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ABSTRACT

Accurate interpretation of seismic travel times and amplitudes in both the 

exploration and global scales is complicated by the band-limited nature of seismic data. 

We present a stochastic method, Viterbi sparse spike detection (VSSD), to reduce a 

seismic waveform into a most probable constituent spike train. Model waveforms are 

constructed from a set of candidate spike trains convolved with a source wavelet 

estimate. For each model waveform, a profile hidden Markov model (HMM) is 

constructed to represent the waveform as a stochastic generative model with a linear 

topology corresponding to a sequence of samples. The Viterbi algorithm is employed to 

simultaneously find the optimal nonlinear alignment between a model waveform and the 

seismic data, and to assign a score to each candidate spike train. The most probable 

travel times and amplitudes are inferred from the alignments of the highest scoring 

models. Our analyses show that the method can resolve closely spaced arrivals below 

traditional resolution limits and that travel time estimates are robust in the presence of 

random noise and source wavelet errors.

We applied the VSSD method to constrain the elastic properties of a ultralow- 

velocity zone (ULVZ) at the core-mantle boundary beneath the Coral Sea. We analyzed 

vertical component short period ScP waveforms for 16 earthquakes occurring in the 

Tonga-Fiji trench recorded at the Alice Springs Array (ASAR) in central Australia. 

These waveforms show strong pre and postcursory seismic arrivals consistent with



ULVZ layering. We used the VSSD method to measure differential travel-times and 

amplitudes of the post-cursor arrival ScSP and the precursor arrival SPcP relative to ScP. 

We compare our measurements to a database of approximately 340,000 synthetic 

seismograms finding that these data are best fit by a ULVZ model with an S-wave 

velocity reduction of 24%, a P-wave velocity reduction of 23%, a thickness of 8.5 km, 

and a density increase of 6%. We simultaneously constrain both P- and S-wave velocity 

reductions as a 1:1 ratio inside this ULVZ. This 1:1 ratio is not consistent with a partial 

melt origin to ULVZs. Rather, we demonstrate that a compositional origin is more likely.
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CHAPTER 1

INTRODUCTION

The bandlimited nature of seismic data obscures details of individual arrivals. Above 

the resolution limit, constructive and destructive interference between closely spaced 

arrivals distorts apparent travel times and amplitudes. Below the resolution limit, the 

reflection response of individual layers merge into an effective media response. In order 

to more accurately estimate travel times and amplitudes, and to push existing resolution 

limits, the effects of interference between closely spaced arrivals must be unraveled. 

Traditional deconvolution can enhance resolution by shaping the underlying wavelet, but 

cannot add frequency content (which was not recorded). Sparse spike deconvolution 

methods, which are reviewed in Chapter 2, attempt to decompose a bandlimited seismic 

record into a constituent spike train representing the differential travel times and relative 

amplitudes of all resolvable arrivals. In this dissertation I present a stochastic method, 

Viterbi sparse spike detection (VSSD), which predicts the most likely spike train and 

explains a bandlimited seismic record given an approximate source time function 

estimate.



1.1 Technical Contributions 

The VSSD method is introduced in Chapter 2. The theoretical framework, which 

borrows ideas from biological sequence analysis, and the algorithmic details are 

presented. Seismic wedge models are used to demonstrate that the method can resolve 

closely spaced arrivals below traditional resolution limits. An analysis of the method’s 

sensitivity to noise and errors in the source wavelet estimate is also presented. The results 

demonstrate that travel time estimates are robust in the presence of random noise and 

source wavelet errors, and reasonable expectations for the fidelity of relative amplitude 

picks are established. The method is particularly well suited to fine-scale interpretation 

problems such as thin bed interpretation, tying seismic images to well logs, and the 

analysis of anomalous waveforms in global seismology. As an example, the method is 

applied to interpret thin layers in the Teapot Dome oilfield.

In Chapter 3, the VSSD method is applied to constrain the elastic properties of a 

ultralow-velocity zone (ULVZ) at the core-mantle boundary beneath the Coral Sea. The 

dataset analyzed consists of vertical component short period ScP waveforms for 16 

earthquakes occurring in the Tonga-Fiji trench recorded at the Alice Springs Array 

(ASAR) in central Australia, which show strong pre and postcursory seismic arrivals 

consistent with ULVZ layering. The direct P-wave arrival is windowed and tapered to 

provide a source time function estimate. We used the VSSD method to measure 

differential travel-times and amplitudes of the postcursor arrival ScSP and the precursor 

arrival SPcP relative to ScP. The nonlinear nature of the VSSD method, which allows 

the underlying source time function to dilate and contract, is able to account for the 

increased attenuation in the ScP waveform versus the P-wave based source estimate. The

2



measurements were compared to a database of approximately 340,000 synthetic 

seismograms. The measured differential travel times and relative amplitudes of SPcP and 

ScSP were used to define Gaussian distributions with which the likelihood of synthetic 

models was determined. Our results show that these data are best fit by a ULVZ model 

with an S-wave velocity reduction of 24%, a P-wave velocity reduction of 23%, a 

thickness of 8.5 km, and a density increase of 6%. We simultaneously constrain both P- 

and S-wave velocity reductions as a 1:1 ratio inside this ULVZ, which is consistent with a 

compositional origin to ULVZs.

3



CHAPTER 2

VITERBI SPARSE SPIKE DETECTION

Reprinted with permission from Society of Exploration Geophysicists. Brown, S. P., and 

M. S. Thorne (2013), Viterbi sparse spike detection, Geophysics, 78(4), V157-V169,

doi :10.1190/GEO2012-0209.1.
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GEOPHYSICS, VOL. 78. NO. 4 (JULY-AUGUST 2013); P. V157-V169, 13 FIGS., 1 TABLE. 
10.119Q/GE02012-0209.1

Viterbi sparse spike detection

Samuel P. Brown1 and Michael S. Thorne2

ABSTRACT

Accurate interpretation of seismic traveltimes and amplitudes 
in the exploration and global scales is complicated by the 
band-limited nature of seismic data. We discovered a stochastic 
method to reduce a seismic waveform into a most probable con­
stituent spike train. Model waveforms were constructed from a 
set of candidate spike trains convolved with a source wavelet 
estimate. For each model waveform, a profile hidden Markov 
model (HMM) was constructed to represent the waveform as 
a stochastic generative model with a linear topology correspond­
ing to a sequence of samples. Each match state in the HMM 
represented a sample in the model waveform, in which the 
amplitude was represented by a Gaussian distribution. Insert 
and delete states allowed the underlying source wavelet to 
dilate or contract, accounting for nonstationarity in the seismic 
data and errors in the source wavelet estimate. The Gaussian

distribution characterizing each sample’s amplitude accounted 
for random noise. The Viterbi algorithm was employed to simul­
taneously find the optimal nonlinear alignment between a model 
waveform and the seismic data and to assign a score to each 
candidate spike train. The most probable traveltimes and ampli­
tudes were inferred from the alignments of the highest scoring 
models. The method required no implicit assumptions regarding 
the distribution of traveltimes and amplitudes; however, in prac­
tice, the solution set may be limited to mitigate the nonunique­
ness of solutions and to reduce the computational effort. Our 
analyses found that the method can resolve closely spaced arriv­
als below traditional resolution limits and that traveltime esti­
mates are robust in the presence of random noise and source 
wavelet errors. The method was particularly well suited to 
fine-scale interpretation problems such as thin bed interpreta­
tion, tying seismic images to well logs, and the analysis of 
anomalous waveforms in global seismology.

INTRODUCTION

A problem of fundamental importance in all branches of seismol­
ogy is accurate traveltime and amplitude picking. However, the 
problem is generally complicated by a low signal-to-noise ratio 
(S/N) or constructive/destructive interference effects from band- 
limited wavelets. Figure 1 provides a simple illustration of this 
problem. The top three traces show individual arrivals consisting 
of 25-Hz Ricker wavelets scaled in amplitude and shifted in time. 
The lowermost trace shows the composite waveform obtained by 
summing the individual arrivals. Because these are zero phase 
wavelets, traveltimes and amplitudes can be estimated from picks 
at the locations of local amplitude maxima or minima at peaks or 
troughs. The black spikes in Figure 1 depict manually picked trav­
eltimes and amplitudes of the individual arrivals comprising the

composite waveform, whereas the gray spikes depict the actual trav­
eltimes and amplitudes. The traveltime is correctly picked for the 
first arrival, but destructive interference from the second arrival has 
led to an erroneously low amplitude pick. The second arrival pick 
has significant time and amplitude errors, and the third arrival pick 
has slight traveltime and amplitude errors. This simple noise-free 
example demonstrates how constructive and destructive interfer­
ence from overlapping wavelets complicates the picking process 
and can lead to erroneous traveltime and amplitude picks.

Accurate picking requires consideration of constructive and de­
structive interference from neighboring arrivals and noise. As the 
separation between individual arrivals decreases, the problem shifts 
from being one of picking accurate traveltimes and amplitudes to 
resolving the two separate arrivals. Figure 2 demonstrates the res­
olution criteria proposed by Rayleigh and Ricker (see Ricker,

Manuscript received by the Editor 13 June 2012; revised manuscript received 27 March 2013; published online 24 June 2013.
'Petroleum Geo-Services, Houston, Texas, USA and University of Utah, Department of Geology and Geophysics, Salt Lake City, Utah, USA. E-mail: samuel 

.brown@pgs.com
2University of Utah, Department of Geology and Geophysics, Salt Lake City, Utah, USA. E-mail: michael.thome@utah.edu.

© 2013 Society of Exploration Geophysicists. All rights reserved.
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1953). Figure 2a defines two metrics for a Ricker wavelet, which 
determine both resolution criteria. The wavelet breadth b is given as 
the distance between the maximum absolute amplitudes of the sym­
metric side lobes, while the temporal resolution limit (TR) (Kallweit 
and Wood, 1982) is the distance between inflection points on the 
central lobe. With sufficient separation, individual main-lobe peaks 
are visible and separate arrivals are easily resolved, as shown in 
Figure 2b. For two uniform-polarity events of equal amplitude, 
Rayleigh’s limit of resolution is reached when two wavelets are sep­
arated by b/2, or the peak-to-trough time. As Figure 2c illustrates, 
this is the minimum separation at which two distinct peaks are still 
visible in the composite waveform. The resolution limit was ex­
tended by Ricker to the smaller distance TR. At this separation, 
the composite wavelet no longer has two distinct peaks; however, 
the curvature at the central maximum is zero, resulting in a flat spot, 
as can be seen in Figure 2d.

Picking errors due to interference

Time (s)

Figure 1. The top three traces show individual 25-Hz Ricker wave­
lets. The lowermost trace shows a composite waveform consisting 
of the sum of the individual Ricker wavelets from the upper 
traces. The gray spikes represent actual arrival times and ampli­
tudes, while the black spikes represent manually picked arrival 
times and amplitudes.

Figure 2. Resolution criteria with decreasing wavelet separation for two uniform- 
polarity Ricker wavelets, (a) Definition of wavelet breadth b and TR (Kallweit and 
Wood, 1982) for a Ricker wavelet. The wavelet breadth is the distance between 
side-lobe troughs, while TR is the distance between inflection points on the central lobe. 
The separation between arrivals is sufficient that the events in (b) are clearly resolved, 
(c) Rayleigh’s criteria b /2  represents the limit of resolvability in which two distinct 
peaks remain, (d) A zero curvature-induced flat spot allows for event resolution at 
Ricker’s limit TR.

Resolution limits, as well as the effects of constructive and de­
structive interference on waveform character, can be visualized with 
a wedge model, as shown in Figure 3. The underlying earth model 
contains three layers, with impedance varying discretely with depth, 
such that the absolute value of the zero-offset reflection coefficients 
at each interface is equal. The thickness of the middle layer 
decreases from left to right, forming the wedge. The reflectivity 
caused by impedance contrasts is represented as a function of 
two-way traveltime by the spikes in Figure 3. Synthetic seismic 
traces representing an idealized zero-offset acquisition were created 
by convolving a 25-Hz Ricker wavelet with the reflectivity series. 
Figure 3a shows a case in which the reflection coefficient is positive 
at both interfaces, representing an increase in impedance with depth. 
Figure 3b presents a mixed-polarity wedge model. In this case, a 
high-impedance wedge is inserted into a whole space, such that 
the polarity of the top and bottom reflection coefficients is reversed. 
This type of model would be characteristic of either a low- 
impedance bed surrounded by identical high-impedance beds, or 
vice versa, and it is of particular value because this phenomenon 
is likely to occur in a shale-sand-shale sequence.

