7 research outputs found

    A Novel Attack and Throughput-Aware Routing and Wavelength Assignment Algorithm in Transparent Optical Networks

    Get PDF
    The transparency feature of All Optical Wavelength Division Multiplexing (WDM) Networks makes it an interesting topic of study. Although characterized by the high throughput, low bit error rate and low noise, Transparent Optical Networks are still considered prone to attacks. The transparency of the network and the lack of opto-electronic conversion allow malicious signals to propagate without being detected. This unnoticeable propagation results in performance degradation and damages the throughput of the network. While several approaches have been focusing on hardware based detective measures, this paper proposes a preventive throughput and attack aware algorithm based on secure topology design. This approach gives enough flexibility to the customer to choose the level of security and throughput that they want to achieve in the network. Namely, the algorithm aims at routing lightpaths in such a way as to minimize the worst case possible damage that can result from different physical-layer attacks. At the same time, the routes have to be selected in such a way as to ensure the desired throughput level. Consequently, two objective criteria for the Routing and Wavelength Assignment (RWA) problem are defined. The first one is referred to as the Maximum Lightpath Attack Radius (maxLAR), while the second is referred to as minimizing the blocking probability. Based on this, the routing sub-problem is formulated as mixed integer liner program (MILP). Tests are performed on small networks at the time being. When simulating attacks, results indicate that the formulation achieves significantly better results for the Maximum Lightpath Attack Radius and Minimum Blocking Probability

    Optical control plane: theory and algorithms

    Get PDF
    In this thesis we propose a novel way to achieve global network information dissemination in which some wavelengths are reserved exclusively for global control information exchange. We study the routing and wavelength assignment problem for the special communication pattern of non-blocking all-to-all broadcast in WDM optical networks. We provide efficient solutions to reduce the number of wavelengths needed for non-blocking all-to-all broadcast, in the absence of wavelength converters, for network information dissemination. We adopt an approach in which we consider all nodes to be tap-and-continue capable thus studying lighttrees rather than lightpaths. To the best of our knowledge, this thesis is the first to consider “tap-and-continue” capable nodes in the context of conflict-free all-to-all broadcast. The problem of all to-all broadcast using individual lightpaths has been proven to be an NP-complete problem [6]. We provide optimal RWA solutions for conflict-free all-to-all broadcast for some particular cases of regular topologies, namely the ring, the torus and the hypercube. We make an important contribution on hypercube decomposition into edge-disjoint structures. We also present near-optimal polynomial-time solutions for the general case of arbitrary topologies. Furthermore, we apply for the first time the “cactus” representation of all minimum edge-cuts of graphs with arbitrary topologies to the problem of all-to-all broadcast in optical networks. Using this representation recursively we obtain near-optimal results for the number of wavelengths needed by the non-blocking all-to-all broadcast. The second part of this thesis focuses on the more practical case of multi-hop RWA for non- blocking all-to-all broadcast in the presence of Optical-Electrical-Optical conversion. We propose two simple but efficient multi-hop RWA models. In addition to reducing the number of wavelengths we also concentrate on reducing the number of optical receivers, another important optical resource. We analyze these models on the ring and the hypercube, as special cases of regular topologies. Lastly, we develop a good upper-bound on the number of wavelengths in the case of non-blocking multi-hop all-to-all broadcast on networks with arbitrary topologies and offer a heuristic algorithm to achieve it. We propose a novel network partitioning method based on “virtual perfect matching” for use in the RWA heuristic algorithm

