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ABSTRACT

Accurate interpretation of seismic traveltimes and amplitudes
in the exploration and global scales is complicated by the
band-limited nature of seismic data. We discovered a stochastic
method to reduce a seismic waveform into a most probable con-
stituent spike train. Model waveforms were constructed from a
set of candidate spike trains convolved with a source wavelet
estimate. For each model waveform, a profile hidden Markov
model (HMM) was constructed to represent the waveform as
a stochastic generative model with a linear topology correspond-
ing to a sequence of samples. Each match state in the HMM
represented a sample in the model waveform, in which the
amplitude was represented by a Gaussian distribution. Insert
and delete states allowed the underlying source wavelet to
dilate or contract, accounting for nonstationarity in the seismic
data and errors in the source wavelet estimate. The Gaussian

distribution characterizing each sample’s amplitude accounted
for random noise. The Viterbi algorithm was employed to simul-
taneously find the optimal nonlinear alignment between a model
waveform and the seismic data and to assign a score to each
candidate spike train. The most probable traveltimes and ampli-
tudes were inferred from the alignments of the highest scoring
models. The method required no implicit assumptions regarding
the distribution of traveltimes and amplitudes; however, in prac-
tice, the solution set may be limited to mitigate the nonunique-
ness of solutions and to reduce the computational effort. Our
analyses found that the method can resolve closely spaced arriv-
als below traditional resolution limits and that traveltime esti-
mates are robust in the presence of random noise and source
wavelet errors. The method was particularly well suited to
fine-scale interpretation problems such as thin bed interpreta-
tion, tying seismic images to well logs, and the analysis of
anomalous waveforms in global seismology.

INTRODUCTION

A problem of fundamental importance in all branches of seismol-
ogy is accurate traveltime and amplitude picking. However, the
problem is generally complicated by a low signal-to-noise ratio
(S/N) or constructive/destructive interference effects from band-
limited wavelets. Figure 1 provides a simple illustration of this
problem. The top three traces show individual arrivals consisting
of 25-Hz Ricker wavelets scaled in amplitude and shifted in time.
The lowermost trace shows the composite waveform obtained by
summing the individual arrivals. Because these are zero phase
wavelets, traveltimes and amplitudes can be estimated from picks
at the locations of local amplitude maxima or minima at peaks or
troughs. The black spikes in Figure 1 depict manually picked trav-
eltimes and amplitudes of the individual arrivals comprising the

composite waveform, whereas the gray spikes depict the actual trav-
eltimes and amplitudes. The traveltime is correctly picked for the
first arrival, but destructive interference from the second arrival has
led to an erroneously low amplitude pick. The second arrival pick
has significant time and amplitude errors, and the third arrival pick
has slight traveltime and amplitude errors. This simple noise-free
example demonstrates how constructive and destructive interfer-
ence from overlapping wavelets complicates the picking process
and can lead to erroneous traveltime and amplitude picks.
Accurate picking requires consideration of constructive and de-

structive interference from neighboring arrivals and noise. As the
separation between individual arrivals decreases, the problem shifts
from being one of picking accurate traveltimes and amplitudes to
resolving the two separate arrivals. Figure 2 demonstrates the res-
olution criteria proposed by Rayleigh and Ricker (see Ricker,
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1953). Figure 2a defines two metrics for a Ricker wavelet, which
determine both resolution criteria. The wavelet breadth b is given as
the distance between the maximum absolute amplitudes of the sym-
metric side lobes, while the temporal resolution limit (TR) (Kallweit
and Wood, 1982) is the distance between inflection points on the
central lobe. With sufficient separation, individual main-lobe peaks
are visible and separate arrivals are easily resolved, as shown in
Figure 2b. For two uniform-polarity events of equal amplitude,
Rayleigh’s limit of resolution is reached when two wavelets are sep-
arated by b∕2, or the peak-to-trough time. As Figure 2c illustrates,
this is the minimum separation at which two distinct peaks are still
visible in the composite waveform. The resolution limit was ex-
tended by Ricker to the smaller distance TR. At this separation,
the composite wavelet no longer has two distinct peaks; however,
the curvature at the central maximum is zero, resulting in a flat spot,
as can be seen in Figure 2d.

Resolution limits, as well as the effects of constructive and de-
structive interference on waveform character, can be visualized with
a wedge model, as shown in Figure 3. The underlying earth model
contains three layers, with impedance varying discretely with depth,
such that the absolute value of the zero-offset reflection coefficients
at each interface is equal. The thickness of the middle layer
decreases from left to right, forming the wedge. The reflectivity
caused by impedance contrasts is represented as a function of
two-way traveltime by the spikes in Figure 3. Synthetic seismic
traces representing an idealized zero-offset acquisition were created
by convolving a 25-Hz Ricker wavelet with the reflectivity series.
Figure 3a shows a case in which the reflection coefficient is positive
at both interfaces, representing an increase in impedance with depth.
Figure 3b presents a mixed-polarity wedge model. In this case, a
high-impedance wedge is inserted into a whole space, such that
the polarity of the top and bottom reflection coefficients is reversed.
This type of model would be characteristic of either a low-
impedance bed surrounded by identical high-impedance beds, or
vice versa, and it is of particular value because this phenomenon
is likely to occur in a shale-sand-shale sequence.
In Figure 3a, the transition from well-resolved peaks through