In Figure 3a, the transition from well-resolved peaks through 
Rayleigh’s (b /2 ) and Ricker’s (TR) resolution limits can clearly 
be seen from the thickest to thinnest regions of the wedge (from 
left to right in Figure 3). However, in the mixed-polarity case 
(Figure 3b) Ricker’s (TR) limit has no meaning. Widess (1973) pro­
poses an amplitude-based methodology for resolving thin beds in 
the mixed-polarity case. Widess notes that at an approximate dis­
tance of kb/ 8, where kb is the dominant wavelength, the composite 
waveform stabilizes into a good approximation of the derivative of 
the original zero-phase wavelet. Thus, the waveform shape is vir­
tually indistinguishable for beds less than but the bed thickness 
may be inferred from the peak amplitude of the composite wavelet. 
At thicknesses below the established resolution criteria, the com­
posite waveform for the uniform-polarity and opposite-polarity 
cases can be visually interpreted as a single arrival; however, the 
composite wavelet in the opposite-polarity case will approximate 
the derivative of the original zero-phase pulse with a strong ampli­
tude response dependent on bed thickness (e.g., Figure 3a and 3b). 
This amplitude information is routinely used by seismic interpreters 

to construct tuning curves (Bacon et al., 2003) 
for thin-bed interpretation. In practice, this re­
quires calibration of amplitudes to a known 
bed thickness. This method is further compli­
cated by the presence of noise and uncertainty 
in the source wavelet estimate (Widess, 1973).

Figure 4a shows apparent thickness in two­
way traveltime and apparent amplitude as a func­
tion of true thickness for the synthetic traces 
pictured in Figure 3a. The solid black line at 
45° shows the ideal case where the apparent 
thickness determined matches the true thickness 
of the layer. The blue line shows the actual recov­
ered thickness. If one could accurately determine 
thickness in all cases, the solid blue line should 
perfectly track the solid black line. However, 
the apparent thickness increases slightly before 
Rayleigh’s criterion (b /2 ) is reached because 
of interference between the wavelets. Below 
the TR limit, the separate arrivals are unresolved

http://library.seg.org/


D
ow

nl
oa

de
d 

09
/0

2/
14

 
to 

21
6.

22
7.

25
0.

50
. R

ed
ist

rib
ut

io
n 

su
bj

ec
t 

to 
SE

G 
lic

en
se

 
or 

co
py

rig
ht

; 
see

 T
er

m
s 

of 
Us

e 
at 

ht
tp

://
lib

ra
ry

.s
eg

.o
rg

/

7
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and the composite arrival appears to be an individual arrival. The 
solid horizontal black line shows the true amplitude of both arrivals, 
while the red line shows the measured amplitude. For traveltimes at 
or above Rayleigh’s limit, the amplitudes are measured from two 
separate peaks. Below Rayleigh’s limit, only a single peak remains. 
Destructive interference lowers amplitudes near the resolution 
criteria, and constructive interference increases amplitudes as the 
differential traveltime goes to zero.

In Figure 4b, the apparent thickness and amplitude as a function 
of true thickness for the mixed-polarity wedge model (Figure 3b) 
are shown. Here, the composite waveforms are comprised of two 
equal-amplitude, opposite-polarity 25-Hz Ricker wavelets. In this 
case, it is possible to resolve the two arrivals for all thicknesses; 
however, the apparent separation is limited to TR. Constructive 
interference increases amplitudes near the resolution limits, while 
destructive interference diminishes amplitudes as the differential 
traveltime goes to zero.

The process of detecting traveltimes and amplitudes of each 
arrival in a band-limited seismic trace is a form of sparse spike 
deconvolution. In recent decades, numerous techniques have been 
developed in this area. Kormylo and Mendel (1983) introduce a 
maximum-likelihood sparse spike deconvolution algorithm based 
on state-variable technology, which is capable of estimating a 
BemouUi-Gaussian sparse spike train and the correct phase of 
the seismic wavelet. Wiggins (1978) and Sacchi et al. (1994) pro­
pose minimum entropy sparse spike deconvolution methods. Velis 
(2008) proposes a stochastic sparse spike deconvolution method 
that incorporates impedance constraints into simulated annealing 
iterations to find a solution consisting of the least number of spikes, 
which explains the observed data when convolved with a model 
wavelet. Phase errors in the wavelet estimate are handled to some 
extent by computing an optimal phase shift 
to match the model wavelet to an effective data 
wavelet. Kaaresen and Taxt (1998) use a Baye­
sian framework to derive a maximum a poste­
riori multichannel deconvolution estimate. Their 
method alternates between steps of wavelet and 
reflectivity estimation, and it handles continuity 
between traces by modeling local dependencies.
Heimer et al. (2007) use dynamic programming 
to constrain multichannel blind seismic deconvo­
lution such that reflections must form continuous 
paths across consecutive traces, representing 
consistent layers in the earth model. This method 
is improved upon by Heimer et al. (2009) by 
incorporating the Viterbi algorithm (Viterbi,
1967) for Markov-Bemoulli random field mod­
eling in place of the previous dynamic program­
ming algorithm, to allow layers to split, merge, 
and terminate across traces. Dynamic program­
ming methods are also used by Liner and Clapp 
(2004) to nonlinearly align seismic traces, and 
the Viterbi algorithm is used by Clapp (2008) 
to autopick seismic horizons.

In this paper, we propose a stochastic method, 
using profile hidden Markov models (HMMs) 
and the Viterbi algorithm (Durbin et al., 1998), 
to resolve composite waveforms into their con­
stituent spike trains. This effectively poses the

sparse spike deconvolution problem as a pattern recognition prob­
lem  This method is adapted from the application of the Viterbi al­
gorithm to profile HMMs by Eddy (1995) to construct alignments 
between, and aid in the identification of, evolutionarily related pro­
tein sequences. The Viterbi algorithm is used in the single-channel 
deconvolution context of picking individual arrival traveltimes and 
amplitudes. Unlike the other deconvolution algorithms outlined 
above, the method presented here makes no implicit assumptions 
about the distributions of traveltimes and amplitudes nor the phase 
of the wavelet. However, in practice, the method is generally em­
ployed within a constrained solution space to mitigate the problem 
of nonuniqueness and to bound the computation time. While the 
algorithm does not provide updated estimates of the wavelet, it 
is relatively insensitive to the types of errors expected in the practice 
of source wavelet estimation, and it can be applied in cases in which 
data are insufficient to generate meaningful statistics, such as a sin­
gle seismic trace. Unlike tuning curves, this method implicitly ac­
counts for noise and errors in the wavelet estimate, and its accuracy 
degrades gracefully as noise levels and wavelet errors increase.

THEORY

Our goal is to analyze a composite waveform in a data trace spe­
cifically to determine the differential traveltimes and relative ampli­
tudes of the individual arrivals. Our ultimate goal is to deconstruct 
the composite waveform into a spike train, where each spike is 
aligned on the true arrival time with the correct amplitude of the 
individual seismic arrivals that went into constructing the composite 
waveform. To do this, we first define a solution space that consists 
of a set of unique spike trains, where each spike train is an element 
of the set containing all possible spike trains in the solution space.

Uniform-polarity wedge model

Differential two-way time (ms)

Figure 3. Seismic wedge models that demonstrate the effects of constructive and 
destructive interference in band-limited seismic traces as the temporal separation of indi­
vidual arrivals decrease, (a) A seismic wedge model with uniform-polarity reflection 
coefficients, representing three layers in which acoustic impedance increases with depth, 
(b) A seismic wedge model with opposite-polarity reflection coefficients, representing a 
high-impedance layer between two low-impedance layers.
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V160 Brown and Thorne

That is, each element consists of a unique collection of differential 
traveltimes and relative amplitudes that could describe the composite 
trace. From here on, we refer to one element in our set of spike trains 
as a model. The goal is to determine which model best describes the 
composite trace. One approach to solving this problem is to (1) build 
a reference trace for each point in the solution space by convolving it 
with a source wavelet, (2) find the best alignment between each 
reference trace and the data trace using crosscorrelation, and (3) pick 
the optimal solution through minimizing a residual error norm on the 
difference between the data trace and the reference traces.

The above algorithm may be a useful method to solve this prob­
lem, but it is not without challenges. For example, if an L2-norm is 
used in the optimization step, the algorithm will not be strongly 
affected by the presence of Gaussian-distributed random noise, 
but it does not implicitly handle errors in the wavelet estimate. 
The approach we propose here is similar to the above algorithm, 
except that it uses stochastic models to represent the points in

a)
Uniform polarity

Two-way true thickness (ms)

Figure 4. (a) Apparent thickness and amplitude as a function of 
event separation for two equal-amplitude uniform-polarity 25-Hz 
Ricker wavelets. The two arrivals are not resolved below the 
TR. (b) Apparent thickness and amplitude as a function of event 
separation for two equal-amplitude opposite-polarity 25-Hz Ricker 
wavelets. In this case, it is possible to detect both arrivals for all 
separations; however, the apparent thickness is limited to TR.

our solution space. The proposed algorithm is: (1) Build a profile 
HMM for each model in which a noise model and a wavelet esti­
mate are assumed at the onset. (2) For each profile HMM, use the 
Viterbi algorithm to simultaneously find the optimal alignment to 
the composite waveform and assign a log-likelihood score. Here, 
the alignment may be nonlinear. (3) Extract traveltimes and ampli­
tudes from the alignment of the highest-scoring HMM.

The first step is to construct a profile HMM for each model, 
which will be based on a synthetic trace obtained by convolving 
the model spike train with the assumed wavelet estimate. A profile 
HMM can be pictured as a finite state automaton such as the one 
pictured in Figure 5. This is a simplified version of the Plan 7 HMM 
architecture that Eddy (1995) introduces for analyzing protein se­
quences. Each of the nodes (diamonds and circles in Figure 5) rep­
resents a state, and each of the edges (arrows in Figure 5) represents 
a possible state transition. Markov models represent a stochastic 
process for generating sequences, which in this case, will be a se­
quence of samples constituting a seismic trace. In a Markov model, 
each state emits a single value or token and the stochastic process is 
represented by the random set of transitions between states. The 
model is characterized by its states and by transition probabilities 
between the states. The underlying stochastic process exhibits the 
Markov property, which states that the conditional probability dis­
tribution of future states depends only on the current state, resulting 
in a memoryless stochastic process. In an HMM, each state may 
generate many different tokens based on a state-specific emission 
probability distribution. The name is derived from the fact that the 
actual state sequence that produced a given output is hidden and can 
only be described in terms of probabilities, because many different 
state sequences can produce the same output. The Viterbi algorithm 
takes advantage of the Markov property, and it employs dynamic 
programming to efficiently determine the most likely state sequence 
for generating a specific output sequence with a specific HMM.

Our goal in using the HMM is to find the best nonlinear align­
ment between the composite waveform (our data) and a model in 
our solution space. An alignment can be thought of as a unique path 

c. traced through the state machine. The B and E states are for starting
and ending alignments; M l, M2, M3, M4, and M5 are match states, 
and each one is associated with a sample from the model trace. Each 
match state is characterized by a Gaussian distribution with the am­
plitude of the associated model trace sample defining the mean. 
This Gaussian distribution over sample amplitudes represents the 
implicit random noise model. II, 12, 13, and 14 are insert states, 
which allow multiple samples from the data trace to be aligned 
to a single sample from the model trace. This, in effect, allows 
the embedded wavelet to dilate. Insert states are also characterized 
by a Gaussian distribution whose mean is the average of the two 
surrounding match state means. D2, D3, and D4 are delete states, 
which allow model samples to be skipped, effectively allowing the 
embedded wavelet to contract. The dilation and contraction facili­
tated by the insert and delete states introduce a nonlinearity in align­
ment between the model and data that is not present in deterministic 
convolutional models.

To demonstrate the alignment procedure, we refer to Figure 6. 
Figure 6a shows a composite waveform derived from a candidate 
model from our set of all possible models that may explain the data 
trace shown in Figure 6b. One possible way to align the model and 
data trace is shown in Figure 6c. Consulting Figure 5, we start at the 
begin state (B) and proceed through the state machine as follows:
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Viterbi sparse spike detection

For this HMM, the first state is always a match state (M l), so we 
match the first sample from the model trace to the first sample from 
the data trace. From the M l state, transitions exist to the II, M2, and 
D2 states. In this example, the transition goes to the M2 state, so we 
match the second sample from the model trace to the second sample 
of the data trace. In a similar manner, we next transition through the 
M3, M4, and M5 states, matching the corresponding samples from 
the model trace to the data trace. From the M5 state, we can only 
transition to the end state (E) and we are finished. The end result 
shown in Figure 6c just matches each sample from the model trace 
to the data trace.

Another possible alignment is shown in Figure 6d. We start at the 
begin state, and as before, we transition to the M l state matching the 
first sample from the data trace to the first sample of the model trace. 
Then we transition to the M2 state matching the second sample from 
the data trace to the second sample o f the model trace. From the M2 
state, we then transition to the D3 state, which means that the third 
sample of the model trace is discarded. The M4 state follows, which 
matches the third data sample to the fourth model sample. The 
fourth data sample is also aligned to the fourth model sample 
through the 14 state. Finally, the M5 state is traversed, matching 
the fifth data and model samples, and the end state (E) once again 
concludes the alignment.

