105 research outputs found

    The grammar of developable double corrugations (for formal architectural applications)

    Get PDF
    This paper investigates the geometrical basis of regular corrugations, with specific emphasis on Developable Double Corrugations (DDCs), which form a unique sub-branch of Origami Folding and Creasing Algorithms. The aim of the exercise is three fold – (1) To define and isolate a ‘single smallest starting block’ for a given set of distinct and divergent DDC patterns, such that this starting block becomes the generator of all DDCs when different generative rules are applied to it. (2) To delineate those generic parameters and generative rules which would apply to the starting block, such that different DDCs are created as a result (3) To use the knowledge from points (1) and (2) to create a complete family of architectural forms and shapes using DDCs. For this purpose, a matrix of 12 underlying geometry types are identified and used as archetypes. The objective is to mathematically explore DDCs for architectural form finding, using physical folding as a primary algorithmic tool. Some DDCs have more degrees of freedom than others and can fit varied geometries, while others cannot. The discussion and conclusions involve - (a) identifying why certain DDCs are ideal for certain forms and not others, when all of them are generated using the same/or similar starting block(s), (b) discussing the critical significance of flat-foldability in this specific context and (c) what we can do with this knowledge of DDCs in the field of architectural research and practice in the future

    Identification and Mitigation of Risk Associated with Eot Crane During Material Handling

    Get PDF
    Countless manufacturing and construction industry are widely used E.O.T. cranes for their lifting or loading materials from one place to another place, also associated with a large number of hazardous in their operation.depending upon their nature of work it can further divided on their different type of use.the hazard associated with E.O.T. crane a project was performed in tata steel processing and distribution limited(TSPDL), with the help of checklist method and hazard identification & risk assessment, is performed to identified the hazardous condition on 13 E.O.T. cranes installed in TSPDL and their control measures are given.with the help of hira analysis is reviewed and also recommendations are given for further improvement in safety and health aspects.this E.O.T. crane increase output and improves the quality of the product, speed up deliveries and therefore, results that decrease the production cost. As an EHS professional must have sufficient knowledge of L.I.F.E and zero harm/zero injury vision along with inspiring others to behave safely and have due regard for the environment.He must have an ability to finding out the connection between good EHS system and good business practices and have up to date knowledge about EHS.He must have good communication skills to convenience to others and show a leadership skill to all levels of employees and committed to action at all times. Risk assessment has four stages identifying hazards, access the risk, determine the control measures, and implement the control measures, review, and update.With the help of hierarchy control i.e. elimination, substitution, engineering control, administrative control, training and PPE’s those risk assessment approaches are implemented successfully

    Simulation of wheel and rail profile wear: a review of numerical models

    Get PDF
    The development of numerical models able to compute the wheel and rail profile wear is essential to improve the scheduling of maintenance operations required to restore the original profile shapes. This work surveys the main numerical models in the literature for the evaluation of the uniform wear of wheel and rail profiles. The standard structure of these tools includes a multibody simulation of the wheel-track coupled dynamics and a wear module implementing an experimental wear law. Therefore, the models are classified according to the strategy adopted for the worn profile update, ranging from models performing a single computation to models based on an online communication between the dynamic and wear modules. Nevertheless, the most common strategy nowadays relies on an iteration of dynamic simulations in which the profiles are left unchanged, with co-simulation techniques often adopted to increase the computational performances. Work is still needed to improve the accuracy of the current models. New experimental campaigns should be carried out to obtain refined wear coefficients and models, while strategies for the evaluation of both longitudinal and transversal wear, also considering the effects of tread braking, should be implemented to obtain accurate damage models

