comparing the coefficients of i  in both sides of the above equation, we 

obtain the following results: 

2

0 N
aa imim  ,  BfBfE

T
bb TT

k

imim
2

10   (6.16) 

2

0 M
aa blbl  ,  ChChEbb TT

blbl
2

10   (6.17) 

2

0 N
aa nn  ,  

)()(

20

2

1
hqfqnn HfgEbb   (6.18) 

The expectation of model parameters is given by the following equation: 

 
x

x

x
b

a
E   ,  nblimx ,,    

 By applying the theorems in Chapter 4 into the above results, the iterative 

deblurring algorithm, denoted TV algorithm, is introduced with four following steps: 

** TV algorithm: 

- Step 1: estimate the covariance and the expectation of f       

         1

covcov


 hTh

im

vTv

imn

T

n WWhNHEHEf 

      gHEffE
T

n cov  (6.19) 

- Step 2:  determine the condition under which the posterior probability reaches 

its lower bound in eq. (6.8)          
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    v

ii

h

iii ffffw 
2

 

NiiwdiagW ..1

1)( 

    (6.20) 

- Step 3: estimate the covariance and the expectation of h          

         1

covcov


 CCfNFEFEh T

bln

T

n     

      gFEhhE
T

bl cov  (6.21) 

- Step 4:  estimate the expectation of the parameters ,, imn  and bl         
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iimim wbb 0  

2
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 
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a
E  ,  
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b

a
E  ,  

n

n

n
b

a
E    (6.22) 

 To reduce the computational effort of this algorithm, the covariance matrices 

 fcov  and  hcov  are assumed to be circulant. Hence, to ensure this circulant 

assumption, the matrix )(wW  in our TV algorithm is approximated by: 

   IwWtrace
N

wW )(
1

)(        (20) 

Meanwhile, the TV_CG algorithm in [62] calculates the matrix )(wW  in eq. (6.20) by 

the conjugate gradient method. The terminate criterion of TV_CG algorithm is that 

the gradient descent is less than 10
-5

. 
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6.4. Comparison among blind deblurring algorithms using 

Variational Bayesian approach 

This section compares four blind deblurring algorithms using Variational Bayesian 

approach and different image models. They are: 

(i) SAR algorithm which uses SAR model as the prior information of the image; 

(ii) TV algorithm which uses Total Variation model as the prior information of the 

image; 

(iii)LF-SAR algorithm which uses our proposed image model in Chapter 3 as the 

prior information of the image; 

(iv) TV-CG algorithm [62] which also uses Total Variation model as the prior 

information of the image. 

The restored images of these algorithms are compared in term of ISNR (Improved 

Signal Noise Ratio) index: 

2

2

ˆ
log10

ff

gf
ISNR




   

 where f̂ is an estimation of the original image f  
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Figure 6-1.  The blurred noisy Text image and its restored results by SAR algorithm 

(ISNR=0.48dB), TV (ISNR=0.78dB), and LF-SAR (ISNR=1.37dB). 

 Our experiments use three images: 

 The Text image, created by ourselves, contains some words in order to 

compare the visual appearance among the restored images easily. 

 The second one is the image of Lena which is used in a series of experiments 

to investigate the effect of the initial parameters on the restoration result. 

 The last one is a synthesized image, Shepp-Logan phantom image, which is 

generated by Matlab. 

  In all these experiments, the blurring function is a Gaussian function with 

variance 9. The support size of blurring function is assumed to be equal to the image 

LF-SAR TV 

Blurred Image SAR 
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size. In most of the experiments, the variance of contaminated noise is 23.01 

n , or 

otherwise stated.  

  Four sets of experiments are carried out in this chapter. The first set of 

experiments uses an image containing text (Figure 6-1 ) to compare the visual 

appearance of restored image besides comparing the ISNR index. The second set of 

experiments is to investigate the effect of initial parameters and confidence 

coefficients on the restoration result. We also examine how the noise affects the 

deblurring result by carrying out experiments with different levels of noise 

contamination in our third set of experiments. In the first three sets of experiments, 

only three among the four algorithms mentioned above are compared. This is because 

in the first three sets of experiments there is no similar experiment of TV-CG 

algorithm reported in [62] for comparison with those of the other three algorithms. All 

these four algorithms are compared in our last set of experiments in which the 

confidence coefficients are zero. 