The alignment in Figure 6e is similar to the one in Figure 6d. In 
this case, the D2 state is traversed rather than the D3 state. From 
visual inspection, the alignment of Figure 6d does a better job 
matching amplitudes than the alignment in Figure 6e. When com­
paring the alignments from Figure 6c and 6d, it is clear that the 
amplitudes are more closely matched for the four match states trav­
ersed in Figure 6d than they are in Figure 6c. For this reason, the 
alignment of Figure 6d may be considered the best qualitatively. 
The quantitative selection of the best alignment, however, will de­
pend on the HMM parameterization as described below.

The next step in our procedure is to use the Viterbi algorithm to 
find the optimal alignment between a composite waveform in a data 
trace and a candidate model, which can be described by a sequence 
of states traced through the HMM. The Viterbi algorithm uses dy­
namic programming to determine the solution in 0 ( N  x  M) oper­
ations, where M  is the number of states in the HMM (for example, 
in Figure 5, this HMM has 14 states) and N  is the number of sam­
ples in a data trace.

The optimal alignment is defined as the alignment that maxi­
mizes the following probability:

Pn(data\ model) =  II iafagfftdj), ( i )

where i is a sample index for the data trace, dt is a sample of the data 
trace, au  is a transition probability associated with transitioning 
from state k to /, and g, is a state-dependent probability distribution 
that determines how likely it is to observe the value of dt in a given 
state. The state integer n  represents a specific state sequence that 
determines the values of k and I. The optimal state sequence n* 
maximizes the probability of fit between the data and the model 
and determines the optimal alignment.

The matrix akl determines the probability of transitioning from 
any given state k to any other state I. For a profile HMM, most 
values of this matrix are zero, and the nonzero components corre­
spond to the edges in the state machine graph. Typically, transitions 
to match states are assigned higher probabilities than transitions to 
insert and delete states, which have the effect of penalizing wavelet

Figure 5. The profile HMM used for waveform analysis pictured a 
a finite state automaton.

Q . 1

b) I

c)
Alignment: MMMMM

f M 1* M
M M ^

d)
Alignment: MMDMIM 

#  f  .

~ s
>

1
f  M

M M

e)Alignment: MDMMIM 

t  ?  1

A *

f i 

T
M c

l\i )  M

M

Figure 6. (a) A model trace used to build an HMM represented as a 
stem plot, (b) A data trace that is to be aligned to the model trace, (c, 
d, e) Three examples of alignments between the data and model 
traces. In each panel, the green and blue stems correspond to 
samples from the model and data trace, respectively.
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V162 Brown and Thorne

dilation and contraction. Formal training algorithms exist that can 
optimize the values of akl given sufficient training data; however, 
the existence of adequate training data and overspecialization of the 
HMM to the training data are problematic. We have found empiri­
cally that match state transition probabilities of approximately 0.5 
and insert/delete transition probabilities of approximately 0.25 work 
well in most cases. These probabilities can be fine-tuned if more or 
less contraction/dilation is desired. There is an interplay between 
transition and emission probabilities, but having match transitions 
approximately twice as likely as insert/delete transitions will pro­
vide for one or two samples of dilation or contraction where needed, 
without distorting the underlying wavelet beyond recognition. Each 
match and insert state has associated with it an emission probability 
distribution g,. The mean of each state-dependent emission distri­
bution is set to the amplitude of the associated model trace sample. 
Representing model trace sample amplitudes with Gaussian distri­
butions accounts for random noise and errors in the wavelet esti­
mate. The standard deviation of the amplitude distributions is set 
as a run-time parameter. The standard deviations should be in­
versely proportional to the S/N of the data trace because amplitude 
differences are penalized more harshly as the standard deviation 
shrinks.

For computational efficiency, the model and data traces are con­
verted to an integer representation, and discrete probability mass 
functions are used in the HMM to limit the solution space. Also, 
computation of equation 1 is subject to numeric underflow because 
it involves the multiplication of many small probabilities. For this 
reason, the computations are carried out in a logarithmic space. 
More specifically, log-odds scores are calculated as a proxy for 
the probability in equation 1, and are defined as

Composite waveform and manual picks

S ( d a t a |m o d e l ) = l o g ( ^ g M ) , (2)

0.00 0.05 0.10 0.15
Time (s)

Figure 7. In each panel, the black trace is an example composite 
waveform (Figure 1) used to demonstrate the VSSD technique, 
(a) Manual picks for the three arrivals are shown as dashed orange 
lines, whereas true arrival times and amplitudes are represented by 
blue lines, (b) Viterbi picks (red lines) using the correct 25-Hz 
Ricker wavelet, (c) Viterbi picks using a 30-Hz Ricker wavelet, 
(b and c) Green waveforms represent the means of the emission 
distributions for all match and insert states traversed in the optimal 
alignments.

where W  is a white-noise model. In this logarithmic computation 
space, the optimal alignment represents the path through the

Original wavelet

One arrival /

\ /
Score = 239

----------------------V
Two arrivals / I  \  .

r
Score = 263

Three arrivals « j | \

r
Score = 262

—  V
Four arrivals j f

\

IN

r
Score = 302

~---- '  A  J

Five arrivals f

\ P
Score = 315

Six arrivals

P
Score = 316

V
Seven arrivals /

/ T \  . /

w
Score = 316

~  ~  v  y
0.15 0.20 0.25 0.30 0.35

Time (s)

Figure 8. The behavior of the VSSD algorithm for solution spaces 
characterized by different numbers of arrivals is demonstrated by 
matching a composite waveform with five arrivals with models 
comprising one to seven arrivals. The black trace is the composite 
waveform consisting of five arrivals whose traveltimes and ampli­
tudes are indicated by the blue spikes. Each of the lower panels 
displays the VSSD results and their log-odds scores for an increas­
ing number of arrivals. In each panel, the red spike indicates the best 
fit arrival(s) and the green trace represents the modeled trace. Note 
that the relative amplitudes of the sixth and seventh (red circle) 
arrivals are very close to zero and that their inclusion does not sig­
nificantly improve the waveform fit.
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HMM that generates the data trace with the highest possible log- 
odds score. The log-odds score is a ratio of the likelihood of a given 
model producing a given data trace over the likelihood of a random 
model producing the data trace.

Referring back to Figure 6, the alignment in Figure 6c may be 
optimal if the HMM parameterization penalizes dilation and con­
traction (insert and delete states) more than amplitude errors (am­
plitude distributions). Conversely, the alignment in Figure 6d may 
be optimal if amplitude errors are penalized more than dilation and 
contraction.

Once the optimal log-odds score has been calculated for each 
model, the model with the highest score is chosen. This brings 
us to the final step in our procedure, which is to determine the am­
plitudes and differential traveltimes of our arrivals. The amplitudes 
are immediately available from the model parameters, and the 
arrival times of each event can be calculated by analyzing the op­
timal state path to determine the relative position of match states 
corresponding to each model spike.

The nonlinear alignment provided by the Viterbi algorithm is the 
key to this method’s ability to work in the presence of noise and 
with imperfect knowledge of the source wavelet. Through the insert 
and delete states, the constituent wavelets are allowed to dilate and 
contract, which compensates for errors in the wavelet phase and 
amplitude spectra in tandem with random noise when combined 
with the Gaussian noise model. This ability is crucial to waveform 
analysis because wavelet estimates are never exact and wavelets in 
recorded seismograms are inherently nonstationary. This capability 
also enables interpretation of thin beds in depth-migrated images, in 
which the dominant wavelength of the embedded wavelet will 
change as a function of velocity. The construction of a profile 
HMM using a wavelet estimate and a Gaussian 
noise model is discussed below.

As an example, we analyze the composite 
waveform introduced in Figure 1. The composite 
waveform (black trace, Figure 7a) was created by 
convolving a 25-Hz Ricker wavelet with the 
spike train shown in blue. In this case, guided 
by our prior knowledge, we select an initial sol­
ution space consisting of three spikes. That is, for 
the composite waveform, we find the model that 
best reproduces the composite waveform using 
three arrivals. For reference, Figure 7a displays 
possible manual picks (dashed orange lines) 
for this composite trace. Figure 7b shows the 
result obtained through our proposed technique 
with the correct source wavelet. The dashed 
red lines show the spike train that the Viterbi 
process has determined to be the best model.
As expected, in this case, we recover the ampli­
tude and relative timing information exactly be­
cause we knew exactly how many arrivals we 
should search for and had perfect knowledge 
of the source. The green line in Figure 7b repre­
sents the aligned model waveform, which com­
prises the means of all match and insert states 
traversed in the optimal state path. It is notable 
that the technique is capable of properly deter­
mining the amplitude and timing of these arrivals 
in which there is strong constructive/destructive

interference. However, precise prior knowledge of the source wave­
let is usually not available. Figure 7c shows an example using our 
method with a 30-Hz source wavelet. Even though we use the in­
correct wavelet, the traveltime and amplitudes recovered are still 
better than those picked manually. Note that the green waveform 
in Figure 7c contains discontinuities due to traversing insert states. 
This simple example demonstrates the utility of our proposed tech­
nique in determining arrival time and amplitude information for a 
composite wavelet with overlapping arrivals.

The number of arrivals modeled is a key parameter of the can­
didate solution space. Figure 8 demonstrates the behavior of the 
VSSD algorithm for different numbers of modeled arrivals. The first 
trace in Figure 8 illustrates a synthetic waveform composed of five 
arrivals. The true amplitudes and traveltimes are depicted by the 
blue lines. The subsequent traces show VSSD results for model 
spaces containing one to seven arrivals, along with the log-odds 
scores. When only one arrival is allowed, only a portion of the 
waveform is matched (the score only reflects the portion of the 
waveform matched). Allowing for two arrivals increases the portion 
of the waveform that is matched, but three arrivals are needed to 
cover the entire duration of the waveform. Note, however, that 
the log-odds score actually decreases when going from two arrivals 
to three arrivals. Despite the fact that more match states are trav­
ersed, the amplitude discrepancies are larger in the three-arrival re­
sult for this example. The four-arrival result increases the fidelity of 
the fit as well as the log-odds score. The five-arrival result provides 
a near-perfect fit. Increasing the number of modeled arrivals beyond 
five in this example does not change the result in a significant way, 
as the bottom two traces in Figure 8 demonstrate. The sixth and 
seventh picked arrivals represent spurious low-amplitude events,

Uniform polarity wedge model -  no noise

Differential two-way time (ms)

Figure 9. (a) Uniform-polarity wedge model (black curves and spikes) with Viterbi 
waveforms (blue traces) and picks (red spikes) overlain. The blue curves represent 
the Viterbi-aligned waveforms corresponding to the means of amplitude distributions 
for traversed match and insert states. The red spikes represent the amplitudes and trav­
eltimes of the Viterbi-aligned spike train, (b) The same as (a) with the addition of band- 
limited random noise.
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which are essentially fitting quantization errors from the conversion 
from the floating point to integer representations of the input trace. 
The amplitude of the seventh event (red circle) is so low that it is not 
visible in the figure.

Within a small window, an arbitrary number of arrivals may be 
modeled if the amplitudes for any given arrival are allowed to be 
zero. As the number of arrivals grows, the solution space grows 
exponentially, and it may become computationally unfeasible. To 
mitigate this problem, the method is generally applied in a series 
of small, overlapping windows in which only a small number of 
arrivals are modeled. Regularization may be applied by enforcing 
consistency of the results within the window overlaps. The problem 
of nonuniqueness can either be mitigated with a priori knowledge 
about the distribution of expected arrivals (e.g., by using impedance 
logs) or by penalizing results that do not show lateral consistency as 
interference patterns evolve across traces. The VSSD method may 
be used to tie well logs to seismic data in time or in depth because 
the nonlinear alignment can accommodate velocity dependent dom­
inant wavelengths in the source function. The VSSD method may 
also be used to extend interpretations away from a well. In what

follows, we show how this technique can be applied to determining 
bed thickness and arrival amplitude for wedge models similar to 
those in the Introduction.

RESOLUTION TESTS

To examine the effectiveness of the Viterbi technique in deter­
mining arrival time and amplitude information for overlapping 
waveforms, we apply it to synthetic seismograms created for wedge 
models similar to those introduced in the Introduction. The advan­
tage of analyzing the wedge models is that we can systematically 
examine amplitudes and differential traveltimes of arrivals through 
a steady variation in overlap of the arrival wavelets. First, we 
examine uniform-polarity wedge models, and then we examine 
the mixed-polarity case.