    Adaptive structures for the control of cellular separation

    Get PDF
    This work describes the research undertaken on the development of adaptive structures to reduce turbulent boundary layer separation from a wing. Separation control is a safety critical function that is currently filled by the application of static vortex generators to the wings on most modern aircraft. These devices generate vorticity which produces a downstream mixing effect, energising the boundary layer and postponing separation. The mixing of the boundary layer also increases the drag of the aircraft, reducing efficiency. As static devices, the mixing effect is also permanent, regardless of the current likelihood of separation. Adaptive structures allow the development of beneficial geometry from the body’s surface without the use of breaks or mechanisms in the structure surface. This allows geometry modification without sources of parasitic drag or turbulent transition. The first subject of this work is the development of an adaptive surface to provide the desired momentum transfer through the boundary layer when required, and which can be retracted when not needed, reducing drag and increasing efficiency. Adaptive structures inhabit a complex design space due to the coupling between bending and in-plane stretching of the surface. In previous morphing studies, design optimisation has frequently been used to identify the ideal design parameters. Initially, the design methodology is developed on a test case transferring momentum within a zero-pressure gradient boundary layer. The resulting geometry is then tested experimentally and the structural and fluidic response is found to compare well to simulations. Once the design approach is validated, it must be applied to an efficient location on an aerofoil. The second area of research is therefore the complex, three-dimensional, separation from a 2D aerofoil. This is investigated experimentally with both mean and time-dependent data. The naturally occurring, three-dimensional and spanwise periodic topology of the separated flow, termed a `stall cell', is investigated to determine a suitable location for the application of targeted control at a critical point. Fourier analysis and Proper Orthogonal Decomposition are applied to the time-dependent data gathered to extract coherent, periodic, fluctuations in the separated flow field. The variation of the relative strengths of these features, distinct in frequency, is isolated to regions within the stall cell. Knowledge of the flow field gained during this work is applied to stall cell reduction and a single vortex generator is applied to the wing upstream of an identified critical point within the flow field. The separated area is seen to reduce significantly with this actuation. The design methodology developed previously is applied to the initially curved surface of an aerofoil. The final structure is manufactured and tested experimentally and found to be effective in reducing the separation extent. The control is found to be less effective than the static vortex generators. However, unlike the static device, the adaptive version is fully elastic, in both deployment and reaction, and thus shows none of the detrimental effects associated with traditional devices.Open Acces