Rayleigh’s (b∕2) and Ricker’s (TR) resolution limits can clearly
be seen from the thickest to thinnest regions of the wedge (from
left to right in Figure 3). However, in the mixed-polarity case
(Figure 3b) Ricker’s (TR) limit has no meaning. Widess (1973) pro-
poses an amplitude-based methodology for resolving thin beds in
the mixed-polarity case. Widess notes that at an approximate dis-
tance of λb∕8, where λb is the dominant wavelength, the composite
waveform stabilizes into a good approximation of the derivative of
the original zero-phase wavelet. Thus, the waveform shape is vir-
tually indistinguishable for beds less than λb, but the bed thickness
may be inferred from the peak amplitude of the composite wavelet.
At thicknesses below the established resolution criteria, the com-
posite waveform for the uniform-polarity and opposite-polarity
cases can be visually interpreted as a single arrival; however, the
composite wavelet in the opposite-polarity case will approximate
the derivative of the original zero-phase pulse with a strong ampli-
tude response dependent on bed thickness (e.g., Figure 3a and 3b).
This amplitude information is routinely used by seismic interpreters

to construct tuning curves (Bacon et al., 2003)
for thin-bed interpretation. In practice, this re-
quires calibration of amplitudes to a known
bed thickness. This method is further compli-
cated by the presence of noise and uncertainty
in the source wavelet estimate (Widess, 1973).
Figure 4a shows apparent thickness in two-

way traveltime and apparent amplitude as a func-
tion of true thickness for the synthetic traces
pictured in Figure 3a. The solid black line at
45° shows the ideal case where the apparent
thickness determined matches the true thickness
of the layer. The blue line shows the actual recov-
ered thickness. If one could accurately determine
thickness in all cases, the solid blue line should
perfectly track the solid black line. However,
the apparent thickness increases slightly before
Rayleigh’s criterion (b∕2) is reached because
of interference between the wavelets. Below
the TR limit, the separate arrivals are unresolved
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Figure 1. The top three traces show individual 25-Hz Ricker wave-
lets. The lowermost trace shows a composite waveform consisting
of the sum of the individual Ricker wavelets from the upper
traces. The gray spikes represent actual arrival times and ampli-
tudes, while the black spikes represent manually picked arrival
times and amplitudes.
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Figure 2. Resolution criteria with decreasing wavelet separation for two uniform-
polarity Ricker wavelets. (a) Definition of wavelet breadth b and TR (Kallweit and
Wood, 1982) for a Ricker wavelet. The wavelet breadth is the distance between
side-lobe troughs, while TR is the distance between inflection points on the central lobe.
The separation between arrivals is sufficient that the events in (b) are clearly resolved.
(c) Rayleigh’s criteria b∕2 represents the limit of resolvability in which two distinct
peaks remain. (d) A zero curvature-induced flat spot allows for event resolution at
Ricker’s limit TR.
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and the composite arrival appears to be an individual arrival. The
solid horizontal black line shows the true amplitude of both arrivals,
while the red line shows the measured amplitude. For traveltimes at
or above Rayleigh’s limit, the amplitudes are measured from two
separate peaks. Below Rayleigh’s limit, only a single peak remains.
Destructive interference lowers amplitudes near the resolution
criteria, and constructive interference increases amplitudes as the
differential traveltime goes to zero.
In Figure 4b, the apparent thickness and amplitude as a function

of true thickness for the mixed-polarity wedge model (Figure 3b)
are shown. Here, the composite waveforms are comprised of two
equal-amplitude, opposite-polarity 25-Hz Ricker wavelets. In this
case, it is possible to resolve the two arrivals for all thicknesses;
however, the apparent separation is limited to TR. Constructive
interference increases amplitudes near the resolution limits, while
destructive interference diminishes amplitudes as the differential
traveltime goes to zero.
The process of detecting traveltimes and amplitudes of each

arrival in a band-limited seismic trace is a form of sparse spike
deconvolution. In recent decades, numerous techniques have been
developed in this area. Kormylo and Mendel (1983) introduce a
maximum-likelihood sparse spike deconvolution algorithm based
on state-variable technology, which is capable of estimating a
Bernoulli-Gaussian sparse spike train and the correct phase of
the seismic wavelet. Wiggins (1978) and Sacchi et al. (1994) pro-
pose minimum entropy sparse spike deconvolution methods. Velis
(2008) proposes a stochastic sparse spike deconvolution method
that incorporates impedance constraints into simulated annealing
iterations to find a solution consisting of the least number of spikes,
which explains the observed data when convolved with a model
wavelet. Phase errors in the wavelet estimate are handled to some
extent by computing an optimal phase shift
to match the model wavelet to an effective data
wavelet. Kaaresen and Taxt (1998) use a Baye-
sian framework to derive a maximum a poste-
riori multichannel deconvolution estimate. Their
method alternates between steps of wavelet and
reflectivity estimation, and it handles continuity
between traces by modeling local dependencies.
Heimer et al. (2007) use dynamic programming
to constrain multichannel blind seismic deconvo-
lution such that reflections must form continuous
paths across consecutive traces, representing
consistent layers in the earth model. This method
is improved upon by Heimer et al. (2009) by
incorporating the Viterbi algorithm (Viterbi,
1967) for Markov-Bernoulli random field mod-
eling in place of the previous dynamic program-
ming algorithm, to allow layers to split, merge,
and terminate across traces. Dynamic program-
ming methods are also used by Liner and Clapp
(2004) to nonlinearly align seismic traces, and
the Viterbi algorithm is used by Clapp (2008)
to autopick seismic horizons.
In this paper, we propose a stochastic method,

using profile hidden Markov models (HMMs)
and the Viterbi algorithm (Durbin et al., 1998),
to resolve composite waveforms into their con-
stituent spike trains. This effectively poses the

sparse spike deconvolution problem as a pattern recognition prob-
lem. This method is adapted from the application of the Viterbi al-
gorithm to profile HMMs by Eddy (1995) to construct alignments
between, and aid in the identification of, evolutionarily related pro-
tein sequences. The Viterbi algorithm is used in the single-channel
deconvolution context of picking individual arrival traveltimes and
amplitudes. Unlike the other deconvolution algorithms outlined
above, the method presented here makes no implicit assumptions
about the distributions of traveltimes and amplitudes nor the phase
of the wavelet. However, in practice, the method is generally em-
ployed within a constrained solution space to mitigate the problem
of nonuniqueness and to bound the computation time. While the
algorithm does not provide updated estimates of the wavelet, it
is relatively insensitive to the types of errors expected in the practice
of source wavelet estimation, and it can be applied in cases in which
data are insufficient to generate meaningful statistics, such as a sin-
gle seismic trace. Unlike tuning curves, this method implicitly ac-
counts for noise and errors in the wavelet estimate, and its accuracy
degrades gracefully as noise levels and wavelet errors increase.