    Virtualisation and resource allocation in MECEnabled metro optical networks

    Get PDF
    The appearance of new network services and the ever-increasing network traffic and number of connected devices will push the evolution of current communication networks towards the Future Internet. In the area of optical networks, wavelength routed optical networks (WRONs) are evolving to elastic optical networks (EONs) in which, thanks to the use of OFDM or Nyquist WDM, it is possible to create super-channels with custom-size bandwidth. The basic element in these networks is the lightpath, i.e., all-optical circuits between two network nodes. The establishment of lightpaths requires the selection of the route that they will follow and the portion of the spectrum to be used in order to carry the requested traffic from the source to the destination node. That problem is known as the routing and spectrum assignment (RSA) problem, and new algorithms must be proposed to address this design problem. Some early studies on elastic optical networks studied gridless scenarios, in which a slice of spectrum of variable size is assigned to a request. However, the most common approach to the spectrum allocation is to divide the spectrum into slots of fixed width and allocate multiple, consecutive spectrum slots to each lightpath, depending on the requested bandwidth. Moreover, EONs also allow the proposal of more flexible routing and spectrum assignment techniques, like the split-spectrum approach in which the request is divided into multiple "sub-lightpaths". In this thesis, four RSA algorithms are proposed combining two different levels of flexibility with the well-known k-shortest paths and first fit heuristics. After comparing the performance of those methods, a novel spectrum assignment technique, Best Gap, is proposed to overcome the inefficiencies emerged when combining the first fit heuristic with highly flexible networks. A simulation study is presented to demonstrate that, thanks to the use of Best Gap, EONs can exploit the network flexibility and reduce the blocking ratio. On the other hand, operators must face profound architectural changes to increase the adaptability and flexibility of networks and ease their management. Thanks to the use of network function virtualisation (NFV), the necessary network functions that must be applied to offer a service can be deployed as virtual appliances hosted by commodity servers, which can be located in data centres, network nodes or even end-user premises. The appearance of new computation and networking paradigms, like multi-access edge computing (MEC), may facilitate the adaptation of communication networks to the new demands. Furthermore, the use of MEC technology will enable the possibility of installing those virtual network functions (VNFs) not only at data centres (DCs) and central offices (COs), traditional hosts of VFNs, but also at the edge nodes of the network. Since data processing is performed closer to the enduser, the latency associated to each service connection request can be reduced. MEC nodes will be usually connected between them and with the DCs and COs by optical networks. In such a scenario, deploying a network service requires completing two phases: the VNF-placement, i.e., deciding the number and location of VNFs, and the VNF-chaining, i.e., connecting the VNFs that the traffic associated to a service must transverse in order to establish the connection. In the chaining process, not only the existence of VNFs with available processing capacity, but the availability of network resources must be taken into account to avoid the rejection of the connection request. Taking into consideration that the backhaul of this scenario will be usually based on WRONs or EONs, it is necessary to design the virtual topology (i.e., the set of lightpaths established in the networks) in order to transport the tra c from one node to another. The process of designing the virtual topology includes deciding the number of connections or lightpaths, allocating them a route and spectral resources, and finally grooming the traffic into the created lightpaths. Lastly, a failure in the equipment of a node in an NFV environment can cause the disruption of the SCs traversing the node. This can cause the loss of huge amounts of data and affect thousands of end-users. In consequence, it is key to provide the network with faultmanagement techniques able to guarantee the resilience of the established connections when a node fails. For the mentioned reasons, it is necessary to design orchestration algorithms which solve the VNF-placement, chaining and network resource allocation problems in 5G networks with optical backhaul. Moreover, some versions of those algorithms must also implements protection techniques to guarantee the resilience system in case of failure. This thesis makes contribution in that line. Firstly, a genetic algorithm is proposed to solve the VNF-placement and VNF-chaining problems in a 5G network with optical backhaul based on star topology: GASM (genetic algorithm for effective service mapping). Then, we propose a modification of that algorithm in order to be applied to dynamic scenarios in which the reconfiguration of the planning is allowed. Furthermore, we enhanced the modified algorithm to include a learning step, with the objective of improving the performance of the algorithm. In this thesis, we also propose an algorithm to solve not only the VNF-placement and VNF-chaining problems but also the design of the virtual topology, considering that a WRON is deployed as the backhaul network connecting MEC nodes and CO. Moreover, a version including individual VNF protection against node failure has been also proposed and the effect of using shared/dedicated and end-to-end SC/individual VNF protection schemes are also analysed. Finally, a new algorithm that solves the VNF-placement and chaining problems and the virtual topology design implementing a new chaining technique is also proposed. Its corresponding versions implementing individual VNF protection are also presented. Furthermore, since the method works with any type of WDM mesh topologies, a technoeconomic study is presented to compare the effect of using different network topologies in both the network performance and cost.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaDoctorado en Tecnologías de la Información y las Telecomunicacione