  For our first experiment, Figure 6-1 shows the restored results of the Text 

image. The ISNR index shows that our deblurring result (ISNR=1.37dB) is better than 

that of the TV algorithm (ISNR=0.78dB) and SAR algorithm (ISNR=0.48dB). Ours 

also has the best visual appearance among the three restored images.  

  The second set of experiments is to examine the effect of the initial model 

parameters on the restoration result. A series of experiments are carried out with 

initial parameters and their confidence coefficients are given in Table 5.4 in Chapter 

5. These initial parameter sets consist of three specific parameter sets and their 

permutations. The confidence coefficients of these parameters are ranged from low to 

high (0.001 to 0.5). 
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Table 6.1. The ISNR[dB] of the restored result of SAR, TV, LF-SAR, and LF-SAR2 

with different initial parameters shown in Table 5.4. 

Group Experiment SAR TV LF-SAR LF-SAR2 

1 2 1.36 2.19 2.32 2.31 

3 1.36 2.18 2.30 2.30 

4 0.61 1.24 1.30 1.54 

2 5 1.15 0.97 1.61 2.36 

6 0.90 2.03 2.03 2.42 

7 0.55 1.21 1.33 1.32 

3 8 1.01 0.58 1.60 2.33 

9 1.04 1.99 1.80 2.42 

10 1.02 0.82 1.33 1.52 

4 11 0.83 0.40 1.30 1.54 

12 0.87 1.99 1.73 2.32 

13 0.86 1.25 1.30 1.51 

14 1.38 2.19 2.41 2.34 

15 0.87 1.72 1.98 2.32 

16 1.43 1.02 2.23 2.32 

 

 The corresponding deblurring results of these experiments are shown in Table 

6.1 (Please refer to Table 5.4 for the parameters of the experiments). From Table 6.1, 

by comparing between group 1 and 2, we find that with the same initial parameters, 

the better restored images are produced if the confidence coefficients are close to 

zero. Meanwhile, groups 3 and 4 show how effective each algorithm are in estimating 

each parameter. The best result in these experiments is that of experiment 14 where 

the initial parameters are ,6.93,22.0 00  imn  60 10bl and the confidence 

coefficients ,5.0,001.0 
imn   001.0

bl . It is found that in experiment 14 of 

LF-SAR algorithm, the initial values are close to the final estimated parameters. 

Hence, we introduce another algorithm, called LF-SAR2, which is the same as our 
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LF-SAR but with the initial parameters resulting from LF-SAR. The confidence 

coefficients in LF-SAR2 algorithm are also fixed to those of experiment 14, 

,5.0,001.0 
imn   and 001.0

bl . The restoration result of LF-SAR2 is found to 

be very good and it is the best among most of the experiments. Another interesting 

finding is that the results of our adaptive image models, TV algorithm and LF-SAR 

algorithm, are better than those of SAR algorithm in most experiments. 

 

Figure 6-2.  The blurred noisy Lena images and their restored results by SAR, TV, 

and LF-SAR with low level (first row) and high level (second row) noise. 

 

  In the third set of experiments, we investigate the robustness of four 

deblurring algorithms above with different levels of noise. The images in Figure 6-2 

show the restored images of two blurred and noisy images. In the first row of Figure 

6-2, the contaminated noise is low, βn
-1

= 0.23. In the second row, the contaminated 

noise is high, βn
-1

= 16. These experiments use the initial value set of experiment 16 in 

Table 5.4. As stated above, the results of TV and LF-SAR algorithms are better than 

those of SAR algorithm at the low level noise. However, the TV algorithm is not as 

good at the moderate and high level of noise. LF-SAR is still better than SAR 

LF-SAR TV SAR Blurred image 
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algorithm at the moderate level of noise (see Table 6.2). The experimental results 

show that our deblurring algorithm outperforms the other two algorithms using the 

Variational Bayesian approach, TV and SAR, at the low and moderate levels of noise 

(BSNR>20dB). However, if the level of contaminated noise is high, further 

investigation of choosing the initial parameters is needed to improve the performance 

of our proposed algorithm. 