THEORY

Our goal is to analyze a composite waveform in a data trace spe-
cifically to determine the differential traveltimes and relative ampli-
tudes of the individual arrivals. Our ultimate goal is to deconstruct
the composite waveform into a spike train, where each spike is
aligned on the true arrival time with the correct amplitude of the
individual seismic arrivals that went into constructing the composite
waveform. To do this, we first define a solution space that consists
of a set of unique spike trains, where each spike train is an element
of the set containing all possible spike trains in the solution space.
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Figure 3. Seismic wedge models that demonstrate the effects of constructive and
destructive interference in band-limited seismic traces as the temporal separation of indi-
vidual arrivals decrease. (a) A seismic wedge model with uniform-polarity reflection
coefficients, representing three layers in which acoustic impedance increases with depth.
(b) A seismic wedge model with opposite-polarity reflection coefficients, representing a
high-impedance layer between two low-impedance layers.
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That is, each element consists of a unique collection of differential
traveltimes and relative amplitudes that could describe the composite
trace. From here on, we refer to one element in our set of spike trains
as a model. The goal is to determine which model best describes the
composite trace. One approach to solving this problem is to (1) build
a reference trace for each point in the solution space by convolving it
with a source wavelet, (2) find the best alignment between each
reference trace and the data trace using crosscorrelation, and (3) pick
the optimal solution throughminimizing a residual error norm on the
difference between the data trace and the reference traces.
The above algorithm may be a useful method to solve this prob-

lem, but it is not without challenges. For example, if an L2-norm is
used in the optimization step, the algorithm will not be strongly
affected by the presence of Gaussian-distributed random noise,
but it does not implicitly handle errors in the wavelet estimate.
The approach we propose here is similar to the above algorithm,
except that it uses stochastic models to represent the points in

our solution space. The proposed algorithm is: (1) Build a profile
HMM for each model in which a noise model and a wavelet esti-
mate are assumed at the onset. (2) For each profile HMM, use the
Viterbi algorithm to simultaneously find the optimal alignment to
the composite waveform and assign a log-likelihood score. Here,
the alignment may be nonlinear. (3) Extract traveltimes and ampli-
tudes from the alignment of the highest-scoring HMM.
The first step is to construct a profile HMM for each model,

which will be based on a synthetic trace obtained by convolving
the model spike train with the assumed wavelet estimate. A profile
HMM can be pictured as a finite state automaton such as the one
pictured in Figure 5. This is a simplified version of the Plan 7 HMM
architecture that Eddy (1995) introduces for analyzing protein se-
quences. Each of the nodes (diamonds and circles in Figure 5) rep-
resents a state, and each of the edges (arrows in Figure 5) represents
a possible state transition. Markov models represent a stochastic
process for generating sequences, which in this case, will be a se-
quence of samples constituting a seismic trace. In a Markov model,
each state emits a single value or token and the stochastic process is
represented by the random set of transitions between states. The
model is characterized by its states and by transition probabilities
between the states. The underlying stochastic process exhibits the
Markov property, which states that the conditional probability dis-
tribution of future states depends only on the current state, resulting
in a memoryless stochastic process. In an HMM, each state may
generate many different tokens based on a state-specific emission
probability distribution. The name is derived from the fact that the
actual state sequence that produced a given output is hidden and can
only be described in terms of probabilities, because many different
state sequences can produce the same output. The Viterbi algorithm
takes advantage of the Markov property, and it employs dynamic
programming to efficiently determine the most likely state sequence
for generating a specific output sequence with a specific HMM.
Our goal in using the HMM is to find the best nonlinear align-

ment between the composite waveform (our data) and a model in
our solution space. An alignment can be thought of as a unique path
traced through the state machine. The B and E states are for starting
and ending alignments; M1, M2, M3, M4, and M5 are match states,
and each one is associated with a sample from the model trace. Each
match state is characterized by a Gaussian distribution with the am-
plitude of the associated model trace sample defining the mean.
This Gaussian distribution over sample amplitudes represents the
implicit random noise model. I1, I2, I3, and I4 are insert states,
which allow multiple samples from the data trace to be aligned
to a single sample from the model trace. This, in effect, allows
the embedded wavelet to dilate. Insert states are also characterized
by a Gaussian distribution whose mean is the average of the two
surrounding match state means. D2, D3, and D4 are delete states,
which allow model samples to be skipped, effectively allowing the
embedded wavelet to contract. The dilation and contraction facili-
tated by the insert and delete states introduce a nonlinearity in align-
ment between the model and data that is not present in deterministic
convolutional models.
To demonstrate the alignment procedure, we refer to Figure 6.

Figure 6a shows a composite waveform derived from a candidate
model from our set of all possible models that may explain the data
trace shown in Figure 6b. One possible way to align the model and
data trace is shown in Figure 6c. Consulting Figure 5, we start at the
begin state (B) and proceed through the state machine as follows:
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Figure 4. (a) Apparent thickness and amplitude as a function of
event separation for two equal-amplitude uniform-polarity 25-Hz
Ricker wavelets. The two arrivals are not resolved below the
TR. (b) Apparent thickness and amplitude as a function of event
separation for two equal-amplitude opposite-polarity 25-Hz Ricker
wavelets. In this case, it is possible to detect both arrivals for all
separations; however, the apparent thickness is limited to TR.
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For this HMM, the first state is always a match state (M1), so we
match the first sample from the model trace to the first sample from
the data trace. From the M1 state, transitions exist to the I1, M2, and
D2 states. In this example, the transition goes to the M2 state, so we
match the second sample from the model trace to the second sample
of the data trace. In a similar manner, we next transition through the
M3, M4, and M5 states, matching the corresponding samples from
the model trace to the data trace. From the M5 state, we can only
transition to the end state (E) and we are finished. The end result
shown in Figure 6c just matches each sample from the model trace
to the data trace.
Another possible alignment is shown in Figure 6d. We start at the

begin state, and as before, we transition to the M1 state matching the
first sample from the data trace to the first sample of the model trace.
Then we transition to theM2 state matching the second sample from
the data trace to the second sample of the model trace. From the M2
state, we then transition to the D3 state, which means that the third
sample of the model trace is discarded. The M4 state follows, which
matches the third data sample to the fourth model sample. The
fourth data sample is also aligned to the fourth model sample
through the I4 state. Finally, the M5 state is traversed, matching
the fifth data and model samples, and the end state (E) once again
concludes the alignment.
The alignment in Figure 6e is similar to the one in Figure 6d. In