Uniform-polarity wedge models

A uniform-polarity wedge model is generated with zero-offset 
reflection coefficients for the upper and lower interfaces set at a 
constant ratio of 0.8 (see the “Introduction” section for further 

description on the basic design of the wedge 
models). That is, if we normalize the reflection 
coefficient of the upper interface to 1.0, then 
the lower interface has a normalized reflection 
coefficient of 0.8. The synthetic traces are con­
structed through convolution with a 25-Hz 
Ricker wavelet with a 15° phase rotation. A sec­
ond set of synthetic traces is constructed with the 
addition of band-limited random noise with an 
S/N of 10. The nonuniform reflection coeffi­
cients, deviations from zero-phase, and the addi­
tion o f random noise are intended to simulate 
real-world conditions more realistically.

Figure 9a shows the noise-free uniform- 
polarity wedge model waveforms (black traces) 
and spikes representing the true arrival times and 
amplitudes (black spikes), overlain by VSSD 
waveforms (blue traces) and VSSD spikes (red 
spikes). A common problem in deconvolution is 
that accurate information about the source time 
function is not always known. In this example, 
we use a 25-Hz, 15° phase-rotated wavelet, 
which is the correct source time function. When 
using the correct source, the Viterbi method pro­
vides almost-perfect traveltime variation all of 
the way down to the thinnest portion of the 
wedge. The largest deviations from the true 
thicknesses are 2 ms (5% of the dominant wave­
length) at the smallest separation of the wedge 
model (at 2 and 4 ms differential two-way times; 
see Figure 9a). Figure 9b shows the results for 
the same uniform wedge model with the addition 
of band-limited random noise. The addition of 
the random noise increases the misfit between 
true arrival times (black spikes) and VSSD- 
picked arrival times (red spikes), but the maxi­
mum error has only increased to 3 ms or 7.5% 
of the dominant wavelength.

Uniform polarity wedge model

Manual picks b) Manual picks w/noise
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Figure 10. (a) Manual thickness and amplitude picks for the uniform-polarity wedge 
model. The blue line represents picked bed thickness, the red line represents picked 
amplitudes for the top interface, and the green line represents picked amplitudes for 
the lower interface, (b) The same as (a) except with the addition of band-limited random 
noise, (c) Viterbi thickness and amplitude picks using the correct 25-Hz, 15° phase- 
rotated wavelet, (d) The same as (c) except with the addition of band-limited random 
noise.
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In Figure 10a, we show thicknesses and amplitudes from man­
ually picked arrivals for the noise-free case. The blue line represents 
two-way thickness, while the red and green lines represent ampli­
tudes for the upper and lower interfaces, respectively. Because two 
separate arrivals are not resolved below TR, the amplitude of the 
upper interface arrival increases significantly. Figure 10b shows 
the manual picks for the noisy uniform-polarity wedge model. In 
this case, the two separate arrivals are only resolved down to 
b /2  and the amplitude of the upper-layer arrival is not accurately 
recovered even at the largest thicknesses of the wedge model.

In Figure 10c, we summarize results from the VSSD-picked 
thicknesses and amplitudes, corresponding to the red spikes in 
Figure 8a. The two events are clearly resolved for all thicknesses, 
and amplitudes are also reasonably well estimated for all thick­
nesses. The quality of the thickness estimate degrades slightly in 
the neighborhood of b /2  and TR, but it is still much better than 
that obtained from manual picks. Figure lOd shows the VSSD picks 
for the noisy wedge model. Both events remain resolved for all 
thicknesses. The thickness is also recovered in the thinnest region 
of the wedge (2-ms two-way thickness). There is more scatter in the 
amplitude measurements, but there is no spike in amplitude for the 
upper-layer amplitude as is seen in the manually 
picked case.

Mixed-polarity wedge models

A mixed-polarity wedge model is generated 
with zero-offset reflection coefficients for the 
upper and lower interfaces set at a constant ratio 
of —0.8. That is, if we normalize the reflection 
coefficient of the upper interface to 1.0, then 
the lower interface has a normalized reflection 
coefficient of -0 .8 . Once again, the synthetic 
traces are constructed through convolution with 
a 25-Hz Ricker wavelet with a 15° phase rotation, 
and a second set of synthetic traces is constructed 
with the addition of band-limited random noise.

In Figure 1 la, we show thicknesses and ampli­
tudes from manually picked arrivals for the 
noise-free case. Once again, the blue line repre­
sents two-way thickness, while the red and 
green lines represent amplitudes for the upper 
and lower interfaces, respectively. Unlike the 
uniform-polarity case, the two separate arrivals 
are resolved below TR, but the thickness is over­
estimated as the two wavelets merge into an 
approximation of the first derivative of the 
wavelet (Widess, 1973). Also, the amplitudes 
of the two events become indistinguishable 
before b / 2 is reached. Figure l i b  shows the 
manual picks for the noisy uniform-polarity 
wedge model. The effect of the noise is primarily 
manifested in additional scatter in the ampli­
tude picks.

In Figure 1 lc , we summarize results from the 
VSSD-picked thicknesses and amplitudes. The 
two events are clearly resolved for all thicknesses 
with much greater fidelity below TR than is the 
case using manual picks. The amplitude picks are 
nearly perfect except for a small region around

Widess’ b/ 8 criteria (Widess, 1973), where the combined wavelet 
approximates the first derivative. Figure 1 Id shows the VSSD picks 
for the noisy wedge model. These picks have the same general char­
acteristics as the noise-free picks; however, noise has introduced 
scatter into the amplitude and thickness estimates.

Sensitivity to errors in the wavelet phase, 
wavelet frequency, and random noise

Because we would typically not expect to have an exact wavelet 
with which to perform our analysis, the sensitivity of the VSSD 
technique to errors in the wavelet estimate is explored with a suite 
of different Ricker wavelets. To test the method’s sensitivity to fre­
quency content, 15 wavelets with peak frequencies equally spaced 
between 18 and 32 Hz, representing errors of ± 7  Hz, and with the 
correct 15° phase rotation were used. This range of frequency con­
tent represents a 39% increase in the dominant wavelength on the 
low end and a 22% decrease in the dominant wavelength on the high 
end. Twenty-one wavelets with the correct peak frequency and 
phase rotations equally spaced between -35° and 65°, representing 
phase errors of ±50°, were used to test the method’s sensitivity to

M ixed  polarity wedge model

d)
VSSD picks: correct wavelet w/noise

10 20  30 4 0  50  0  10 20  30  4 0  50 
Two-way true thickness (ms)

Figure 11. (a) Manual thickness and amplitude picks for the mixed-polarity wedge 
model. The blue line represents picked bed thickness, the red line represents picked 
amplitudes for the top interface, and the green line represents picked amplitudes for 
the lower interface, (b) The same as (a) except with the addition of band-limited random 
noise, (c) Viterbi thickness and amplitude picks using the correct 25-Hz, 15° phase- 
shifted wavelet, (d) The same as (c) except with the addition of band-limited random 
noise.
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phase. The VSSD method begins to degrade for errors in phase and 
frequency content outside of these selected ranges, so that the two 
events are not consistently resolved for all thicknesses. However, 
the selected range of parameters provides an ample test suite span­
ning a larger range of errors than would typically be expected in a 
wavelet estimate. VSSD analysis was carried out separately for each 
of the 36 candidate wavelets for the noise-free and noisy uniform- 
polarity wedge models in Figure 9.

Figure 12 shows the VSSD-determined thicknesses for each of 
our test cases varying frequency, phase, and additive noise. Results 
for the 15 test wavelets with varying frequency content are shown in 
Figure 12a in the absence of noise. The color bar indicates the 
departure from the correct peak frequency of 25 Hz. The lower- 
frequency wavelets tend to underestimate the thickness slightly, 
while the higher-frequency wavelets tend to overestimate the thick­
ness slightly, with a reversal of this general trend in the vicinity of 
TR and b / 2 (i.e., between two-way thicknesses 13.33 and 
15.38 ms). Wavelet contraction (delete states) tends to pull the

center of the individual arrivals together when the frequency content 
is erroneously low, whereas wavelet dilation (insert states) tends to 
push the arrivals apart when the frequency content is erroneously 
high. The reversal of the trend between 12 and 22 ms is due to the 
effects of destructive interference between main and side lobes. The 
largest measured errors are 6 ms, with the errors being within 4 ms 
for all thickness greater than 8 ms. The addition of noise shows the 
same general trends as displayed in the noise-free model. However, 
the departure from true thickness is somewhat larger than in the 
noise-free model, showing that the addition of noise has a larger ef­
fect than the frequency content of the wavelet on thickness estimates.

The sensitivity to wavelet phase on thickness measurements is 
demonstrated in Figure 12b. This shows that thickness estimates 
are essentially insensitive to phase errors within the ±50° range. 
One outlier, an 8-ms error corresponding to a 35° phase rotation, 
indicates the beginning of a departure from acceptable phase errors. 
For phase rotations larger than ±50°, the wavelet shape has departed 
significantly enough from the true wavelet such that the algorithm

Thickness, phase distortion
c)

Thickness, additive noise

2 0  3 0  40  

Amplitude, frequency distortion Amplitude, phase distortion Amplitude, additive noise

10 2 0  3 0  4 0  

Two-way true thickness (ms)

Figure 12. Apparent thickness curves for variations in the dominant frequency or phase of the source wavelet for the uniform-polarity wedge 
model. Results shown here in (a, b, d, e) are for the noise-free model, (a) Results for wavelets with dominant frequencies ranging from 18 to 
32 Hz, representing an error range of ± 7  Hz. (b) Results for wavelets with the correct dominant frequency, but with phase errors up to ±50°. 
(c) Results for wavelets with the correct dominant frequency and phase, but with additive noise with S/Ns from 5 to 15. (d) The same as in (a) 
except amplitude ratio measurements are displayed, (e) The same as in (b) except amplitude ratio measurements are displayed, (f) The same as 
in (c) except amplitude ratio measurements are displayed.
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cannot accurately account for the effects of constructive and de­
structive interference across the entire range of differential travel­
times. The addition o f noise slightly increases the error in thickness 
estimates, but it does not introduce a large departure from the noise- 
free case.

Figure 12d and 12e demonstrates the sensitivity of relative am­
plitude estimates to frequency content and phase rotation for the 
noise-free models. The value plotted for each wavelet is the ratio 
of the two picked amplitudes where the correct amplitude ratio 
is 0.8. Here, the sensitivities are reversed from those of thickness 
estimates. That is, when examining the thickness estimates, we ob­
served that the measurements were less sensitive to differences in 
the wavelet phase than they were to differences in the frequency 
content. No clear dependence on frequency content can be inferred. 
That is, errors in amplitude ratio measurements for the noise-free 
and noisy case show deviations with no systematic trend with 
respect to wavelet frequency. Yet, phase errors demonstrate clear 
trends. Negative phase rotations (Figure 12e) tend to overestimate 
the amplitude ratio, while positive rotations tend to underestimate 
the ratio. This trend reverses in the 12-22-ms region, as was also 
noted in the frequency-dependent thickness estimates. The phase 
dependence of the amplitude estimates can be understood intui­
tively by considering the manner in which the shape of a wavelet 
changes as successively larger phase rotations are applied. Negative 
phase rotations tend to front load the energy in the wavelet, while 
positive phase rotations tend to back load the energy. For positive 
phase rotations at thicknesses below 12 ms, the back loading of 
energy gives more weight to the first arrival as the two wavelets 
constructively interfere. In the anomalous region between 12 and 
22 ms, the opposite is true, as the back-loaded energy in the first 
arrival undergoes destructive interference. The addition of noise has 
more devastating effects on amplitude ratio measurements than on 
thickness estimates.

Figure 12c demonstrates the sensitivity of traveltime picks to dif­
ferent levels of random noise. In this case, the correct wavelet was 
used and the S/N varied from 5 to 15. The differential traveltime 
errors are within 4 ms, showing that the traveltimes are generally 
insensitive to the inclusion of random noise. However, at an S/N 
of five, a couple of the events are not correctly resolved, as indicated 
by the red lines that leave the area of the plot. In this case, a visual 
analysis of the waveforms would also give an erroneous interpre­
tation. Figure 12f shows the sensitivity of amplitude picks to ran­
dom noise. This result shows that the amplitude estimates are more 
sensitive to random noise than they are to wavelet errors in either 
phase or frequency, for all thicknesses. From these observations, 
one can infer that traveltime estimates are much more robust than 
amplitude estimates, especially in the presence of noise.

APPLICATION OF VSSD METHOD

We have presented the VSSD method for picking seismic arrival 
times and amplitudes. In certain cases, the VSSD method can re­
solve these arrivals below the standard resolution limits. In the pre­
vious section, we analyzed the sensitivity o f this technique using a 
variable-thickness wedge model and synthetic seismograms. Here, 
we show the utility of this method with field data.