Table 6.2. The ISNR[dB] of the restored result of SAR, TV, LF-SAR, and LF-SAR2 

with different levels of noise. 

βn
-1

 SAR TV LF-SAR 

0.23 1.39 2.19 2.43 

1.00 1.12 -0.82 2.13 

4.00 1.09 -13.58 1.55 

16.00 1.37 -23.08 1.37 

 

 Although the proposed LF-SAR algorithm is better than the TV and SAR 

algorithms in term of ISNR, it requires longer computational time. Since LF-SAR 

does not assume that the covariance matrix of the image model was circulant, it must 

be implemented in the spatial domain instead of the Fourier domain as most of  the 

studies did. Hence, it must deal with the inverse problem of a huge matrix. The 

calculation of the inverse matrix takes several seconds each time although we did 

some improvements to reduce the size of the matrix by a few thousand times. 
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Table 6.3. The ISNR[dB] of the restored result of SAR, TV, TV_CG, and LF-SAR 

without confidence in the initial parameters. 

Image βn
-1

 SAR TV TV_CG LF-SAR 

Lena 0.16(40dB) 1.56 1.78 2.53 2.23 

16(20dB) 1.26 -16.72 2.62 1.30 

Shepp-

Logan 

0.18(40dB) 1.62 2.11 3.07 2.10 

18(20dB) 1.57 -19.66 2.47 1.83 

 

 The last set of experiments in this thesis is an ideal case where all confidence 

coefficients x  are set to zero, corresponding to 0,0 00  xx ba  with  nblimx  ,, . 

In this case, it is unnecessary to choose the initial parameters ,, 00

imn  and 0

bl  since 

they will not affect the estimation results. The experiments are carried out at two 

levels of noise (BSNR = 40dB and BSNR = 20dB) with both synthesized and real 

images, the Shepp-Logan phantom and Lena images. Table 6.3 shows that the results 

of LF-SAR are still better than those of SAR and TV algorithms. Besides, it also 

shows that the results of TV_CG are the best among those of four compared 

algorithms. Although TV_CG is better than LF-SAR in term of ISNR, TV_CG 

algorithm requires intensive computation as it uses the conjugate gradient method. 

LF-SAR algorithm is about ten times faster than TV_CG algorithm. 
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Chapter 7  

Conclusions and Future Works 

7.1. Conclusions 

In this thesis, the blind deblurring algorithms using a new adaptive image model has 

been developed. The proposed image model was called LiFeAIM, which stands for 

Line Field based Adaptive Image Model. The model was represented by a probability 

distribution whose standard deviations were different at each pixel. The standard 

deviations were calculated from the new line field whose distribution was varying 

through iterations. The new line field gave the proposed image model the ability to 

distinguish edge pixels from noisy pixels. Since the deblurring problem is very 

sensitive to noise, using this image model to construct deblurring algorithms led to 

interesting restored results. 

  As the deblurring problem is a complex problem that embraced the denoising 

problem, LiFeAIM was also used to construct a denoising algorithm to examine its 

performance in denoising. Our proposed denoising algorithm used LiFeAIM and the 

maximum à posteriori approach. By comparing its result with that of the denoising 

algorithm using the original line field, it was demonstrated that our new line field 

helped to construct an efficient denoising algorithm. Moreover, we showed that the 

proposed algorithm was competent in comparison with the existent denoising 

algorithm using the wavelet transform or the hidden Markov model, such as 

BayesShrink, VisuShrink, and HMTs. This good performance resulted from the high 
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capacity of our model for distinguishing between the noisy pixels and the edge pixels 

of the images. Many experiments were carried out to investigate the speed of  

convergence of the proposed denoising algorithm. It was proven that one of the 

convergent conditions of our denoising algorithm was: 