this case, the D2 state is traversed rather than the D3 state. From
visual inspection, the alignment of Figure 6d does a better job
matching amplitudes than the alignment in Figure 6e. When com-
paring the alignments from Figure 6c and 6d, it is clear that the
amplitudes are more closely matched for the four match states trav-
ersed in Figure 6d than they are in Figure 6c. For this reason, the
alignment of Figure 6d may be considered the best qualitatively.
The quantitative selection of the best alignment, however, will de-
pend on the HMM parameterization as described below.
The next step in our procedure is to use the Viterbi algorithm to

find the optimal alignment between a composite waveform in a data
trace and a candidate model, which can be described by a sequence
of states traced through the HMM. The Viterbi algorithm uses dy-
namic programming to determine the solution in OðN ×MÞ oper-
ations, where M is the number of states in the HMM (for example,
in Figure 5, this HMM has 14 states) and N is the number of sam-
ples in a data trace.
The optimal alignment is defined as the alignment that maxi-

mizes the following probability:

PπðdatajmodelÞ ¼ Πiaπklg
π
l ðdiÞ; (1)

where i is a sample index for the data trace, di is a sample of the data
trace, akl is a transition probability associated with transitioning
from state k to l, and gl is a state-dependent probability distribution
that determines how likely it is to observe the value of di in a given
state. The state integer π represents a specific state sequence that
determines the values of k and l. The optimal state sequence π�

maximizes the probability of fit between the data and the model
and determines the optimal alignment.
The matrix akl determines the probability of transitioning from

any given state k to any other state l. For a profile HMM, most
values of this matrix are zero, and the nonzero components corre-
spond to the edges in the state machine graph. Typically, transitions
to match states are assigned higher probabilities than transitions to
insert and delete states, which have the effect of penalizing wavelet
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Figure 6. (a) A model trace used to build an HMM represented as a
stem plot. (b) A data trace that is to be aligned to the model trace. (c,
d, e) Three examples of alignments between the data and model
traces. In each panel, the green and blue stems correspond to
samples from the model and data trace, respectively.
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Figure 5. The profile HMM used for waveform analysis pictured as
a finite state automaton.
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dilation and contraction. Formal training algorithms exist that can
optimize the values of akl given sufficient training data; however,
the existence of adequate training data and overspecialization of the
HMM to the training data are problematic. We have found empiri-
cally that match state transition probabilities of approximately 0.5
and insert/delete transition probabilities of approximately 0.25 work
well in most cases. These probabilities can be fine-tuned if more or
less contraction/dilation is desired. There is an interplay between
transition and emission probabilities, but having match transitions
approximately twice as likely as insert/delete transitions will pro-
vide for one or two samples of dilation or contraction where needed,
without distorting the underlying wavelet beyond recognition. Each
match and insert state has associated with it an emission probability
distribution gl. The mean of each state-dependent emission distri-
bution is set to the amplitude of the associated model trace sample.
Representing model trace sample amplitudes with Gaussian distri-
butions accounts for random noise and errors in the wavelet esti-
mate. The standard deviation of the amplitude distributions is set
as a run-time parameter. The standard deviations should be in-
versely proportional to the S/N of the data trace because amplitude
differences are penalized more harshly as the standard deviation
shrinks.
For computational efficiency, the model and data traces are con-

verted to an integer representation, and discrete probability mass
functions are used in the HMM to limit the solution space. Also,
computation of equation 1 is subject to numeric underflow because
it involves the multiplication of many small probabilities. For this
reason, the computations are carried out in a logarithmic space.
More specifically, log-odds scores are calculated as a proxy for
the probability in equation 1, and are defined as

SðdatajmodelÞ ¼ log

�
PðdatajmodelÞ
PðdatajWÞ

�
; (2)

where W is a white-noise model. In this logarithmic computation
space, the optimal alignment represents the path through the
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Figure 7. In each panel, the black trace is an example composite
waveform (Figure 1) used to demonstrate the VSSD technique.
(a) Manual picks for the three arrivals are shown as dashed orange
lines, whereas true arrival times and amplitudes are represented by
blue lines. (b) Viterbi picks (red lines) using the correct 25-Hz
Ricker wavelet. (c) Viterbi picks using a 30-Hz Ricker wavelet.
(b and c) Green waveforms represent the means of the emission
distributions for all match and insert states traversed in the optimal
alignments.
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Figure 8. The behavior of the VSSD algorithm for solution spaces
characterized by different numbers of arrivals is demonstrated by
matching a composite waveform with five arrivals with models
comprising one to seven arrivals. The black trace is the composite
waveform consisting of five arrivals whose traveltimes and ampli-
tudes are indicated by the blue spikes. Each of the lower panels
displays the VSSD results and their log-odds scores for an increas-
ing number of arrivals. In each panel, the red spike indicates the best
fit arrival(s) and the green trace represents the modeled trace. Note
that the relative amplitudes of the sixth and seventh (red circle)
arrivals are very close to zero and that their inclusion does not sig-
nificantly improve the waveform fit.
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HMM that generates the data trace with the highest possible log-
odds score. The log-odds score is a ratio of the likelihood of a given
model producing a given data trace over the likelihood of a random
model producing the data trace.
Referring back to Figure 6, the alignment in Figure 6c may be

optimal if the HMM parameterization penalizes dilation and con-
traction (insert and delete states) more than amplitude errors (am-
plitude distributions). Conversely, the alignment in Figure 6d may
be optimal if amplitude errors are penalized more than dilation and
contraction.
Once the optimal log-odds score has been calculated for each

model, the model with the highest score is chosen. This brings
us to the final step in our procedure, which is to determine the am-
plitudes and differential traveltimes of our arrivals. The amplitudes
are immediately available from the model parameters, and the
arrival times of each event can be calculated by analyzing the op-
timal state path to determine the relative position of match states
corresponding to each model spike.
The nonlinear alignment provided by the Viterbi algorithm is the