Our example demonstrates the application of the method at the 
exploration scale and comes from the Teapot Dome Oilfield. Teapot 
Dome is located ~35 miles north of Casper, Wyoming, on Naval 
Petroleum Reserve No. 3. The field has a long history of production

dating back to the early 1900s, and it is currently used as a testing 
center for emerging technologies. Figure 13a shows an extraction of 
crossline 123 from a time-migrated 3D seismic cube provided by 
the Rocky Mountain Oilfield Testing Center (http://www.rmotc.doe 
.gov/datasets.html). Reflections in the analysis window are bounded 
by large, consistent arrivals (indicated by gray curves in Figure 13a). 
However, the central reflections exhibit substantial lateral variation 
due to subtle variations in bed thickness. The primary observations 
are as follows: (1) a pair of lower amplitude peaks visible just after 
the first large peak between inlines 75 and 88 that merges into a 
single peak as the inline number increases (feature is highlighted 
with dashed red lines), (2) increasing complexity of the preceding 
trough as the inline number increases (highlighted with a dashed 
green line), and (3) the third central peak is clearly visible in the 
lower inlines, but it diminishes by inline 108 (indicated with a 
dashed blue line). Here, we use the VSSD method to explore 
the subtle variations in these arrivals.

To use the VSSD technique, we must first choose an appropriate 
source time function. A wavelet estimate was obtained by aligning 
and stacking multiple traces along a set of consistent regional hori­
zons. The results of our analysis are shown in Figure 13b for every

a)
Crossline 123 time-migrated data

VSSD picks

Inline number

Figure 13. (a) A windowed portion of crossline 123 from the 
Teapot Dome 3D time-migrated data set. The gray lines indicate 
the VSSD analysis window. The dashed green, red, and blue lines 
indicate lateral variations in waveform character of particular inter­
est. (b) VSSD picks (red lines) and reconstructed waveforms (blue 
curves) for every fourth trace. The VSSD method identified 10 
arrivals (numbered on inline 84) with good lateral consistency 
across the section.

http://library.seg.org/
http://www.rmotc.doe


D
ow

nl
oa

de
d 

09
/0

2/
14

 
to 

21
6.

22
7.

25
0.

50
. R

ed
ist

rib
ut

io
n 

su
bj

ec
t 

to 
SE

G 
lic

en
se

 
or 

co
py

rig
ht

; 
see

 T
er

m
s 

of 
Us

e 
at 

ht
tp

://
lib

ra
ry

.s
eg

.o
rg

/

16

V168 Brown and Thorne

fourth trace from inlines 84-120. The method identifies 10 consis­
tent reflectors that are numbered from 1 to 10 starting from the top 
and labeled for inline 84 in Figure 13b. One exception is the failure 
to resolve events 1 and 2 on inline 108. This means that the highest 
scoring alignment for that trace skipped several match states corre­
sponding to these two arrivals. At either end of the analysis window, 
there remain constructive and destructive interference from neigh­
boring events that are not considered. It is likely that the preceding 
events would need to be considered by expanding the analysis win­
dow to properly resolve events 1 and 2 on inline 108. The results 
corresponding to the primary observations of lateral inhomogeneity 
are discussed below.

• The two peaks highlighted by red dashed lines in Figure 13a 
correspond to arrivals 5 and 6 in Figure 13b (dashed-dotted 
line). The two peaks, clearly visible at inline 84, merge into 
a single arrival as the inline number increases, much like 
the wedge models from the Introduction. The VSSD picks 
show a small thinning trend as the inline number increases, 
but not as much as would be expected from a visual inspection 
of the waveform.

• Note, however, that the trough that precedes arrivals 5 and 6 
(green dashed line in Figure 13a) corresponding to arrivals 3 
and 4 in Figure 13b (solid gray lines) shows a thickening trend 
over this same lateral window. The result implies that the in­
terference of all these arrivals produces a waveform that vis­
ually exaggerates the thinning of the bed bounded by arrivals 
5 and 6. The combination of these four arrivals consistently 
matches the data across the range of inlines, indicating sedi­
mentary beds with slight lateral thickness variations.

• The disappearing peak (blue dashed line in Figure 13a) cor­
responds to the zone of waveform interference between 
arrivals 7 (dashed gray line in Figure 13b) and 8. On the left 
side of the section, the peak correlates more strongly with

arrival 7. By inline 96, the peak occurs between arrivals 7 
and 8. As the inline number increases, the peak itself disap­
pears, yet arrivals 7 and 8 remain with consistent polarities 
and relatively consistent amplitudes. One exception is the 
amplitude of arrival 8 on inline 88, which appears to be over­
estimated. This is likely due to strong constructive interfer­
ence from arrivals 9 and 10. This amplitude may be better 
resolved by lengthening the analysis window.

Overall, the VSSD method, applied separately to each individual 
trace, has produced spike trains that match the data well while dem­
onstrating a good degree of lateral consistency, despite the fact that 
there were no constraints promoting lateral consistency between 
traces. This improves our confidence in the VSSD method as a tool 
for thin-bed interpretation.

DISCUSSION

We have analyzed the sensitivity of the VSSD technique to var­
iations in bed thickness, measuring apparent thickness and the am­
plitude ratio of arrivals reflecting off the layers. In addition, we 
added noise and source wavelet frequency and phase distortions. 
Table 1 summarizes the results from these tests. The apparent trends 
from Table 1 are

• Thickness estimates are relatively insensitive to errors in 
wavelet phase.

• When only random noise and frequency content are consid­
ered, amplitude estimates tend to be slightly more robust for 
mixed-polarity events.

• Amplitude estimates tend to be equally sensitive to random 
noise and large phase errors.

• Thickness estimates are much more robust than amplitude 
estimates.

Table 1. Results of the sensitivity of the VSSD technique to wavelet errors and random noise.

Uniform-polarity wedge models Mixed-polarity wedge models

Noise A /  (Hz) A cpC) Max error (%) Noise A /(H z ) A(pC) Max error (%)

Thickness measurements as a percentage of dominant wavelength
No 0 0 5 No 0 0 5
Yes 0 0 5 Yes 0 0 5
No ± 7 0 10 No ±7 0 12.5
Yes ± 7 0 15 Yes ±7 0 15
No 0 ±50 5 No 0 ±50 5
Yes 0 ±50 10 Yes 0 ±50 7.5

Amplitude ratio measurements
No 0 0 21 No 0 0 9
Yes 0 0 64 Yes 0 0 27
No ± 7 0 25 No ±7 0 15
Yes ± 7 0 64 Yes ±7 0 45
No 0 ±50 62 No 0 ±50 64
Yes 0 ±50 64 Yes 0 ±50 64
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The VSSD technique is a versatile tool that provides accurate 
timing and amplitude information for seismic arrivals when these 
arrivals are nearly overlapping. However, this technique is not a 
blind-deconvolution method. That is, the method requires a priori 
knowledge about (1) the source wavelet and (2) the number of 
expected arrivals within the time window of interest.

With respect to the first point, the analyses in the section Reso­
lution Tests primarily show the sensitivity of this technique with 
respect to errors in our knowledge of the seismic source. In explo­
ration seismology applications, the source function is generally 
known well enough to be adequate for the VSSD method. For 
applications in earthquake seismology, we often do not have de­
tailed knowledge of the source time function. However, empirical 
source time functions can be generated to alleviate this problem. For 
example, it is possible to stack reference seismic phases to build an 
empirical source time function (e.g., Thome and Garnero, 2004).

With respect to the second point, precise knowledge of the num­
ber of arrivals within our time window is not necessary. In practice, 
we know the approximate number of expected arrivals. One can 
either test different numbers of arrivals, comparing log-odds scores 
and the quality of the waveform match, or one can allow the 
amplitudes of arrivals to be zero, which will explicitly search over 
multiple numbers of arrivals in a single experiment. Blocked imped­
ance models derived from well logs present an excellent source of 
information to constrain the solution space. This method could be 
used to perform nonlinear seismic-well ties in either time or depth.

Figures in this paper were drawn using the Generic Mapping 
Tools (http://gmt.soest.hawaii.edu/; Wessel and Smith, 1998).

CONCLUSIONS

We have presented a stochastic method to decompose individual 
seismic traces into sparse spike trains describing the traveltimes and 
relative amplitudes of individual arrivals comprising band-limited 
signals. The method has been shown to have resolving power below 
Rayleigh’s and Ricker’s criteria under appropriate conditions. It has 
also been shown that estimated traveltimes are relatively insensitive 
to random noise and errors in the source time function estimate. No 
assumptions are made regarding the distribution of traveltimes and 
amplitudes; however, interpreted information can be used to limit 
the solution space. Application to field data has shown that single­
channel sparse spike detection produces results with good lateral 
consistency. This technique shows promise in targeted exploration 
scale interpretation, and it may provide an alternative method of 
tying seismic images to well logs. Further applications may include 
decomposing overlapping pre- and postcursor teleseismic phases 
into individual arrivals or improving arrival time measurements 
in earthquake location or seismic tomography problems.

ACKNOWLEDGMENTS

We thank the Rocky Mountain Oilfield Testing Center (RMOTC) 
and the United States Department of Energy for providing the 
Teapot Dome seismic data set. We gratefully acknowledge the 
University of Utah Center for High Performance Computing 
(CH PQ  for computer resources and support. We would also like 
to thank five anonymous reviewers for their constructive sugges­
tions and comments. MT and SB were partially supported by 
National Science Foundation (NSF) grant EAR-0952187, and SB 
was partially supported by a grant from Total E&P.

REFERENCES

Bacon, M., R. Simm, and T. Redshaw, 2003, 3-D seismic interpretation: 
Cambridge University Press.

Clapp, R. G., 2008, Lloyd and Viterbi for QC and auto-picking: Stanford 
Exploration Project, SEP-134.

Durbin, R., S. R. Eddy, A. Krogh, and G. Mitchison, 1998, Biological 
sequence analysis: Probabilistic models of proteins and nucleic acids: 
Cambridge University Press.

Eddy, S. R., 1995, Multiple alignment using hidden Markov models: 
in C. J. Rawlings, cd., Proceedings of the Third International Confer­
ence on Intelligent Systems for Molecular Biology: AAAI Press, 
114-120.

Heimer, A., I. Cohen, and A. A. Vassiliou, 2007, Dynamic programming for 
multichannel blind seismic deconvolution: 77th Annual International 
Meeting, SEG, Expanded Abstracts, 1845-1849.

Heimer, A., I. Cohen, and A. A. Vassiliou, 2009, Multichannel seismic 
modeling and inversion based on Markov-Bemoulli random field: 79th 
Annual International Meeting, SEG, Expanded Abstracts, 2322-2326. 

Kaaresen, K. F., and T. Taxt, 1998, Multichannel blind deconvolution of 
seismic signals: Geophysics, 63, 2093-2107, doi: 10.1190/1.1444503. 

Kallwcit, R. S., and L. C. Wood, 1982, The limits of resolution of zero-phase 
wavelets: Geophysics, 47, 1035-1046, doi: 10.1190/1.1441367. 

Kormylo, J. J., and J. M. Mendel, 1983, Maximum-likelihood seismic 
deconvolution: IEEE Transactions on Geoscience and Remote Sensing, 
GE-21, 72-82, doi: 10.1109/TGRS. 1983.350532.

Liner, C. L., and R. G. Clapp, 2004, Nonlinear pairwise alignment of seismic 
traces: Geophysics, 69, 1552-1559, doi: 10.1190/1.1836828.

Ricker, N., 1953, Wavelet contraction, wavelet expansion, and the control of 
seismic resolution: Geophysics, 18, 769-792, doi: 10.1190/1.1437927. 

Sacchi, M. D., D. R. Velis, and A. H. Cominguez, 1994, Minimum entropy 
deconvolution with frequency-domain constraints: Geophysics, 59, 938­
945, doi: 10.1190/1.1443653.

Thome, M. S., and E. J. Garnero, 2004, Inferences on ultralow-velocity zone 
structure from a global analysis of SPdKS waves: Journal of Geophysical 
Research, 109, 1978-2012, doi: 10.1029/2004JB003010.

Velis, D. R., 2008, Stochastic sparse-spike deconvolution: Geophysics, 73, 
no. 1, R1-R9, doi: 10.1190/1.2790584.

Viterbi, A., 1967, Error bounds for convolutional codes and an asymptoti­
cally optimum decoding algorithm: IEEE Transactions on Information 
Theory, 13, 260-269, doi: 10.1109/TIT. 1967.1054010.

Wessel, P., and W.H.F. Smith, 1998, New, improved version of generic map­
ping tools released: EOS —  Transactions of the American 
Geophysical Union, 79, 579, doi: 10.1029/98E000426.