( )
log( 1)

c
T k

k



 

Hence, the constant c in the lower bound term of the temperature parameter T(k) 

could be used to control the convergence speed of our denoising algorithm. We have 

determined the relationship between the “best” value of constant c and the standard 

deviation of the contaminated noise. This relationship was used to generate an 

approximate function which can be used later to select the appropriate parameter T(k) 

corresponding to any level of the noise. Another interesting finding was that the speed 

of convergence of the algorithm also depended on the smoothness of images. We also 

discussed how to choose an appropriate value of the temperature parameter T(k) to 

control the convergence of algorithm faster. 

 After examining the quality of LiFeAIM in denoising, we dealt with the blind 

deblurring problem by using LiFeAIM and the Variational Bayesian method. To show 

the performance of the proposed deblurring algorithms in a wide variety of blurring 

types and image patterns, many experiments using these algorithms were carried out 

with three different types of blurring functions and several images. Some experiments 

were also carried out with various levels of contaminated noise to examine the 

sensitivity of proposed algorithms to noise. One of our significant contributions was 

that the covariance matrix of our image model was not assumed to be circulant. This 

assumption is unrealistic even though it was often used in other deblurring algorithms. 

Nevertheless, because it helped to solve the problem faster in the Fourier domain in 
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which the problem of matrix inversion became the simple problem of scalar inversion. 

Our other contribution was that we have developed and proven theorems to accelerate 

the computational speed of our deblurring algorithms. 

 The proposed deblurring algorithms using LiFeAIM was compared with those 

using TV and SAR models. At the low level of noise, the results of these algorithms 

showed that the adaptive image models, including the TV and proposed models, were 

more effective than the SAR model in the deblurring problem. Moreover, our 

algorithm produced the best result among compared algorithms when the level of 

contaminated noise was low or moderate. We also found that the performance of these 

algorithms highly dependent on the initial parameters. 

  Although the algorithms using adaptive image models outperformed the 

algorithm using SAR model in deblurring, the algorithms using adaptive image 

models developed in this thesis required longer computational time than the algorithm 

using SAR model does. Since the algorithms using adaptive image models did not 

assume that the covariance matrix of the image model to be circulant, the inversion of 

the covariance matrix must be implemented in the spatial domain instead of in the 

Fourier domain. Hence, these algorithms needed time to deal with the inverse problem 

of a huge matrix. In the proposed algorithms, the calculation of the inverse matrix 

took several seconds each time although we did some improvements to significantly 

reduce the computational complexity. 

  To reduce the computational time, we also tried to divide the image into 

several sub-images. By dividing the image into smaller ones, it not only helped to 

reduce the computational time of our deblurring algorithm but also increased the 

accuracy of blurring estimation. Since the kernel blurring function was invariant in 

our studies, the kernel blurring functions for sub-images were the same. Hence, the 
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noise effect on the kernel blurring function could be removed effectively by 

estimating the blurring function based on sub-images and applying the cross 

validation method. Our experiments with cross validation method showed that even 

though the estimation of blurring function was more accurately, the estimate of the 

original image unfortunately became worse because of the bound effect. 

7.2. Future works 

Although the thesis has filled the gap by using adaptive image model, developed in 

this thesis,  in the blind deblurring problem, some challenges require further 

investigations in the future. 

 Firstly, in the implementation of the proposed blind deblurring algorithms, 

some approximations which were applied to reduce the computational complexity can 

be replaced by direct calculations. In particular, the covariance matrix of the original 

image which was approximated by a circulant matrix in step 2 and step 3 of the 

proposed algorithms (see section 4.4.3) would be numerically calculated by the 

conjugate gradient method.  Direct calculation of the covariance matrix should lead to 

more precise image estimation. However, it makes the algorithms much more 

computational intensive because the estimation of covariance matrix of the blurring 

function is not a circulant matrix anymore. 