key to this method’s ability to work in the presence of noise and
with imperfect knowledge of the source wavelet. Through the insert
and delete states, the constituent wavelets are allowed to dilate and
contract, which compensates for errors in the wavelet phase and
amplitude spectra in tandem with random noise when combined
with the Gaussian noise model. This ability is crucial to waveform
analysis because wavelet estimates are never exact and wavelets in
recorded seismograms are inherently nonstationary. This capability
also enables interpretation of thin beds in depth-migrated images, in
which the dominant wavelength of the embedded wavelet will
change as a function of velocity. The construction of a profile
HMM using a wavelet estimate and a Gaussian
noise model is discussed below.
As an example, we analyze the composite

waveform introduced in Figure 1. The composite
waveform (black trace, Figure 7a) was created by
convolving a 25-Hz Ricker wavelet with the
spike train shown in blue. In this case, guided
by our prior knowledge, we select an initial sol-
ution space consisting of three spikes. That is, for
the composite waveform, we find the model that
best reproduces the composite waveform using
three arrivals. For reference, Figure 7a displays
possible manual picks (dashed orange lines)
for this composite trace. Figure 7b shows the
result obtained through our proposed technique
with the correct source wavelet. The dashed
red lines show the spike train that the Viterbi
process has determined to be the best model.
As expected, in this case, we recover the ampli-
tude and relative timing information exactly be-
cause we knew exactly how many arrivals we
should search for and had perfect knowledge
of the source. The green line in Figure 7b repre-
sents the aligned model waveform, which com-
prises the means of all match and insert states
traversed in the optimal state path. It is notable
that the technique is capable of properly deter-
mining the amplitude and timing of these arrivals
in which there is strong constructive/destructive

interference. However, precise prior knowledge of the source wave-
let is usually not available. Figure 7c shows an example using our
method with a 30-Hz source wavelet. Even though we use the in-
correct wavelet, the traveltime and amplitudes recovered are still
better than those picked manually. Note that the green waveform
in Figure 7c contains discontinuities due to traversing insert states.
This simple example demonstrates the utility of our proposed tech-
nique in determining arrival time and amplitude information for a
composite wavelet with overlapping arrivals.
The number of arrivals modeled is a key parameter of the can-

didate solution space. Figure 8 demonstrates the behavior of the
VSSD algorithm for different numbers of modeled arrivals. The first
trace in Figure 8 illustrates a synthetic waveform composed of five
arrivals. The true amplitudes and traveltimes are depicted by the
blue lines. The subsequent traces show VSSD results for model
spaces containing one to seven arrivals, along with the log-odds
scores. When only one arrival is allowed, only a portion of the
waveform is matched (the score only reflects the portion of the
waveform matched). Allowing for two arrivals increases the portion
of the waveform that is matched, but three arrivals are needed to
cover the entire duration of the waveform. Note, however, that
the log-odds score actually decreases when going from two arrivals
to three arrivals. Despite the fact that more match states are trav-
ersed, the amplitude discrepancies are larger in the three-arrival re-
sult for this example. The four-arrival result increases the fidelity of
the fit as well as the log-odds score. The five-arrival result provides
a near-perfect fit. Increasing the number of modeled arrivals beyond
five in this example does not change the result in a significant way,
as the bottom two traces in Figure 8 demonstrate. The sixth and
seventh picked arrivals represent spurious low-amplitude events,
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Figure 9. (a) Uniform-polarity wedge model (black curves and spikes) with Viterbi
waveforms (blue traces) and picks (red spikes) overlain. The blue curves represent
the Viterbi-aligned waveforms corresponding to the means of amplitude distributions
for traversed match and insert states. The red spikes represent the amplitudes and trav-
eltimes of the Viterbi-aligned spike train. (b) The same as (a) with the addition of band-
limited random noise.
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which are essentially fitting quantization errors from the conversion
from the floating point to integer representations of the input trace.
The amplitude of the seventh event (red circle) is so low that it is not
visible in the figure.
Within a small window, an arbitrary number of arrivals may be

modeled if the amplitudes for any given arrival are allowed to be
zero. As the number of arrivals grows, the solution space grows
exponentially, and it may become computationally unfeasible. To
mitigate this problem, the method is generally applied in a series
of small, overlapping windows in which only a small number of
arrivals are modeled. Regularization may be applied by enforcing
consistency of the results within the window overlaps. The problem
of nonuniqueness can either be mitigated with a priori knowledge
about the distribution of expected arrivals (e.g., by using impedance
logs) or by penalizing results that do not show lateral consistency as
interference patterns evolve across traces. The VSSD method may
be used to tie well logs to seismic data in time or in depth because
the nonlinear alignment can accommodate velocity dependent dom-
inant wavelengths in the source function. The VSSD method may
also be used to extend interpretations away from a well. In what

follows, we show how this technique can be applied to determining
bed thickness and arrival amplitude for wedge models similar to
those in the Introduction.

RESOLUTION TESTS

To examine the effectiveness of the Viterbi technique in deter-
mining arrival time and amplitude information for overlapping
waveforms, we apply it to synthetic seismograms created for wedge
models similar to those introduced in the Introduction. The advan-
tage of analyzing the wedge models is that we can systematically
examine amplitudes and differential traveltimes of arrivals through
a steady variation in overlap of the arrival wavelets. First, we
examine uniform-polarity wedge models, and then we examine
the mixed-polarity case.

Uniform-polarity wedge models

A uniform-polarity wedge model is generated with zero-offset
reflection coefficients for the upper and lower interfaces set at a
constant ratio of 0.8 (see the “Introduction” section for further

description on the basic design of the wedge
models). That is, if we normalize the reflection
coefficient of the upper interface to 1.0, then
the lower interface has a normalized reflection
coefficient of 0.8. The synthetic traces are con-
structed through convolution with a 25-Hz
Ricker wavelet with a 15° phase rotation. A sec-
ond set of synthetic traces is constructed with the
addition of band-limited random noise with an
S/N of 10. The nonuniform reflection coeffi-
cients, deviations from zero-phase, and the addi-
tion of random noise are intended to simulate
real-world conditions more realistically.
Figure 9a shows the noise-free uniform-