Widess, M. B., 1973, How thin is a thin bed?: Geophysics, 38, 1176-1180, 
doi: 10.1190/1.1440403.

Wiggins, R. A., 1978, Minimum entropy deconvolution: Geoexploration: 
International Journal of Mining and Technical Geophysics and Related 
Subjects, 16, 21-35, doi: 10.1016/0016-7142(78)90005-4.

http://library.seg.org/
http://gmt.soest.hawaii.edu/


CHAPTER 3

A COMPOSITIONAL ORIGIN TO ULTRALOW-VELOCITY

ZONES

Reprinted with permission from John Wiley & Sons, Inc. Brown, S. P., M. S. Thorne, L. 

Miyagi, and S. Rost (2015), A compositional origin to ultralow-velocity zones, Geophys. 

Res. Lett., 42, 1039-1045, doi:10.1002/ 2014GL062097.



19

S8A G U PUBLICATIONS

Geophysical Research Letters

RESEARCH LETTER
10.1002/2014GL062097

Key Points:

• New constraints on a ULVZ provide a 
1:1 VgVp ratio

• The 1:1 ratio indicates a compositional 
origin to the ULVZ

• ULVZ composition may be 
Fe-enriched ferropericlase

Supporting Information:

• Figures S1-S7 and equations (S1MS7)

Correspondence to:

M. S. Thorne, 
michael.thorne@utah.edu

Citation:

Brown, S. P., M. S. Thorne, L  Miyagi, and 
S. Rost (2015), A compositional origin to 
ultralow-velocity zones, Geophys. Res. 
Lett., 42,1039-1045, doi:10.1002/ 
2014GL062097.

Received 3 OCT 2014 
Accepted 9 JAN 2015 
Accepted article online 14 JAN 2015 
Published online 18 FEB 2015

A compositional origin to ultralow-velocity zones
Samuel P. Brown1, Michael S. Thorne1, Lowell M iyag i1, and Sebastian Rost2

’Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, USA, 2School of Earth and Environment, 
University of Leeds, Leeds, UK

Abstract We analyzed vertical component short-period ScP waveforms for 26 earthquakes occurring in 
the Tonga-Fiji trench recorded at the Alice Springs Array in central Australia. These waveforms show strong 
precursory and postcursory seismic arrivals consistent with ultralow-velocity zone (ULVZ) layering beneath 
the Coral Sea. We used the Viterbi sparse spike detection method to measure differential travel times and 
amplitudes of the postcursor arrival ScSP and the precursor arrival SPcP relative to ScP. We compare our 
measurements to a database of 340,000 synthetic seismograms finding that these data are best fit by a ULVZ 
model with an S wave velocity reduction of 24%, a P wave velocity reduction of 23%, a thickness of 8.5 km, 
and a density increase of 6 %. This 1:1 VS:VP velocity decrease is commensurate with a ULVZ compositional 
origin and is most consistent with highly iron enriched ferropericlase.

1. Introduction
A salient feature of the core-mantle boundary (CMB) region is the existence of ultralow-velocity zones (ULVZs). 
ULVZs have been detected using many seismic phases, including SPdKS [e.g., Thorne and Garnero, 2004], PcP 

[e.g., Mori and Helmberger, 1995], ScP [e.g., Garnero and Vidale, 1999], ScS [Avants et ai, 2006], PKP precursors 
[e.g., Vidale and Hedlin, 1998], and anomalies in travel time or slowness of a variety of different phases [e.g., Xu 

and Koper, 2009]. These studies show that ULVZs are characterized by a wide range of elastic parameters. For 
example, 5 wave velocity reductions (<5Vy have been reported as large as 45% (all percentages reported with 
respect to the Preliminary Reference Earth Model (PREM) [Dziewonski and Anderson, 1981]), P  wave velocity 
reductions [SVP) as large as 20%, density increases (dp) of up to 10%, and thicknesses of up to 40 km (see Thome 

and Garnero [2004] for a review). Nevertheless, strong trade-offs typically exist in the model space [e.g., Garnero 

and Helmberger, 1998], and many of these parameters are uncertain.

Of the elastic parameters, the P  wave velocity reduction is the most well constrained parameter. The seismic 
phase SPdKS is primarily sensitive to the P wave velocity reduction at the base of the mantle [see, e.g., Rondenay 

et al., 2010]. In the southwest Pacific Ocean region, P wave velocity reductions of 10 to 15% are well constrained 
[Thorne et al., 2013; Zhang et al., 2009] in at least one ULVZ. Density contrast is less certain, with one study 
providing a constraint of 10 ± 5% in a ULVZ beneath the Coral Sea [Rost et al., 2005] and another study providing 
density constraints in ULVZs beneath the Philippine Islands from 5-10% and 20-25% [Idehara, 2011]. The 
S wave velocity reduction appears quite variable, with one study demonstrating an S wave velocity reduction of 
roughly 7% beneath the central Pacific using postcursors to the ScS phase [Avants et al., 2006], while Idehara 

et al. [2007] examined ScP postcursors beneath the Philippine Sea to show that the S wave velocity decrease 
must be at least 20%. Additional evidence beneath the Coral Sea from ScP arrivals shows an 5 wave velocity 
decrease of 24% [Rost et al., 2006]. Due to the trade-off between P wave velocity, S wave velocity, and thickness, 
it is difficult to determine the ULVZ elastic parameters precisely. Nonetheless, constraining these parameters is 
paramount in determining what ULVZs physically represent.

The seismic phase ScP is of utmost importance in studying ULVZs as it is sensitive to all elastic parameters 
[Garnero and Vidale, 1999]. ScP is an S wave that converts to a P  wave at its reflection on the CMB. Figure 1a 
shows the ScP raypath through the mantle, with the direct P  wave path for comparison. The reason ScP is well 
suited for ULVZ studies is because of the existence of at least two precursors and one postcursor that are 
predicted if the ScP wavefield interacts with a ULVZ. These additional phases (Figure 1b) are (1) SdP—a 
precursor occurring from the reflection off the top of the ULVZ, (2) SPcP—a precursor occurring when the 
downgoing S wave converts to a P wave at the top of the ULVZ, and (3) ScSP—a postcursor that occurs when 
the upgoing ScS wave converts to a P  wave at the top of the ULVZ. A synthetic seismogram showing the 
predicted ScP waveform for the PREM model is compared to the predicted waveform for a model including a
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The value of ScP in determining the S wave velocity 
reduction is that the amplitudes of the SdP and ScSP 

arrivals are most strongly dependent on the S wave 
velocity reduction [Rost and Revenaugh, 2003]. However, 
precise determination of the amplitudes of the ScSP 

postcursor is complicated by the presence of the ScP coda, 
which is most pronounced in the short-period data. 
Additionally, both of the precursor arrivals are predicted to 
have relatively low amplitudes with respect to ScP (see 
Figure 1 c), and the majority of studies have only identified 
a single precursor due to the interference of the two 
low-amplitude phases [e.g., Rost et al., 2005]. In this paper 
we examine ScP waveforms interacting with a known ULVZ 
in the southwestern Pacific Ocean region [Rost et ai, 2005, 
2006]. We use the Viterbi sparse spike detection (VSSD) 
method [Brown and Thorne, 2013] to accurately determine 
differential travel times and amplitude ratios for ScP 

precursor and postcursor arrivals. We compare this set of 
measurements to synthetic predictions constraining S and 
P wave velocity reductions in a single ULVZ.

-10
I 1 ! 1 1 i 1 1 1 1 i 1

-5 0 5 10 
Relative Time (sec)

15
2. ScP Data and Viterbi Sparse Spike 
Detection Method
We analyze a data set of ScP records from 26 earthquakes 
in the Fiji-Tonga area recorded at the Alice Springs 
Array located in central Australia. Individual records were 
band-pass filtered between 1 and 4 Hz and beamformed on 
the ScP arrival to provide a single high signal-to-noise ratio 
trace for each event (see Rost et al. [2006] for the details 
on event beams, event locations, and bouncepoint location). 
These events provide a tight cluster of ScP bounce points 
(roughly 30 km x 30 km) on the CMB centered at 167.5°E 
longitude and 25°S latitude, spanning an epicentral distance 
range from 40.9° to 42.8°. Rost et al. [2006] identified a 
precursor (arriving 1.9 s prior to the ScP arrival) identified as 
the SdP arrival. An SPcP precursor and ScSP postcursor are 
also apparent in these data; yet these arrivals are partially 
masked by destructive interference from the ScP arrival.

We use the Viterbi sparse spike detection (VSSD) 
technique [Brown and Thorne, 2013] to search for ScP 

precursor and postcursor directly in the recorded traces 
while simultaneously obtaining estimates of their relative amplitudes and differential travel times. Given 
an approximate source time function, the VSSD method provides a statistically robust way to search a 
predefined set of spike trains for the best nonlinear fit to a composite waveform, accounting for Gaussian 
distributed random noise, errors in the source time function, and constructive/destructive interference 
between closely spaced arrivals. A synthetic trace is built for each candidate spike train through convolution 
with the source time function. A profile hidden Markov model (HMM) [Eddy, 1995] is built for each synthetic 
trace. The profile HMM represents a stochastic model for generating synthetic waveforms, the most likely of

Figure 1. (a) Direct P wave (black) and ScP rays are 
shown at epicentral distances of 40°, 45°, and 50°.
(b) Detail of raypaths near the core-mantle boundary 
for precursory and postcursory rays associated with a 
ULVZ Raypaths are drawn for a ULVZ model with 
thickness = 20 km, SZs = —30%, and SVP= —10%. Rays 
are color coded red and blue for the S and P legs of 
the raypaths, respectively, (c) Vertical component 
displacement synthetic seismograms calculated for the 
PREM (Figure 1c, top) and ULVZ (Figure 1c, bottom) 
models. The ULVZ model is the same as for which rays 
are drawn in Figure 1 b. Seismograms are aligned at 
zero time on the PREM ScP arrival. In addition to the 
arrivals drawn in Figure 1b, additional reverberations 
inside the ULVZ are also observed—phases labeled 
ScsscP and ScsscSP. Raypaths and synthetics in 
Figures 1b and 1c are calculated for an epicentral 
distance of 45°.
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which will be the synthetic upon which the model is based. The model consists of a linear array of match states, 
where each match state corresponds to a sample in the synthetic seismogram, and is characterized by a 
Gaussian distribution centered on the synthetic sample amplitude. The linear topology is augmented with 
insert and delete states between match states, which allow the waveforms to contract and dilate, facilitating 
nonlinearity in waveform alignments. The Viterbi algorithm [Viterbi, 1967] is applied to find the optimal 
nonlinear alignment between a data trace and the profile HMM. This optimal alignment represents the path 
through the HMM, which generates the data trace with the highest probability. The optimal path, n*, is the state 
sequence which optimizes the following equation:

P* (Data | Model) = J J (. a£, gj(dj), (1)

where i is a sample index for the data trace, dj is a sample of the data trace, ow is a transition probability associated 
with transitioning from state k to I, and g , is a Gaussian distribution associated with each sample amplitude in 
the synthetic model. The state integer n  represents a specific state sequence that determines the values of k and 
/. A log-odds score S is assigned to each profile HMM, based on the optimal alignment to a data trace:

S ( D a t a | M o d e l ) = l o g ( ^ [ ^ ) ,  (2)

where W is a white noise model. The log-odds score is a ratio of the likelihood of a given model producing a 
given data trace over the likelihood of a white noise model producing the data trace. Travel times and 
amplitudes for each individual arrival in a complex waveform are derived from the highest scoring model. 
Relative amplitudes are taken directly from the spike train from which the model was built, and differential 
travel times are adjusted based on the optimal alignment.

We create an empirical source, between 2 and 3 s in length, composed of a windowed and tapered direct 
P  wave arrival for each event (Figure 2a). The direct P wave arrival was too noisy to provide a suitable source 
time function estimate for 10 of the 26 events, which led to their exclusion from this analysis. The ScP arrival 
travels a longer path through the mantle and is more attenuated than the P wave arrival. Thus, the frequency 
content of our empirical source is slightly higher than for the ScP arrival, but this variation in frequency 
content is accommodated for by the VSSD method [Brown and Thorne, 2013].

3. Results
Figure 2a shows an example where we search for multiple (1 to 6 ) arrivals in a beamed trace from a single 
event recorded at Alice Springs Seismic Array using the VSSD method. When only one arrival is searched for, 
the algorithm finds the ScP arrival. When we search for two arrivals, we recover the ScSP arrival, the next 
highest-amplitude arrival after ScP. The third arrival finds an additional postcursor, and the fourth arrival finds 
the SPcP precursor. Looking for five and six arrivals does not reveal a consistent SdP arrival, and the increase 
in log likelihood score starts to flatten. Additionally, the amplitude of arrivals greater than four becomes 
increasingly lower and within the noise level; thus, we expect that no more than four arrivals can consistently 
be determined in these data. The overall data fit increases when searching for five or six arrivals but does not 
significantly influence the travel time or amplitude of the arrivals already determined, and we hence limit our 
search to the five largest amplitude arrivals in the ScP wavefield for the events in our data set.