    Self-assembled nanostructures for photon management in optoelectronic devices

    Get PDF
    Für den Erfolg der Photovoltaik (PV) und der organischen Leuchtdioden (OLED) sind erhebliche Fortschritte bei der Kostensenkung und Effizienzsteigerung erforderlich. Beide Ziele können durch den Einsatz von Nanostrukturen für das Photonenmanagement gleichzeitig erreicht werden. Die grundlegenden Ziele des Photonenmanagements sind die Verringerung der Reflexion des einfallenden Lichts, die Verbesserung der Absorption oder die Verstärkung der Auskopplung sowie die Anpassung der optischen Eigenschaften eines Bauelements für den Einsatz in verschiedenen Arten von Energieumwandlungssystemen. Für eine optimale Effizienz von Solarzellen und OLEDs sollten die Nanostrukturen einen erweiterten Spektral- und Winkelbereich aufweisen. In dieser Hinsicht hat das Photonenmanagement auf der Grundlage ungeordneter Nanostrukturen in vor kurzem große Aufmerksamkeit erregt. Solche photonischen Schichten arbeiten in einem breiteren Spektralbereich als vergleichbare periodische Strukturen und besitzen optische Eigenschaften, die im Gegensatz zu rein zufälligen Strukturen leicht vorhergesag- und eingestellbar sind. In dieser Arbeit wird das Photonenmanagement durch planare, ungeordnete 2D-Nanostrukturen für optoelektronische Dünnschichtbauelemente vorgestellt. Die Nanostrukturen sind so konzipiert, dass sie als antireflektierende oder effizient streuende Strukturen fungieren, deren primäres Ziel es ist, die optische Absorption von Dünnschicht-Solarzellen zu verbessern und ihre Energieumwandlungseffizienz zu erhöhen. Die entwickelte Methodik und die Strukturen haben direkte Auswirkungen auf den Bereich der OLED-Bauelemente. Die entwickelten Strukturen eingesetzt, um die Auskopplungseigenschaften von OLEDs zu verbessern, die einen vergleichbaren spektralen Wirkungsbereich wie Solarzellen besitzen. Voraussetzung für alle experimentellen Untersuchungen ist eine ausgereifte Herstellungsmethode zur Erzeugung von Nanostrukturen mit kontrollierbaren Störungseigenschaften, bei der eine vielseitige, großflächige nasschemische Methode eingesetzt wird, die auf der lateralen Phasentrennung einer Polymermischung beruht. Diese nasschemische Methode wird häufig durch Schleuderbeschichtung durchgeführt, die es nicht erlaubt, phasengetrennte Nanostrukturen (PSN) in beliebige 2D-Designs einzubauen, wie es für ihren Einsatz in kommerziellen Produkten erforderlich ist. Andererseits können additive Fertigungsverfahren wie Tintenstrahldrucker nahezu jede geometrisch komplexe Form im Mikrometer- bis Makromaßstab herstellen. Da die meisten herkömmlichen Tintenstrahldrucker jedoch nur eine Auflösung im Mikromaßstab aufweisen, sind sie für die Entwicklung von nanostrukturierten Materialien und Bauelementen noch nicht geeignet. In dieser Studie werden erstmals beide Mängel behoben und gleichzeitig die kostengünstige Attraktivität und Vielseitigkeit der Phasentrennung durch Homopolymermischungen bewahrt, indem die einzigartigen Vorteile des Tintenstrahldrucks genutzt werden. Unter optimierten Bedingungen werden digital druckbare PSN vom Mikrometer- bis in den Sub-100 nm-Bereich nach einem vorgegebenen 2D-Layout realisiert. Diese PSN können auf verschiedenen starren und flexiblen Substraten mit einer Geschwindigkeit von 45 cm/s hergestellt werden. Der vorgeschlagene Ansatz eröffnet außerdem zahlreiche neue Möglichkeiten für die Nanofabrikation, einschließlich der dynamischen Variation von PSN während des Tintenstrahldrucks, entweder durch Anpassung der Druckauflösung von Pixel zu Pixel für eine bestimmte Tintenformulierung oder durch die Verwendung mehrerer Polymer-Tinten. Darüber hinaus werden PSN in der Regel aus Polymeren mit niedrigen Glasübergangstemperaturen hergestellt, was ihre praktische Bedeutung für die Nanoimprint-Lithografie (NIL) einschränkt, da solche PSN bei hohem Druck und hoher Temperatur zu Verformungen in der Prägeebene neigen. Um dieses Manko zu überwinden, werden in dieser Arbeit die einzigartigen Vorteile eines anorganisch-organischen Hybridpolymers (OrmoStamp) genutzt, welches in der Industrie bereits als Material für Prägestempel in der UV- und thermisch basierten NIL bekannt geworden ist. In dieser Arbeit wird zum ersten Mal gezeigt, dass Nanostempel auf der Basis von PSN (aus OrmoStamp) direkt auf verschiedenen starren und flexiblen Substraten mit Hilfe eines Phasentrennungsprozesses hergestellt werden können. Dies ermöglicht den direkten Einsatz von PSN in der NIL ohne zusätzliche lithographische oder replikative Zwischenschritte. So können schleuderbeschichtete und gedruckte sowie geprägte PSN das Photonenmanagement in vielfältigen nanophotonischen Anwendungen verbessern, wie hier durch ihren Einsatz in Solarzellen und OLEDs zur Steigerung