    Routing and wavelength assignment in WDM optical networks

    Get PDF
    In this thesis, we focus on the routing and wavelength assignment problems in WDM all-optical networks. Since the general problem is difficult (NP-complete), we classify the problem into several models with different formulations. Our objectives are to analyze some subclasses of routing and wavelength assignment problems; to understand their special properties; to estimate algorithm bounds and performance; and, to design efficient heuristic algorithms. These goals are important because results that follow can help engineers design efficient network topologies and protocols, and eventually provide end-users with cost-effective high bandwidth.;We first study the off-line wavelength assignment problem in single fiber ring and tree networks: an optimal algorithm and an exact characterization of the optimal solution is given for binary and ternary tree topologies; an open problem based on path length restriction on trees, mentioned in the literature, is solved; and bounds are given for path-length and covering restrictions of the problem on ring networks. Then we consider multifiber optical networks, in which each link has several parallel fibers. We extend a stochastic model from the single-fiber case to the multifiber case and show that multifiber links can improve performance significantly. For some specific networks, such as ring and tree networks, we obtain some performance bounds. The bounds support our multifiber stochastic model conclusion. For practical importance, we also consider a WDM optical ring network architecture configuration problem as well as cost-effectiveness. We propose several WDM ring networks with limited fiber switching and limited wavelength conversion and these networks achieve almost optimal wavelength utilization. Attacking resource allocation within an WDM optical ring network to reduce overall equipment cost, we design a new algorithm and our simulation results indicate improvement of about 25%. This thesis also includes a new coloring problem partition-coloring and its applications.;In summary, the contributions in this thesis include several heuristic algorithms and theoretical tight upper bounds for both single fiber and multifiber all-optical networks. In particular, for ring networks we have proposed several network architectures to improve wavelength utilization and devised a new algorithm that combines routing and wavelength assignment to reduce hardware costs

    Nodal distribution strategies for designing an overlay network for long-term growth

    Get PDF
    Scope and Method of Study:This research looked at nodal distribution design issues associated with building an overlay network on top of an existing legacy network with overlay network switches and links not necessarily matching the switch and link locations of the underlying network. A mathematical model with two basic components, switch costs and link costs, was developed for defining the total cost of a network overlay. The nature of the underlying legacy topology determines the dominant factor, link or switch costs to the total cost function as well as the unit cost for switches and links.Findings and Conclusions:The three design heuristics presented first, locate overlay switches at nodes in the center of the legacy network as opposed to the periphery; second, locate overlay switches at legacy nodes with high connectivity; and third, locate overlay switches at legacy nodes with high traffic flow demands, can be used to help point to the direction of keeping costs under control when design changes are required. Applying the concept of efficient frontiers to the world of network design and building a suite of best designs gives the network designer greater insight into how to design the best network in the face of changing real-world constraints. For the cost model and the case studies evaluated using the design strategies in this study, distributed approaches generally tend to be a good choice when the link costs dominate the total cost function because total path distances and therefore link costs need to be minimized in preference over switch costs. A distributed overlay tends to have lower link costs because there is usually a greater probability that total path distances can be minimized because of greater connectivity. More connections set up the potential for more traffic flow path choices allowing each traffic flow to be sent along shorter paths. In legacy network topology designs that have many nodes with high connectivity, the overlay link costs can be relatively similar between designs and the switch costs can have a large impact upon total cost
    corecore