227 research outputs found

    Conflict Analysis in Search Algorithms for Satisfiability

    No full text
    This paper introduces GRASP (Generic search Algorithm jr the Satisfiabili{y Problem), a new search algorithm jr Propositional Satisfiabili{y (SAT). GRASP incorporates several search-pruning techniques, some of which are specific to SAT, whereas others find equivalent in other fields of Artificial Intelligence. GRASP is premised on the inevitabili{y of conflicts during search and its most distinguishingjature is the augmentation of basic backtracking search with a powerful conflict analysis procedure. Analyzing conflicts to determine their causes enables GRASP to backtrack non-chronologically to earlier levels in the search tree, potentially pruning large portions of the search space. In addition, by 'gecording" the causes of conflicts, GRASP can recognize and preempt the occurrence of similar conflicts later on in the search. Finally, straigh&rward bookkeeping of the causali {y chains leading up to conflicts allows GRASP to identij) assignments that are necessary jr a solution to be jund. Experimental results obtained jom a large number of benchmarks indicate that application of the proposed conflict analysis techniques to SAT algorithms can be extremely efctive jr a large number of representative classes of SAT instances

    GRASP: A New Search Algorithm for Satisfiability

    No full text
    This paper introduces GRASP (Generic search Algorithm J3r the Satisfiabilily Problem), an integrated algorithmic J3amework 30r SAT that unifies several previously proposed searchpruning techniques and jcilitates identification of additional ones. GRASP is premised on the inevitability of conflicts during search and its most distinguishingjature is the augmentation of basic backtracking search with a powerful conflict analysis procedure. Analyzing conflicts to determine their causes enables GRASP to backtrack non-chronologically to earlier levels in the search tree, potentially pruning large portions of the search space. In addition, by 'ecording" the causes of conflicts, GRASP can recognize and preempt the occurrence of similar conflicts later on in the search. Einally, straighrward bookkeeping of the causali y chains leading up to conflicts a/lows GRASP to identij) assignments that are necessary jr a solution to be found. Experimental results obtained jom a large number of benchmarks, including many J3om the field of test pattern generation, indicate that application of the proposed conflict analysis techniques to SAT algorithms can be extremely ejctive jr a large number of representative classes of SAT instances

    Intelligent search strategies based on adaptive Constraint Handling Rules

    Full text link
    The most advanced implementation of adaptive constraint processing with Constraint Handling Rules (CHR) allows the application of intelligent search strategies to solve Constraint Satisfaction Problems (CSP). This presentation compares an improved version of conflict-directed backjumping and two variants of dynamic backtracking with respect to chronological backtracking on some of the AIM instances which are a benchmark set of random 3-SAT problems. A CHR implementation of a Boolean constraint solver combined with these different search strategies in Java is thus being compared with a CHR implementation of the same Boolean constraint solver combined with chronological backtracking in SICStus Prolog. This comparison shows that the addition of ``intelligence'' to the search process may reduce the number of search steps dramatically. Furthermore, the runtime of their Java implementations is in most cases faster than the implementations of chronological backtracking. More specifically, conflict-directed backjumping is even faster than the SICStus Prolog implementation of chronological backtracking, although our Java implementation of CHR lacks the optimisations made in the SICStus Prolog system. To appear in Theory and Practice of Logic Programming (TPLP).Comment: Number of pages: 27 Number of figures: 14 Number of Tables:

    Proceedings of SAT Competition 2021 : Solver and Benchmark Descriptions

    Get PDF
    Non peer reviewe

    On Conjunctive Normal Form Satisfiability

    Get PDF
    This paper focuses on algorithms that solve CSAT (conjunctive normal form satisfiability) by searching for a satisfying truth assignment for the given formula F. We identify four basic ways to improve the basic search procedure: constraint propagators, simplifying transformations, heuristics, and other miscellaneous improvements. In each of these categories, we survey the existing improvements and suggest new ones. We lower the average time it takes to perform the simplest kind of constraint propagation from O(L) to O(L/P), where L is the length of F and P is the number of propositions in F; this is optimal. We lower the current upper bound for CSAT from O(20.128 L) to O(20.128 (L-N)), where N is the number of clauses in F. Finally, we experimentally determine the fastest possible algorithm with respect to each of the basic improvements we consider
    corecore