der Leistungseffizienz demonstriert wird. Für Solarzellen werden zwei verschiedene optische Managementtechniken erforscht. Die erste Methode konzentriert sich auf die Entwicklung von lichtstreuenden Schichten für Solarzellen, entweder durch eine Bottom-up- oder eine Top-down-Strategie. Bei der Bottom-up-Strategie werden PSN in die Rückseite von Solarzellen aus hydrogeniertem amorphem Silizium (a-Si:H) eingebracht, bevor ein Reflektor abgeschieden wird, um lichtstreuende Reflektoren zu realisieren. Diese lichtstreuenden Reflektoren erzielen einen besseren Wirkungsgrad als ein Bauelement, das auf einem kommerziellen lichtstreuenden Substrat basiert. Darüber hinaus werden ergänzende optische Simulationen an einem akkuraten 3D-Modell durchgeführt, um die überlegenen Lichtsammeleigenschaften der entwickelten Streureflektoren zu analysieren und allgemeine Designregeln abzuleiten. In der Top-Down-Strategie werden PSN verwendet, um eine Resist-Ätzmaske zu strukturieren, die für die Übertragung ungeordneter Nanolöcher in eine dünne a-Si:H-Schicht durch Trockenätzung verwendet wird. Die Studie begann mit der Durchführung dreidimensionaler optischer Simulationen, um die Auswirkungen der Unordnung auf die ursprünglich periodischen Anordnungen von Nanostrukturen systematisch zu untersuchen. Die Ergebnisse dieser Simulationen zeigen, dass quasi-ungeordnete Strukturen zu breiteren Spektral- und Winkelantworten führen, was für PV-Anwendungen eindeutig von Vorteil ist. Nach dem Top-Down-Ansatz wird eine Verbesserung der integralen Absorption um bis zu 93% bei normalem Einfall und um bis zu 200% bei großen Einfallswinkeln im Vergleich zu einem ungemusterten Absorber gezeigt.Darüber hinaus kann eine ähnliche Struktur als Nanostempel in einer Top-Down-Strategie dienen, wobei die Perowskit-Schichten durch die Nanostempel unter Verwendung eines thermischen NIL-Systems nanogeprägt werden. Für den nanostrukturierten Perowskitfilm wird eine erhöhte integrierte Absorption und eine gesteigerte Photolumineszenz von 7%rel_{rel} bzw. 121%rel_{rel} erzielt. Dieser Weg ebnet den Weg für Rolle-zu-Rolle verarbeitbare "photonisierte" Absorber. Die zweite Methode konzentriert sich auf die Entwicklung von Antireflexionsschichten durch zusätzliche Anpassung des PSN an die Abmessungen unterhalb der Wellenlänge. Das hier betrachtete Design besteht aus einer Frontelektrode, Indium-Zinn-Oxid (ITO), die formschlüssig auf die PSN aufgebracht wird. Im optimalen Fall führen die nanostrukturierten ITO-Elektroden zu einer Erhöhung des Transmissionsgrads um 7%rel_{rel} im Vergleich zu planaren Referenzstrukturen. Die Antireflexionseigenschaften werden genutzt, um die Photostromdichte von 4-poligen Perowskit/Kristallsilizium (Perowskit/c-Si)-Tandemsolarzellen zu erhöhen. Perowskit/c-Si-Tandem-Zellen mit nanostrukturiertem ITO weisen eine höhere Kurzschlussstromdichte (2,9 mA/cm2^{2} absolute Verstärkung) und PCE (1,7% absolute Verstärkung) in der unteren c-Si-Solarzelle im Vergleich zur Referenz auf. Schließlich wird in dieser Arbeit die Bedeutung der genannten Erkenntnisse für das umgekehrte Problem - die Lichtextraktion in OLEDs - aufgezeigt. In der ersten untersuchten Konfiguration nutzt diese Arbeit die leicht abstimmbaren Lichtstreueigenschaften von ungeordneten Titandioxid-Nanosäulen, die aus einer selbstorganisierenden Struktur und einem lösungsmittelbasierten Lift-off-Prozess resultieren. Die anschließende Planarisierung dieser Nanosäulen durch eine dünne Epoxidschicht gewährleistet eine hervorragende Reproduzierbarkeit der Bauelemente - ein Aspekt, der bei nanowelligen Substraten oft kritisch ist - und bewahrt eine starke räumliche Überlappung der eingefangenen optischen Moden mit den lichtstreuenden Strukturen. Zur Veranschaulichung wird gezeigt, dass das vorgeschlagene Design die Effizienz einer von unten emittierenden OLED (λpeak\mathbf{\lambda_{peak}}=520 nm) um +22%rel_{rel} und die Winkelemissionscharakteristik im Vergleich zu planaren Bauelementen verbessert. In der zweiten untersuchten Konfiguration werden im Tintenstrahldruckverfahren hergestellte lichtauskoppelnde PSN mit verschiedenen 2D-Designs getestet, wie sie für den Einsatz in gedruckten OLED-Bauelementen vorgesehen sind. Dabei wird ein transparentes Anodenmaterial direkt auf das PSN aufgebracht, was zu einer Strukturierung der Grenzfläche zwischen Anode und organischen Schichten und einer resultierenden Streuung der Wellenleitermoden führt. Eine OLED (λpeak\mathbf{\lambda_{peak}}=520 nm), die ein gedrucktes PSN enthält, weist bei einer Leuchtdichte von 1000 cd/m2^{2} im Vergleich zu einem planaren Referenzelement eine um 57% höhere Effizienz auf. Dieser Ansatz lässt sich in eine Hochdurchsatz-Fertigungsroutine integrieren und kann leicht auf andere OLED-Layouts erweitert werden