polarity wedge model waveforms (black traces)
and spikes representing the true arrival times and
amplitudes (black spikes), overlain by VSSD
waveforms (blue traces) and VSSD spikes (red
spikes). A common problem in deconvolution is
that accurate information about the source time
function is not always known. In this example,
we use a 25-Hz, 15° phase-rotated wavelet,
which is the correct source time function. When
using the correct source, the Viterbi method pro-
vides almost-perfect traveltime variation all of
the way down to the thinnest portion of the
wedge. The largest deviations from the true
thicknesses are 2 ms (5% of the dominant wave-
length) at the smallest separation of the wedge
model (at 2 and 4 ms differential two-way times;
see Figure 9a). Figure 9b shows the results for
the same uniform wedge model with the addition
of band-limited random noise. The addition of
the random noise increases the misfit between
true arrival times (black spikes) and VSSD-
picked arrival times (red spikes), but the maxi-
mum error has only increased to 3 ms or 7.5%
of the dominant wavelength.
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Figure 10. (a) Manual thickness and amplitude picks for the uniform-polarity wedge
model. The blue line represents picked bed thickness, the red line represents picked
amplitudes for the top interface, and the green line represents picked amplitudes for
the lower interface. (b) The same as (a) except with the addition of band-limited random
noise. (c) Viterbi thickness and amplitude picks using the correct 25-Hz, 15° phase-
rotated wavelet. (d) The same as (c) except with the addition of band-limited random
noise.
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In Figure 10a, we show thicknesses and amplitudes from man-
ually picked arrivals for the noise-free case. The blue line represents
two-way thickness, while the red and green lines represent ampli-
tudes for the upper and lower interfaces, respectively. Because two
separate arrivals are not resolved below TR, the amplitude of the
upper interface arrival increases significantly. Figure 10b shows
the manual picks for the noisy uniform-polarity wedge model. In
this case, the two separate arrivals are only resolved down to
b∕2 and the amplitude of the upper-layer arrival is not accurately
recovered even at the largest thicknesses of the wedge model.
In Figure 10c, we summarize results from the VSSD-picked

thicknesses and amplitudes, corresponding to the red spikes in
Figure 8a. The two events are clearly resolved for all thicknesses,
and amplitudes are also reasonably well estimated for all thick-
nesses. The quality of the thickness estimate degrades slightly in
the neighborhood of b∕2 and TR, but it is still much better than
that obtained from manual picks. Figure 10d shows the VSSD picks
for the noisy wedge model. Both events remain resolved for all
thicknesses. The thickness is also recovered in the thinnest region
of the wedge (2-ms two-way thickness). There is more scatter in the
amplitude measurements, but there is no spike in amplitude for the
upper-layer amplitude as is seen in the manually
picked case.

Mixed-polarity wedge models

A mixed-polarity wedge model is generated
with zero-offset reflection coefficients for the
upper and lower interfaces set at a constant ratio
of −0.8. That is, if we normalize the reflection
coefficient of the upper interface to 1.0, then
the lower interface has a normalized reflection
coefficient of −0.8. Once again, the synthetic
traces are constructed through convolution with
a 25-Hz Ricker wavelet with a 15° phase rotation,
and a second set of synthetic traces is constructed
with the addition of band-limited random noise.
In Figure 11a, we show thicknesses and ampli-

tudes from manually picked arrivals for the
noise-free case. Once again, the blue line repre-
sents two-way thickness, while the red and
green lines represent amplitudes for the upper
and lower interfaces, respectively. Unlike the
uniform-polarity case, the two separate arrivals
are resolved below TR, but the thickness is over-
estimated as the two wavelets merge into an
approximation of the first derivative of the
wavelet (Widess, 1973). Also, the amplitudes
of the two events become indistinguishable
before b∕2 is reached. Figure 11b shows the
manual picks for the noisy uniform-polarity
wedge model. The effect of the noise is primarily
manifested in additional scatter in the ampli-
tude picks.
In Figure 11c, we summarize results from the

VSSD-picked thicknesses and amplitudes. The
two events are clearly resolved for all thicknesses
with much greater fidelity below TR than is the
case using manual picks. The amplitude picks are
nearly perfect except for a small region around

Widess’ b∕8 criteria (Widess, 1973), where the combined wavelet
approximates the first derivative. Figure 11d shows the VSSD picks
for the noisy wedge model. These picks have the same general char-
acteristics as the noise-free picks; however, noise has introduced
scatter into the amplitude and thickness estimates.

Sensitivity to errors in the wavelet phase,
wavelet frequency, and random noise

Because we would typically not expect to have an exact wavelet
with which to perform our analysis, the sensitivity of the VSSD
technique to errors in the wavelet estimate is explored with a suite
of different Ricker wavelets. To test the method’s sensitivity to fre-
quency content, 15 wavelets with peak frequencies equally spaced
between 18 and 32 Hz, representing errors of �7 Hz, and with the
correct 15° phase rotation were used. This range of frequency con-
tent represents a 39% increase in the dominant wavelength on the
low end and a 22% decrease in the dominant wavelength on the high
end. Twenty-one wavelets with the correct peak frequency and
phase rotations equally spaced between −35° and 65°, representing
phase errors of �50°, were used to test the method’s sensitivity to
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Figure 11. (a) Manual thickness and amplitude picks for the mixed-polarity wedge
model. The blue line represents picked bed thickness, the red line represents picked
amplitudes for the top interface, and the green line represents picked amplitudes for
the lower interface. (b) The same as (a) except with the addition of band-limited random
noise. (c) Viterbi thickness and amplitude picks using the correct 25-Hz, 15° phase-
shifted wavelet. (d) The same as (c) except with the addition of band-limited random
noise.
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phase. The VSSD method begins to degrade for errors in phase and
frequency content outside of these selected ranges, so that the two
events are not consistently resolved for all thicknesses. However,
the selected range of parameters provides an ample test suite span-
ning a larger range of errors than would typically be expected in a
wavelet estimate. VSSD analysis was carried out separately for each
of the 36 candidate wavelets for the noise-free and noisy uniform-
polarity wedge models in Figure 9.
Figure 12 shows the VSSD-determined thicknesses for each of