 Secondly, the speed of convergence of the proposed algorithms was controlled 

by the temperature parameter T(k) which was proportional to the inverse of logarithm 

function. The parameter should be studied further to investigate how its variation 

affects the speed of convergence of the deblurring algorithms. 

  Lastly, a common limitation of the existing blind deblurring algorithms and 

our proposed algorithms was that they did not perform well when the blurring 
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function had sharp transitions. To deal with this problem, more complicated model 

should be used to model the blurring function. For instance, in our proposed 

algorithms, the SAR model or the Gaussian model may be replaced by the TV model 

in modeling the blurring function. It is notable that the more complicated the model is, 

the higher would be the computational effort. 
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Appendix A – Images Used for Experiments 

 

 

Figure A- 1. “Lena” image 512×512 pixels 
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Figure A- 2. “Cameraman” image 256×256 pixels. 

 

Figure A- 3. “Montage” image 256×256 pixels. 

 

 

Figure A- 4. “Bridge” image 256×256 pixels. 
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Figure A- 5. “House” image 256×256 pixels. 

 

 

Figure A- 6. “Mountain” image 640×480 pixels. 
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Figure A- 7. “Zelda” image 512×512 pixels. 
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Figure A- 8. “Boat” image 512×512 pixels. 

 

 

Figure A- 9. “Bird” image 256×256 pixels. 
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Figure A- 10. “Goldhill” image 256×256 pixels. 

 

 

Figure A- 11. “Library” image 464×352 pixels. 
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Figure A- 12. “Frog” image 621×498 pixels. 
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Figure A- 13. “Flinstones” image 512×512 pixels. 
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Figure A- 14. “Mandrill” image 512×512 pixels. 
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Figure A- 15. “Washsat” image 512×512 pixels. 
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Figure A- 16. “Text” image 512×512 pixels. 
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Figure A- 17. “Barbara” image 512×512 pixels. 
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Appendix B – Deblurred Images 

I. Experimental results with Gaussian - shape PSF 

The images in this section are the noisy blurred images and the deblurred images of 

experiments in section 5.2 using LF-SAR algorithm. 

 

Figure B - 1. The noisy blurred image of Lena image and its restored image. 

 

Figure B - 2. The noisy blurred image of “Cameraman” image and its restored image. 
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Figure B - 3. The noisy blurred image of “Boat” image and its restored image. 

 

Figure B - 4. The noisy blurred image of Barbara image and its restored image. 

 

Figure B - 5. The noisy blurred image of “Montage” image and its restored image. 
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Figure B - 6. The noisy blurred image of “Flintstones” image and its restored image. 
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II. Experimental results with horizontally uniform PSF 

The images in this section are the noisy blurred images and the deblurred images of 

experiments in section 5.3 using LF-G algorithm. 

 

Figure B - 7. The noisy blurred image of Lena image and its restored image. 

 

Figure B - 8. The noisy blurred image of “Cameraman” image and its restored image. 
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Figure B - 9. The noisy blurred image of “Boat” image and its restored image. 

 

Figure B - 10. The noisy blurred image of Barbara image and its restored image. 

 

Figure B - 11. The noisy blurred image of “Montage” image and its restored image. 
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Figure B - 12. The noisy blurred image of “Flintstones” image and its restored image. 
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III. Experimental results with out-of-focus PSF 

The images in this section are the noisy blurred images and the deblurred images of 

experiments in section 5.4 using LF-SAR algorithm. 

 

Figure B - 13. The noisy blurred image of Lena image and its restored image. 

 

Figure B - 14. The noisy blurred image of “Cameraman” image and its restored 

image. 
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Figure B - 15. The noisy blurred image of “Boat” image and its restored image. 

 

Figure B - 16. The noisy blurred image of Barbara image and its restored image. 

 

Figure B - 17. The noisy blurred image of “Montage” image and its restored image. 
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Figure B - 18. The noisy blurred image of “Flintstones” image and its restored image. 