    Planning, Estimation and Control for Mobile Robot Localization with Application to Long-Term Autonomy

    Get PDF
    There may arise two kinds of challenges in the problem of mobile robot localization; (i) a robot may have an a priori map of its environment, in which case the localization problem boils down to estimating the robot pose relative to a global frame or (ii) no a priori map information is given, in which case a robot may have to estimate a model of its environment and localize within it. In the case of a known map, simultaneous planning while localizing is a crucial ability for operating under uncertainty. We first address this problem by designing a method to dynamically replan while the localization uncertainty or environment map is updated. Extensive simulations are conducted to compare the proposed method with the performance of FIRM (Feedback-based Information RoadMap). However, a shortcoming of this method is its reliance on a Gaussian assumption for the Probability Density Function (pdf) on the robot state. This assumption may be violated during autonomous operation when a robot visits parts of the environment which appear similar to others. Such situations lead to ambiguity in data association between what is seen and the robot’s map leading to a non-Gaussian pdf on the robot state. We address this challenge by developing a motion planning method to resolve situations where ambiguous data associations result in a multimodal hypothesis on the robot state. A Receding Horizon approach is developed, to plan actions that sequentially disambiguate a multimodal belief to achieve tight localization on the correct pose in finite time. In our method, disambiguation is achieved through active data associations by picking target states in the map which allow distinctive information to be observed for each belief mode and creating local feedback controllers to visit the targets. Experiments are conducted for a kidnapped physical ground robot operating in an artificial maze-like environment. The hardest challenge arises when no a priori information is present. In longterm tasks where a robot must drive for long durations before closing loops, our goal is to minimize the localization error growth rate such that; (i) accurate data associations can be made for loop closure, or (ii) in cases where loop closure is not possible, the localization error stays limited within some desired bounds. We analyze this problem and show that accurate heading estimation is key to limiting localization error drift. We make three contributions in this domain. First we present a method for accurate long-term localization using absolute orientation measurements and analyze the underlying structure of the SLAM problem and how it is affected by unbiased heading measurements. We show that consistent estimates over a 100km trajectory are possible and that the error growth rate can be controlled with active data acquisition. Then we study the more general problem when orientation measurements may not be present and develop a SLAM technique to separate orientation and position estimation. We show that our method’s accuracy degrades gracefully compared to the standard non-linear optimization based SLAM approach and avoids catastrophic failures which may occur due a bad initial guess in non-linear optimization. Finally we take our understanding of orientation sensing into the physical world and demonstrate a 2D SLAM technique that leverages absolute orientation sensing based on naturally occurring structural cues. We demonstrate our method using both high-fidelity simulations and a real-world experiment in a 66, 000 square foot warehouse. Empirical studies show that maps generated by our approach never suffer catastrophic failure, whereas existing scan matching based SLAM methods fail ≈ 50% of the time

    Direct Simulation Monte Carlo for astrophysical flows: I. Motivation and methodology

    Full text link
    We describe a hybrid Direct Simulation Monte Carlo (DSMC) code for simultaneously solving the collisional Boltzmann equation for gas and the collisionless Boltzmann equation for stars and dark matter for problems important to galaxy evolution. This project is motivated by the need to understand the controlling dynamics at interfaces between gases of widely differing densities and temperature, i.e. multiphase media. While more expensive than hydrodynamics, the kinetic approach does not suffer from discontinuities and it applies when the continuum limit does not, such as in the collapse of galaxy clusters and at the interface between coronal halo gas and a thin neutral gas layer. Finally, the momentum flux is carried, self-consistently, by particles and this approach explicitly resolves and thereby captures shocks. The DSMC method splits the solution into two pieces: 1) the evolution of the phase-space flow without collisions; and 2) the evolution governed the collision term alone without phase-space flow. This splitting approach makes DSMC an ideal match to existing particle-based n-body codes. If the mean free path becomes very small compared to any scale of interest, the method abandons simulated particle collisions and simply adopts the relaxed solution in each interaction cell consistent with the overall energy and momentum fluxes. This is functionally equivalent to solving the Navier-Stokes equations on a mesh. Our implementation is tested using the Sod shock tube problem and the non-linear development of an Kelvin-Helmholtz unstable shear layer.Comment: 13 pages, 4 figures, submitted to MNRAS, revised figures, corrected typos, and incorporated comment