our test cases varying frequency, phase, and additive noise. Results
for the 15 test wavelets with varying frequency content are shown in
Figure 12a in the absence of noise. The color bar indicates the
departure from the correct peak frequency of 25 Hz. The lower-
frequency wavelets tend to underestimate the thickness slightly,
while the higher-frequency wavelets tend to overestimate the thick-
ness slightly, with a reversal of this general trend in the vicinity of
TR and b∕2 (i.e., between two-way thicknesses 13.33 and
15.38 ms). Wavelet contraction (delete states) tends to pull the

center of the individual arrivals together when the frequency content
is erroneously low, whereas wavelet dilation (insert states) tends to
push the arrivals apart when the frequency content is erroneously
high. The reversal of the trend between 12 and 22 ms is due to the
effects of destructive interference between main and side lobes. The
largest measured errors are 6 ms, with the errors being within 4 ms
for all thickness greater than 8 ms. The addition of noise shows the
same general trends as displayed in the noise-free model. However,
the departure from true thickness is somewhat larger than in the
noise-free model, showing that the addition of noise has a larger ef-
fect than the frequency content of the wavelet on thickness estimates.
The sensitivity to wavelet phase on thickness measurements is

demonstrated in Figure 12b. This shows that thickness estimates
are essentially insensitive to phase errors within the �50° range.
One outlier, an 8-ms error corresponding to a 35° phase rotation,
indicates the beginning of a departure from acceptable phase errors.
For phase rotations larger than�50°, the wavelet shape has departed
significantly enough from the true wavelet such that the algorithm
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cannot accurately account for the effects of constructive and de-
structive interference across the entire range of differential travel-
times. The addition of noise slightly increases the error in thickness
estimates, but it does not introduce a large departure from the noise-
free case.
Figure 12d and 12e demonstrates the sensitivity of relative am-

plitude estimates to frequency content and phase rotation for the
noise-free models. The value plotted for each wavelet is the ratio
of the two picked amplitudes where the correct amplitude ratio
is 0.8. Here, the sensitivities are reversed from those of thickness
estimates. That is, when examining the thickness estimates, we ob-
served that the measurements were less sensitive to differences in
the wavelet phase than they were to differences in the frequency
content. No clear dependence on frequency content can be inferred.
That is, errors in amplitude ratio measurements for the noise-free
and noisy case show deviations with no systematic trend with
respect to wavelet frequency. Yet, phase errors demonstrate clear
trends. Negative phase rotations (Figure 12e) tend to overestimate
the amplitude ratio, while positive rotations tend to underestimate
the ratio. This trend reverses in the 12–22-ms region, as was also
noted in the frequency-dependent thickness estimates. The phase
dependence of the amplitude estimates can be understood intui-
tively by considering the manner in which the shape of a wavelet
changes as successively larger phase rotations are applied. Negative
phase rotations tend to front load the energy in the wavelet, while
positive phase rotations tend to back load the energy. For positive
phase rotations at thicknesses below 12 ms, the back loading of
energy gives more weight to the first arrival as the two wavelets
constructively interfere. In the anomalous region between 12 and
22 ms, the opposite is true, as the back-loaded energy in the first
arrival undergoes destructive interference. The addition of noise has
more devastating effects on amplitude ratio measurements than on
thickness estimates.
Figure 12c demonstrates the sensitivity of traveltime picks to dif-

ferent levels of random noise. In this case, the correct wavelet was
used and the S/N varied from 5 to 15. The differential traveltime
errors are within 4 ms, showing that the traveltimes are generally
insensitive to the inclusion of random noise. However, at an S/N
of five, a couple of the events are not correctly resolved, as indicated
by the red lines that leave the area of the plot. In this case, a visual
analysis of the waveforms would also give an erroneous interpre-
tation. Figure 12f shows the sensitivity of amplitude picks to ran-
dom noise. This result shows that the amplitude estimates are more
sensitive to random noise than they are to wavelet errors in either
phase or frequency, for all thicknesses. From these observations,
one can infer that traveltime estimates are much more robust than
amplitude estimates, especially in the presence of noise.

APPLICATION OF VSSD METHOD

We have presented the VSSD method for picking seismic arrival
times and amplitudes. In certain cases, the VSSD method can re-
solve these arrivals below the standard resolution limits. In the pre-
vious section, we analyzed the sensitivity of this technique using a
variable-thickness wedge model and synthetic seismograms. Here,
we show the utility of this method with field data.
Our example demonstrates the application of the method at the

exploration scale and comes from the Teapot Dome Oilfield. Teapot
Dome is located ∼35 miles north of Casper, Wyoming, on Naval
Petroleum Reserve No. 3. The field has a long history of production

dating back to the early 1900s, and it is currently used as a testing
center for emerging technologies. Figure 13a shows an extraction of
crossline 123 from a time-migrated 3D seismic cube provided by
the Rocky Mountain Oilfield Testing Center (http://www.rmotc.doe
.gov/datasets.html). Reflections in the analysis window are bounded
by large, consistent arrivals (indicated by gray curves in Figure 13a).
However, the central reflections exhibit substantial lateral variation
due to subtle variations in bed thickness. The primary observations
are as follows: (1) a pair of lower amplitude peaks visible just after
the first large peak between inlines 75 and 88 that merges into a
single peak as the inline number increases (feature is highlighted
with dashed red lines), (2) increasing complexity of the preceding
trough as the inline number increases (highlighted with a dashed
green line), and (3) the third central peak is clearly visible in the
lower inlines, but it diminishes by inline 108 (indicated with a
dashed blue line). Here, we use the VSSD method to explore
the subtle variations in these arrivals.
To use the VSSD technique, we must first choose an appropriate

source time function. A wavelet estimate was obtained by aligning
and stacking multiple traces along a set of consistent regional hori-
zons. The results of our analysis are shown in Figure 13b for every
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Figure 13. (a) A windowed portion of crossline 123 from the
Teapot Dome 3D time-migrated data set. The gray lines indicate
the VSSD analysis window. The dashed green, red, and blue lines
indicate lateral variations in waveform character of particular inter-
est. (b) VSSD picks (red lines) and reconstructed waveforms (blue
curves) for every fourth trace. The VSSD method identified 10
arrivals (numbered on inline 84) with good lateral consistency
across the section.
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fourth trace from inlines 84–120. The method identifies 10 consis-
tent reflectors that are numbered from 1 to 10 starting from the top
and labeled for inline 84 in Figure 13b. One exception is the failure
to resolve events 1 and 2 on inline 108. This means that the highest
scoring alignment for that trace skipped several match states corre-
sponding to these two arrivals. At either end of the analysis window,
there remain constructive and destructive interference from neigh-
boring events that are not considered. It is likely that the preceding
events would need to be considered by expanding the analysis win-
dow to properly resolve events 1 and 2 on inline 108. The results
corresponding to the primary observations of lateral inhomogeneity
are discussed below.