Figure 2b shows VSSD alignments and picks for the 16 events analyzed. The inclusion of the postcursor beyond 
ScSP is necessary to get a good waveform fit for ScSP. This additional postcursor is possibly a diffracted arrival off 
the far edge of the ULVZ and is too large amplitude to be consistent with one of the ULVZ reverberations shown 
in Figure 1c. Figure 3a shows the differential travel times versus relative amplitudes for all 16 events. The 
average ScP-SPcP differential travel time is 0.9094 ± 0.0455 s, and the average ScSP-ScP time is 0.8625 ± 0.0806 s. 
Average amplitude ratios are SPcP/ScP= -0.2555 ± 0.0671 and ScSP/ScP=0.5073 ± 0.1448.

Synthetic seismograms are computed using the generalized ray method (GRM) [Helmberger, 1983]. We use 
the PREM background model with a 1-D ULVZ model embedded at the base of the mantle. Synthetic 
seismograms are computed for a 500 km deep event at an epicentral distance of 42°. We used the GRM in 
order to model individual arrivals obtaining a spike train similar to those obtained using the VSSD technique. 
We compute synthetic seismograms where we allow the following ULVZ parameters to vary: (1) SVs decreases 
from 0% to 50% in 1 %  increments, (2) SVP decreases from 0% to 30% in 1 %  increments, (3) 8p variations from
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Figure 2. (a) Analysis of a single event occurring on 25 November 2000. The top trace (black line) shows the direct P wave. The 
dashed blue line shows the windowed P wavelet used as the source time function estimate. The second trace from the 
top (heavy black line) shows the raw ScP wavelet which is repeated for each trace below. Each subsequent trace shows the 
best fit VSSD solution for this event using 1 through 6 arrivals. In each case, the red spike shows the best fit amplitude and 
travel time for the number of arrivals being fit. The light blue trace is an overlay of the source time function convolved with the 
best fit spike train. The log-odds score is shown to the right for each fit. Because the amplitudes for arrivals 5 and 6 are low, we 
have highlighted their positions with red circles, (b) Travel time and amplitude picks (red spikes) computed by the VSSD 
method for the 16 events analyzed in this study are shown. The beam-formed ScP trace for each event is shown as the gray 
trace. The VSSD-derived waveforms are overlain (black traces). The lowermost two traces are GRM synthetic predictions 
convolved with a 0.25 s dominant period source time function at an epicentral distance of 42°. The red trace is for a ULVZ 
model with SVs = -24%, SVP=  -23%, thickness = 8.5 km, and density = +6%, and the green trace is for a ULVZ model with 
8ZS= -24%, SVP= -8%, thickness = 85 km, and density = +10%.

-10% to 20% in 1% increments, and (4) ULVZ thickness (h) from 1 to 20 km in 1 km increments. In total, we 
have a database of synthetic seismograms for nearly 340,000 ULVZ models.

In order to characterize the likelihood of models from the suite of synthetics, four Gaussian probability mass 
functions were defined from the means and variances of the measured differential travel times and relative 
amplitudes. Figure 3b shows P 1 (dVs,(Np), the likelihood of models considering only differential travel times 
and amplitudes of ScSP relative to ScP, which we define as

P, (dVs, dVP) = argmax/)(< Pascsp(dvs, dVP, dp, h) * Ptscsp(dV5, dVP, dp, h) >), (3)

where h denotes ULVZ thickness, PascSp(dVs, dVPldp, h) is the probability assigned to the ScSP/ScP differential 
amplitude for a given synthetic model, PtscsddVs,8VP,dp,h) is the probability assigned to the ScSP-ScP 

differential travel time, and <> denotes an ensemble average over density variations. Examination of 
Figure 3b demonstrates that the ScSP postcursor provides a strong constraint on SVs, giving an approximate 
value of -25%, which is consistent with the Rost et al.'s [2006] estimate of SVs.

Figure 3c shows P2 (dVs,d^P), the likelihood of models considering differential travel times and amplitudes of 
both ScSP and SPcP relative to ScP, which we define as

d > ( K  BVP, Sp,h) * Pt5cSP(dVs, SVP, 6p ,h )*\
Pi {SVs,dVp) =  argmaxJ I, (4)

\ PaSPcp{oVs, 8Vp, Sp, h) P(Spcp(dVs,dVp,dp,h) >  )

where PaspcpidVs,dVp,dp,h) is the probability assigned to the SPcP/ScP differential amplitude for a given 
synthetic model, PtSpcp(dVs, &/p,Sp,h) is the probability assigned to the ScP-SPcP differential travel time pick.
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Figure 3. (a) VSSD measured differential travel times versus relative amplitudes. The red circles show ScP-SPcPand -SPcP/ScP differentials, whereas the green circles 
show the ScSP-ScP and ScSP/ScP differentials. The gray crosses show the average and 1o error bars for the measurements. The size of the circles is scaled by the 
signal-to-noise ratio of the ScP beam, (b) Velocity variation likelihood, constrained only by ScSP travel times and amplitudes, (c) Velocity variation likelihood, 
constrained by ScSP and SPcP travel times and amplitudes.

We see a clear peak in the likelihood plot (Figure 3c) located at SVP=  -23% and SV5 = -24%. The most likely 
individual model is given by

P =  max (  Pa5cSp{-dVs’dVp’8p' h) *  dVp* * > 'W  A {5)3 ^  V PaSPcP(dVs , dVP, dp, h ) * Pt5Pcp(dVs, dVP,dp, h ) J

This provides a best fit model with the following parameters: SVs =  -24%, SVP=  -23%, Sp =  +6%, and 
h = 8.5 km. The synthetic seismogram for this best fit model is shown in Figure 2b. The additional information 
from SPcP resolves the ambiguity between 5VP and h. Density variation within the ULVZ is the least well 
constrained of the elastic parameters and does not lead to a significant change in model probability over the 
range of density variations tested.

4. Discussion and Conclusions
The results of Rost et al. [2006] fit synthetic waveforms and determined a best fit model of SVs = -24%, 
SVP=  - 8 %, dp =+10%, and h = 8.5 km, which we will refer to as the partial-melt model due to its 3:1 VS:VP ratio. 
A synthetic for this model is also shown in Figure 2b. There is not a large amount of difference in amplitude or 
travel time for the SPcP and ScSP arrivals for these different predictions. Yet the partial-melt model predicts a 
negative polarity SdP arrival, whereas our best fit model predicts a positive polarity SdP arrival. We are not 
able to constrain amplitude or travel time of the SdP arrival in our individual event beams. We further apply 
the VSSD technique to a trace created by forming a double beam of all events in order to further enhance an 
SdP arrival. However, the SdP arrival is within the noise level, and the polarity of the SdP arrival cannot be 
constrained (see supporting information); hence, the partial-melt model cannot be entirely ruled out.

The origins of ULVZs have been suggested to be due to a variety of causes including a metal-bearing layer 
[Manga andJeanloz, 1996], iron-enriched postperovskite [Mao etai, 2006], iron enrichment of ferroperidase 
(Fp) [Wicks et al., 2010], and partial melt [Berryman, 2000; Labrosse et al., 2007; Williams and Garnero, 1996]. 
Of these scenarios, partial melt has received the most attention. This partial-melt origin for ULVZs predicts 
a 3:1 ratio for reduction of VS:VP wave speeds [Williams and Garnero, 1996], which is incompatible with our 
most likely model which has a 1:1 ratio. This reduction is consistent with compositional or mineralogical 
variations, and thus, we explore these scenarios.

Using elastic properties and densities available in the literature, we calculate changes in velocity and density 
for several mineralogical models at conditions of 136GPa and 3500 K. Since the detailed mineralogical and 
chemical composition at the base of the mantle is uncertain, rather than attempt to model a complete 
mineralogical mixture, we perform a computation where the mineral phase of interest is mixed with PREM
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velocities and densities [Wicks et al., 2010]. We explore possible enrichment of Fp with 35% Fe (Fp35)
[Chen et al., 2012], Fp with 84% Fe (Fp84) [Wicks et al., 2010], hexagonal close packed Fe [Lin et al., 2005], 
FeSi03 postperovskite [Stackhouse and Brodholt, 2008], Fe20 3 postperovskite [Stackhouse and Brodholt, 2008], 
FeSi03 perovskite [Stackhouse et al., 2006], and B2 structured FeSi [Caracas and Wentzcovitch, 2004; Ono, 

2013; Votadlo et al., 2002]. We find that 25-30% enrichment of Fp84 is the only model tested that provides a 
decrement ratio of 1:1 with a 23% decrease in velocities and a 6 %  increase in density. Notably, Fp35 does 
not provide a 1:1 decrease at these velocity reductions, which implies that very high Fe content is required 
(i.e., in excess of 35% substitution). Thus, our seismic data are most consistent with a solid state ULVZ enriched 
in high Fe content Fp, perhaps even approaching pure wustite (FeO) end-member composition.

Since it is controversial if temperatures at the base of the mantle are hot enough to induce significant melting 
of mantle material [Andrault et al., 2011], and because our observations are incompatible with partial melt, 
we propose a mechanism that does not require melting of mantle material. In this mechanism, ULVZs are 
formed through entrainment of core material followed by chemical reaction and gravitational settling. This 
mechanism can explain observations for the formation of solid state (1:1) and partially molten (3:1) ULVZs. 
When Fp is in contact with molten Fe, a morphological instability occurs, allowing liquid iron droplets to 
penetrate deep into Fp, providing a mechanism for entrainment of core material into the mantle [Otsuka and 

Karato, 2012]. Liquid Fe has a very high affinity for oxygen, so it is expected that liquid Fe should "strip" 
oxygen away from the surrounding mantle material [Asahara et al., 2007]. As this Fe-enriched material 
percolates upward from the core-mantle boundary, the steep geotherm in this region is likely to cause 
precipitation of solid material. We expect that since the amount of Fe drawn out of the core is relatively small 
compared to the volume of the surrounding mantle [Otsuka and Karato, 2012], the Fe droplets should become 
highly enriched in oxygen. If there is sufficient oxygen enrichment, the material lies on the oxygen-rich side 
of the Fe-FeO eutectic, pure solid FeO will precipitate [Seagle et al., 2008]. Reactions between liquid Fe and 
mantle silicates to form FeO and FeSi have been documented in high pressure-temperature experiments 
[e.g., Knittle andJeanloz, 1989]. If FeSi is produced by such a reaction [Knittle andJeanloz, 1989], and it has a 
lower melting temperature than Fe [e.g., Santamaria-P6rez and Boehler, 2008], it should remain in the molten 
state, likely alloyed with the molten Fe droplets. This residual molten FeSi alloy will be denser than mantle 
silicate [Caracas and Wentzcovitch, 2004] and may eventually drain back to the core in the liquid state but may 
temporarily form partially molten ULVZs. Percolation of Fe droplets into the mantle is strongly temperature 
controlled [Otsuka and Karato, 2012], and we expect that this process is broadly occurring across the CMB. 
However, in hotter regions (e.g., near Large Low Shear Velocity Provinces (LLSVPs)), this process will be more 
efficient. Localized regions of Fe percolation could also give rise to temporary partially molten ULVZs. However, 
as the Fe reacts with silicate mantle, FeO collection at the base of the mantle will occur. McNamara etal. [2010] 
have shown that a dense ULVZ-like layer will get swept toward the edges of LLSVPs. Hence, FeO-rich ULVZs may 
pile up into ULVZs observed at LLSVP boundaries.
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APPENDIX

PROFILE HIDDEN MARKOV MODELS 

AND THE VITERBI ALGORITHM

A.1 Markov Chains

A Markov chain is a statistical model that can be used to generate discrete time 

sequences through the process of stochastic modeling. We can visualize a Markov chain 

as a finite state automata (FSA) like the one pictured in Figure A.1 In this diagram, the 

cirlces and diamonds represent states, and the arrows represent state transitions. The set 

of states, ! ,  can be defined as:

!  = {!, 0 ,1 ,!} . (A.1)

We may refer to states either by their label, or by an index, 5, which will represent their 

respective positions in the definition of 0. The Markov chain will be used to generate a 

discrete time sequence, indexed by the variable t. At each time step, t, of a stochastic 

simulation, the model will be in one particular state, represented by the random variable 

St, which may take on any of the values of 0.