    Artificial Magnetic Materials: Limitations, Synthesis and Possibilities

    Get PDF
    Artificial magnetic materials (AMMs) are a type of metamaterials which are engineered to exhibit desirable magnetic properties not found in nature. AMMs are realized by embedding electrically small metallic resonators aligned in parallel planes in a host dielectric medium. In the presence of a magnetic field, an electric current is induced on the inclusions leading to the emergence of an enhanced magnetic response inside the medium at the resonance frequency of the inclusions. AMMs with negative permeability are used to develop single negative, or double negative metamaterials. AMMs with enhanced positive permeability are used to provide magneto-dielectric materials at microwave or optical frequencies where the natural magnetic materials fail to work efficiently. Artificial magnetic materials have proliferating applications in microwave and optical frequency region. Such applications include inversely refracting the light beam, invisibility cloaking, ultra miniaturizing and frequency bandwidth enhancing low profile antennas, planar superlensing, super-sensitive sensing, decoupling proximal high profile antennas, and enhancing solar cells efficiency, among others. AMMs have unique enabling features that allow for these important applications. Fundamental limitations on the performance of artificial magnetic materials have been derived. The first limitation which depends on the generic model of permeability functions expresses that the frequency dispersion in an AMM is limited by the desired operational bandwidth. The other constraints are derived based on the geometrical limitations of inclusions. These limitations are calculated based on a circuit model. Therefore, a formulation for permeability and magnetic susceptibility of the media based on a circuit model is developed. The formulation is in terms of a geometrical parameter that represents the geometrical characteristics of the inclusions such as area, perimeter and curvature, and a physical parameter that represents the physical, structural and fabrication characteristics of the medium. The effect of the newly introduced parameters on the effective permeability of the medium and the magnetic loss tangent are studied. In addition, the constraints and relations are used to methodically design artificial magnetic material meeting specific operational requirements. A novel design methodology based on an introduced analytical formulation for artificial magnetic material with desired properties is implemented. The synthesis methodology is performed in an iterative four-step algorithm. In the first step, the feasibility of the design is tested to meet the fundamental constraints. In consecutive steps, the geometrical and physical factors which are attributed to the area and perimeter of the inclusion are synthesized and calculated. An updated range of the inclusion's area and perimeter is obtained through consecutive iterations. Finally, the outcome of the iterative procedure is checked for geometrical realizability. The strategy behind the design methodology is generic and can be applied to any adopted circuit based model for AMMs. Several generic geometries are introduced to realize any combination of geometrically realizable area and perimeter (s,l) pairs. A realizable geometry is referred to a contour that satisfies Dido's inequality. The generic geometries introduced here can be used to fabricate feasible AMMs. The novel generic geometries not only can be used to enhance magnetic properties, but also they can be configured to provide specific permeability with desired dispersion function over a certain frequency bandwidth with a maximum magnetic loss tangent. The proposed generic geometries are parametric contours with uncorrelated perimeter and area function. Geometries are configured by tuning parameters in order to possess specified perimeter and surface area. The produced contour is considered as the inclusion's shape. The inclusions are accordingly termed Rose curve resonators (RCRs), Corrugated rectangular resonators (CRRs) and Sine oval resonators (SORs). Moreover, the detailed characteristics of the RCR are studied. The RCRs are used as complementary resonators in design of the ground plane in a microstrip stop-band filter, and as the substrate in design of a miniaturized patch antenna. The performance of new designs is compared with the counterpart devices, and the advantages are discussed

    Generative design and fabrication of a locust-inspired gliding wing prototype for micro aerial robots

    Get PDF
    Gliding is generally one of the most efficient modes of flight in natural fliers that can be further emphasised in the aircraft industry to reduce emissions and facilitate endured flights. Natural wings being fundamentally responsible for this phenomenon are developed over millions of years of evolution. Artificial wings on the other hand, are limited to the human-proposed conceptual design phase often leading to sub-optimal results. However, the novel Generative Design (GD) method claims to produce mechanically improved solutions based on robust and rigorous models of design conditions and performance criteria. This study investigates the potential applications of this Computer-Associated Design (CAsD) technology to generate novel micro aerial vehicle wing concepts that are structurally more stable and efficient. Multiple performance-driven solutions (wings) with high-level goals are generated by an infinite scale cloud computing solution executing a machine learning based GD algorithm. Ultimately, the highest performing CAsD concepts are numerically analysed, fabricated, and mechanically tested according to our previous study, and the results are compared to the literature for qualitative as well as quantitative analysis and validations. It was concluded that the GD-based tandem wings' (fore-& hindwing) ability to withstand fracture failure without compromising structural rigidity was optimised by 78% compared to its peer models. However, the weight was slightly increased by 11% with 14% drop in stiffness when compared to our models from previous study
    corecore