• The two peaks highlighted by red dashed lines in Figure 13a
correspond to arrivals 5 and 6 in Figure 13b (dashed-dotted
line). The two peaks, clearly visible at inline 84, merge into
a single arrival as the inline number increases, much like
the wedge models from the Introduction. The VSSD picks
show a small thinning trend as the inline number increases,
but not as much as would be expected from a visual inspection
of the waveform.

• Note, however, that the trough that precedes arrivals 5 and 6
(green dashed line in Figure 13a) corresponding to arrivals 3
and 4 in Figure 13b (solid gray lines) shows a thickening trend
over this same lateral window. The result implies that the in-
terference of all these arrivals produces a waveform that vis-
ually exaggerates the thinning of the bed bounded by arrivals
5 and 6. The combination of these four arrivals consistently
matches the data across the range of inlines, indicating sedi-
mentary beds with slight lateral thickness variations.

• The disappearing peak (blue dashed line in Figure 13a) cor-
responds to the zone of waveform interference between
arrivals 7 (dashed gray line in Figure 13b) and 8. On the left
side of the section, the peak correlates more strongly with

arrival 7. By inline 96, the peak occurs between arrivals 7
and 8. As the inline number increases, the peak itself disap-
pears, yet arrivals 7 and 8 remain with consistent polarities
and relatively consistent amplitudes. One exception is the
amplitude of arrival 8 on inline 88, which appears to be over-
estimated. This is likely due to strong constructive interfer-
ence from arrivals 9 and 10. This amplitude may be better
resolved by lengthening the analysis window.

Overall, the VSSD method, applied separately to each individual
trace, has produced spike trains that match the data well while dem-
onstrating a good degree of lateral consistency, despite the fact that
there were no constraints promoting lateral consistency between
traces. This improves our confidence in the VSSD method as a tool
for thin-bed interpretation.

DISCUSSION

We have analyzed the sensitivity of the VSSD technique to var-
iations in bed thickness, measuring apparent thickness and the am-
plitude ratio of arrivals reflecting off the layers. In addition, we
added noise and source wavelet frequency and phase distortions.
Table 1 summarizes the results from these tests. The apparent trends
from Table 1 are

• Thickness estimates are relatively insensitive to errors in
wavelet phase.

• When only random noise and frequency content are consid-
ered, amplitude estimates tend to be slightly more robust for
mixed-polarity events.

• Amplitude estimates tend to be equally sensitive to random
noise and large phase errors.

• Thickness estimates are much more robust than amplitude
estimates.

Table 1. Results of the sensitivity of the VSSD technique to wavelet errors and random noise.

Uniform-polarity wedge models Mixed-polarity wedge models

Noise Δf (Hz) Δφ (°) Max error (%) Noise Δf (Hz) Δφ (°) Max error (%)

Thickness measurements as a percentage of dominant wavelength

No 0 0 5 No 0 0 5

Yes 0 0 5 Yes 0 0 5

No �7 0 10 No �7 0 12.5

Yes �7 0 15 Yes �7 0 15

No 0 �50 5 No 0 �50 5

Yes 0 �50 10 Yes 0 �50 7.5

Amplitude ratio measurements

No 0 0 21 No 0 0 9

Yes 0 0 64 Yes 0 0 27

No �7 0 25 No �7 0 15

Yes �7 0 64 Yes �7 0 45

No 0 �50 62 No 0 �50 64

Yes 0 �50 64 Yes 0 �50 64
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The VSSD technique is a versatile tool that provides accurate
timing and amplitude information for seismic arrivals when these
arrivals are nearly overlapping. However, this technique is not a
blind-deconvolution method. That is, the method requires a priori
knowledge about (1) the source wavelet and (2) the number of
expected arrivals within the time window of interest.
With respect to the first point, the analyses in the section Reso-

lution Tests primarily show the sensitivity of this technique with
respect to errors in our knowledge of the seismic source. In explo-
ration seismology applications, the source function is generally
known well enough to be adequate for the VSSD method. For
applications in earthquake seismology, we often do not have de-
tailed knowledge of the source time function. However, empirical
source time functions can be generated to alleviate this problem. For
example, it is possible to stack reference seismic phases to build an
empirical source time function (e.g., Thorne and Garnero, 2004).
With respect to the second point, precise knowledge of the num-

ber of arrivals within our time window is not necessary. In practice,
we know the approximate number of expected arrivals. One can
either test different numbers of arrivals, comparing log-odds scores
and the quality of the waveform match, or one can allow the
amplitudes of arrivals to be zero, which will explicitly search over
multiple numbers of arrivals in a single experiment. Blocked imped-
ance models derived from well logs present an excellent source of
information to constrain the solution space. This method could be
used to perform nonlinear seismic-well ties in either time or depth.
Figures in this paper were drawn using the Generic Mapping

Tools (http://gmt.soest.hawaii.edu/; Wessel and Smith, 1998).

CONCLUSIONS

We have presented a stochastic method to decompose individual
seismic traces into sparse spike trains describing the traveltimes and
relative amplitudes of individual arrivals comprising band-limited
signals. The method has been shown to have resolving power below
Rayleigh’s and Ricker’s criteria under appropriate conditions. It has
also been shown that estimated traveltimes are relatively insensitive
to random noise and errors in the source time function estimate. No
assumptions are made regarding the distribution of traveltimes and
amplitudes; however, interpreted information can be used to limit
the solution space. Application to field data has shown that single-
channel sparse spike detection produces results with good lateral
consistency. This technique shows promise in targeted exploration
scale interpretation, and it may provide an alternative method of
tying seismic images to well logs. Further applications may include
decomposing overlapping pre- and postcursor teleseismic phases
into individual arrivals or improving arrival time measurements
in earthquake location or seismic tomography problems.
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