The state B  is a special state, representing the beginning of a sequence. A stochastic 

simulation will start in state B, or in other words So = B. At each time step, t=I,2,3,...T, 

the value of St will be updated. The simulation will continue until the terminal time, T,



defined as the time at which the E  state is entered. Upon entry, each of the diamond­

shaped states will emit a value corresponding to the state label. For this reason, these 

states are referred to as emitting states. B  and E  are nonemitting states, which model the 

beginning and ending of sequences. Assuming that the E  state is entered at time T, the 

Markov chain in Figure A.1 will generate a sequence of T-1 samples, whose values are 

either 0 or 1.

A stochastic simulation is governed by a matrix of state transition probabilities, A, 

which can be defined as:

A = [aij | Uij = P(St = j \  St_! = !)}. (A.2)

This states that the probability of entering state j  at time t, P(St=j), is a conditional 

probability, dependent on the state St-1. Each entry in A  corresponds to one of the arrows 

in Figure A.1. By definition:

y / T ,  aij = 1  (a.3)

which simply states that the probabilities associated with transitions from any given state 

sum to 1. The probability of generating a given sequence, S, can be written as:

P(S) = P(St,St-i,...,Si,So). (A.4)

By definition, S0 = B, so P(S0) = 1. We will define each random experiment which 

produces an element of a sequence, St, to be an independent random experiment, which 

allows Equation A.4 to be rewritten as:
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P(S) = P ( S t \St-j,S t-2 ,...,S]) P ( S t-j \St-2,St-3 ,...,S]■)... P (S )  (A.5)

From the FSA diagram, it is easy to see that P(S) depends only on the previous state, 

as P(St = j)  is simply one of the entries of A, with i determined by St-1. This is a 

statement of the Markov property, which allows us to rewrite Equation A.5 as:

P(S) = P ( S t \St-])P (S t-]\St-2) .  P(Si), (A.6)

or equivalently as:

T

p (S) = [ “[ aW t . (A 7)
t  = !

Stated simply, the Markov property indicates that the probability of entering any given 

state is dependent solely on the previous state, and not on the entire sequence of 

preceding states. It should be noted that the sum of the probabilities of all possible 

sequences sums to 1, or:

2  = !. (A.8)
s

Given values for the matrix A , it is a simple matter to carry out stochastic simulations 

with a computer program. In the examples that follow, superscripts will be used to 

differentiate sequences output from individual simulations. For example, using the 

transition probabilities defined in Table A.1, one stochastic simulation produces the 

following sequence, S1:
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S1 = [01111001000], 

with the production probability P(S1) = 4.89039 x 10"3. A subsequent simulation 

produces the sequence:

S2 = [1000100001001010010111100001000110110110],

with the production probability P(S2)  = 4.93535 x 10"07.

So far the discussion has concentrated on the generation of time sequences, but 

Markov chains can be used to generate any kind of discrete sequence. For example, the 

Markov chain in Figure A.2, in which the states represent nucleic acids, can be used to 

generate DNA sequences. In this case the state sequence is indexed by position rather 

than time. One could also generate protein sequences by creating a larger Markov chain 

with 20 emitting states. In this case, each emitting state would correspond to one of the 

20 amino acids that make up proteins. The analysis of protein sequences has played an 

important role in the development of profile hidden Markov models, which will be 

discussed later.

A.2 Hidden Markov Models 

In the Markov chains previously discussed, each state emits a unique symbol that is 

also used as a state label. We can create a class of more general models by separating the 

state labels from the emission symbols. Consider the FSA pictured in Figure A.3, with 

the state set, !  = {B, PI, P2 , ! .  We will now introduce a set of emission symbols, 

!  = {0,1}. Each emitting state, P1 and P2, will be allowed to emit any symbol from !  

based on a state-specific emission probability distribution, G, defined as:
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(A.9)

where xt is the symbol emitted at time t, m is the state index, and n is an index into the set 

of emission symbols, ! .  The random variable Dt will represent the symbol emitted at 

time t. The value of Dt will be null during time steps that occupy nonemitting states. For 

reasons which will soon become clear, this new type of model is referred to as a hidden 

Markov model.

The separation of state labels and symbol emissions effectively adds a second 

stochastic stage to simulations. The first stage produces state transitions, and the the 

second stage emits symbols from !  using state-specific emission probabilities. In a two- 

stage stochastic simulation, the probability of a sequence S  becomes:

If we were to assign the transition probabilities from Table A.2 and the emission 

probabilities from Table A.3 to the HMM in Figure A.3, we would produce an HMM 

which is equivalent to the Markov chain in Figure A.1 with the transition probabilities 

defined in Table A.1. This is because the emission probabilities in Table A.3 only allow 

exclusive emissions of 0 for P I  and 1 for P2. The emission probabilities in Table A.4, 

however, allow both PI and P2 to emit either 0 or 1. Using the emission probabilities in

P(S) = P(Dt\St) P(St\St-,) P(Dt-,\St-,)P(St-,\St-2 )-P (D i \Si)P(Si), (A10)

which can be written more compactly as:

(A11)



Table A.4, and the transition probabilities in Table A.2, one stochastic simulation 

produces the following sequence:

S3 = [11110101000010101111111101001010010111111100000011101],

with a production probability of P(S3)  = 2.1667 x 10-16, and a subsequent simulation 

produces this sequence:

S4 = [01101110],

with a production probability of P(S4)  = 1.08714 x 10-3.

When we considered stochastic simulations involving Markov chains, the state 

sequence traversed during the simulation could be directly inferred from the output 

sequence itself. This is not the case with these two hidden Markov model simulations. 

Many state sequences exist that are capable of generating these output sequences. Each 

possible state sequence has its own production probability, which is not necessarily 

unique. Given only the output sequence, the state sequence which produced the output 

sequence is hidden, which is why these types of models are called hidden Markov 

models. Even given the production probability and the output sequence, an inversion for 

the exact state sequence may be ill-posed as the solution generally exhibits non­

uniqueness.

While it may not be possible to recover the exact state sequence that produced a given 

observed sequence, it is possible to recover the state sequence which produced an 

observed sequence with the highest production probability, P*(S). The optimal state 

sequence, n*, can be thought of as an optimal path traced through the HMM state
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machine. A naive approach to discovering the optimal state sequence would be to 

explicitly calculate and compare the production probabilities for each possible path 

through the HMM that generates the desired output sequence. Since the number of 

possible paths grows geometrically with the number of elements in the output sequence, a 

more computationally-efficient approach is desired. Fortunately a better solution exists, 

and is known as the Viterbi algorithm (Viterbi 1967). The Viterbi algorithm uses 

dynamic programming to discover the optimal path with a computational cost that is 

proportional to the number of states times the number of elements in the output sequence. 

Should there exist multiple state sequences which generate a given sequence with 

probability, P*(S), we shall be satisfied with whichever one the Viterbi algorithm 

produces, and refer to this sequence as the optimal state sequence, !*. This can be 

justified by the statistical nature of this approach.

The Viterbi algorithm is enumerated in Figure A.4. The algorithm utilizes a dynamic 

programming approach to find the optimal state sequence. The sequence elements are 

essentially streamed through the model, and for each state the path which has that 

particular state emitting the current sequence element is discovered. Due to the Markov 

property, the maximal probability of any given state emitting any sequence element can 

be uniquely determined by examining solely the probabilities associated with the 

previous sequence element. The optimal path for the entire sequence is found by tracing 

backwards through all the state transitions leading to the highest probability for the 

terminal sequence element.



A.3 Profile Hidden Markov Models 

Often times when working with HMMs, the goal is not to produce sequences through 

stochastic modeling, but to use the HMM to gain insight into data that has been collected 

through field recordings or by some other means. When we use an HMM to analyze 

data, we are making the assumption that the data itself was generated by some stochastic 

process, and that the HMM in question models that stochastic process with a sufficient 

level of accuracy. Typically the Viterbi algorithm is used to calculate the optimal state 

sequence corresponding to the data to be analyzed, and the optimal state sequence is then 

used to make inferences with regards to the data. Profile HMMs are a particularly 

effective tool for this type of analysis. Profile HMMs exhibit an overall linear topology, 

which is created by only allowing specific state transitions. Figure A.5 shows the Plan 7 

HMM architecture (Eddy 1995), which is an example of a profile HMM. Due to the 

linear topology of profile HMMs, we can think of the optimal state sequence as 

representing the best nonlinear alignment between the data and the model representing a 

stochastic process.

Profile HMMs were originally introduced by Krogh et al. (1994) to align biological 

sequences. The Plan 7 HMM architecture, pictured in Figure A.5, was introduced by 

Eddy (1995) for searching databases of multiple protein alignments to obtain 

functionally-related matches to a target protein sequence. A multiple alignment is a 

probabilistic model obtained by aligning several protein sequences which are related 

through evolutionary processes. The protein sequences making up a multiple alignment 

represent a family of proteins that have similar functionality. Central to the Plan 7 HMM 

is a set of (M)atch, (I)nsert and (D)elete states. The Plan 7 HMM takes its name from the
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seven state transitions between (M)atch, (I)nsert and (D)elete states.

In the protein sequence search application of Eddy (1995) , each set of (M)atch, 

(I)nsert and (D)elete states corresponds to a single column in a multiple alignment. The 

(M)atch and (I)nsert states can emit any of the 20 amino acids according to state-specific 

probability distributions. The emission distribution for a (M)atch state would typically be 

generated from the frequency with which each amino acid occurs in the corresponding 

column of a multiple alignment. The (I)nsert state allows for evolutionarily plausible 

insertions of amino acids into a protein sequence. The (D)elete state is a nonemitting 

state, which allows for deletions of amino acids.

Typically, a Plan 7 HMM would be built from many multiple alignments in which the 

(M)atch, (I)nsert, and (D)elete states from each alignment are concatenated to form a 

long, linear HMM. New states, S  and T are introduced to begin and terminate state 

sequences. The B  and E  states serve similar functions as before, except now they model 

the beginning and ending of subsequences. Multiple subsequences can be combined by 

traversing the J  state. The N, C, and J  states have self-transitions to consume elements of 

the data sequence that do not match the main model well. The optimal state sequence 

will be analyzed to identify multiple alignments that match the observed data well. This 

is generally indicated by the traversal of several (M)atch states corresponding to a 

particular multiple alignment in a subsequence of the optimal path, and may indicate that 

the corresponding multiple alignment is functionally related to the observed data.

In Chapter 2, we adapt the Plan 7 HMM to model seismic data. Instead of multiple 

protein alignments, the model will be built on discretely sampled and scaled wavelets. 

Assuming a Gaussian-distributed noise model, the (M)atch state emission probabilities

34



will be Gaussian distributions, with the mean corresponding to the amplitude of a 

particular sample. The optimal state path will illuminate the most probable instances of 

wavelets contained in a trace, and will allow us to directly infer their travel times and 

amplitudes.
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Figure A.1. A Markov chain for generating binary sequences, visualized as a finite state 
automata. The circles and diamonds represent states, and the arrows represent state 
transitions.

Figure A.2. A Markov chain for generating DNA sequences.
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Figure A.3. A hidden Markov model for generating binary sequences. Both the P1 and 
P2 states may emit either 0 or 1, based on an emission probability mass function.

1. Initialization
! lCD = !l,x, Yi(j) =  0

2. Recursion
fo r  all t imes t, t = 1... T — 1: 

!t+iC0 = max Pt ( 0  at" gJiX+1 !t+ i(/) =  arg max Pt (0 ! jI 1

3. Termination
P*(S) = max PT (!)

= arg max PT (!)

4. Optimal Path Back-Tracking
f o r  all t imes t, t  =  T — 1 .„ 1: 

= Yt+l( =  1

Figure A.4. The Viterbi algorithm for calculating the optimal state sequence !  *. 
Adapted from Viterbi (1967).
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Figure A.5. Plan 7 HMM architecture. The allowed state transitions give the HMM a 
linear topology, and the name is derived from the seven state transitions between 
(M)atch, (I)nsert, and (D)elete states. Adapted from Durbin et al. (1998).
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Table A.1. Example transition matrix for the Markov chain in Figure A.1. Each row 
indicates the transition probabilities from a given state to all other states. Zeros indicate 
the absence of state transitions.

State B 0 1 E

B 0 .5 .5 0

0 0 .5 .45 .05

1 0 .52 .41 .07

Table A.2. Example transition matrix for the hidden Markov model in Figure A.3. The 
transition probabilities are the same as in Table A.1, however the state names have been 
changed to emp-lasize the fact that state labels no onger imp y symbol e

State B P1 P2 E

B 0 .5 .5 0

P1 0 .5 .45 .05

P2 0 .52 .41 .07

Table A.3. Example emission probabilities for the hidden Markov model pictured in 
Figure A.3. The probability mass functions defined by this table make the hidden 
Markov model in Figure A.3 equivalent to the Markov chain in Figure A.1

State 0 1

P1 1 0

P2 0 1

Table A.4 Example emission probabilities for the hidden Markov model in Figure A.3.
State 0 1

P1 .55 .45

P2 .4 .6
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