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Abstract

Artificial magnetic materials (AMMs) are a type of metamaterials which are en-

gineered to exhibit desirable magnetic properties not found in nature. AMMs are

realized by embedding electrically small metallic resonators aligned in parallel planes

in a host dielectric medium. In the presence of a magnetic field, an electric current is

induced on the inclusions leading to the emergence of an enhanced magnetic response

inside the medium at the resonance frequency of the inclusions. AMMs with negative

permeability are used to develop single negative, or double negative metamaterials.

AMMs with enhanced positive permeability are used to provide magneto-dielectric

materials at microwave or optical frequencies where the natural magnetic materials

fail to work efficiently.

Artificial magnetic materials have proliferating applications in microwave and op-

tical frequency region. Such applications include inversely refracting the light beam,

invisibility cloaking, ultra miniaturizing and frequency bandwidth enhancing low pro-

file antennas, planar superlensing, super-sensitive sensing, decoupling proximal high

profile antennas, and enhancing solar cells efficiency, among others. AMMs have

unique enabling features that allow for these important applications.

I derive fundamental limitations on the performance of artificial magnetic mate-

rials. The first limitation which depends on the generic model of permeability func-

tions expresses that the frequency dispersion in an AMM is limited by the desired

operational bandwidth. The other constraints are derived based on the geometrical

limitations of inclusions. These limitations are calculated based on a circuit model.

Therefore, a formulation for permeability and magnetic susceptibility of the media

based on a circuit model is developed. The formulation is in terms of a geometrical

parameter that represents the geometrical characteristics of the inclusions such as

area, perimeter and curvature, and a physical parameter that represents the physi-

cal, structural and fabrication characteristics of the medium. The effect of the newly

introduced parameters on the effective permeability of the medium and the mag-

netic loss tangent are studied. In addition, the constraints and relations are used to

methodically design artificial magnetic material meeting specific operational require-

ments.
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A novel design methodology based on an introduced analytical formulation for

artificial magnetic material with desired properties is implemented. The synthesis

methodology is performed in an iterative four-step algorithm. In the first step, the

feasibility of the design is tested to meet the fundamental constraints. In consecutive

steps, the geometrical and physical factors which are attributed to the area and

perimeter of the inclusion are synthesized and calculated. An updated range of the

inclusion’s area and perimeter is obtained through consecutive iterations. Finally,

the outcome of the iterative procedure is checked for geometrical realizability. The

strategy behind the design methodology is generic and can be applied to any adopted

circuit based model for AMMs.

Several generic geometries are introduced to realize any combination of geomet-

rically realizable area and perimeter (s, l) pairs. A realizable geometry is referred to

a contour that satisfies Dido’s inequality, i.e., l ≥
√

2πs. The generic geometries in-

troduced here can be used to fabricate feasible AMMs. The novel generic geometries

not only can be used to enhance magnetic properties, but also they can be config-

ured to provide specific permeability with desired dispersion function over a certain

frequency bandwidth with a maximum magnetic loss tangent. The proposed generic

geometries are parametric contours with uncorrelated perimeter and area function.

Geometries are configured by tuning parameters in order to possess specified perime-

ter and surface area. The produced contour is considered as the inclusion’s shape.

The inclusions are accordingly termed Rose curve resonators (RCRs), Corrugated

rectangular resonators (CRRs) and Sine oval resonators (SORs). Moreover, the de-

tailed characteristics of the RCR are studied. The RCRs are used as complementary

resonators in design of the ground plane in a microstrip stop-band filter, and as the

substrate in design of a miniaturized patch antenna. The performance of new designs

is compared with the counterpart devices, and the advantages are discussed.

Waterloo, August 15, 2010,

A.K.
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Chapter 1

Preface

1.1 Thesis

The marvel of metamaterials has engrossed numerous minds since the last decade.

Scientists, science journalists as well as fictionists are fascinated and astonished in

its incredible enabling potential to realize unique, exotic and unprecedented applica-

tions. Some scientists count the advent of metamaterials as an evolutionary event in

the field of electromagnetics, optics and electronics. A metamaterial-beyond natural

material- discloses properties not readily found in natural materials. Applications in-

clude inversely refracting the light beam, invisibility cloaking, ultra miniaturizing low

profile antennas, planar superlensing, super-sensitive sensing, and enhancing solar cell

efficiency, among others. Metamaterials have enabling features that allow for these

innovative applications. However, some scientists are not yet contented that meta-

materials reveal any novelty but rather believe that they are a restoration of an old,

well-known concept which has recently been revisited and spuriously boasted. That

is, a medium composed of inclusions reveals extraordinary properties based on the

geometry and structure of inclusions while exposed to an electromagnetic radiation.

Whether or not this concept is believed to be a novel idea, the advent of modern

fabrication technology along with the outburst of an interest in realization of far-

reaching applications have given a high credibility to metamaterials in the scientific

community.

Metamaterials can be categorized into various classes. If the medium is engineered
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with broken loop metallic inclusions, the magnetization of the medium is enhanced

while impinged by an electromagnetic field radiation. This engineered medium re-

ferred to as an artificial magnetic material (AMM). This dissertation focuses particu-

larly on the magnetic class of metamaterials in the microwave frequency. It discusses

the limitations, synthesis and possibilities of artificial magnetic materials.

First, a fundamental limitation on the minimum variation of the magnetic suscep-

tibility, and accordingly the permeability dispersion over a frequency bandwidth, is

calculated. This limitation is used as a rule of thumb by designers of AMMs to define

a proper measure on the minimum required flatness of engineered AMMs. This limit

also provides insight into the minimum dispersion that should be reckoned with when

using an AMM for any application such as the antenna miniaturization.

Next, a methodology for designing of AMMs is developed to characterize the

inclusions’ shape. The main novelty is that a recipe is provided to design artificial

magnetic materials fulfilling certain specifications. The proposed design recipe can be

followed by a designer of the artificial magnetic medium even if the designer experience

on the topic is limited. The design methodology can be linked with many circuit

models available in the literature. In this work, I employ the circuit model which

is commonly adopted in the literature [1]-[4], and then I suitably reformulate the

magnetic susceptibility for the design purposes.

As the design methodology is generic, it does not prescribe any particular geom-

etry, but it merely determines the geometrical properties of the inclusion. Hence,

for completeness, I introduce three families of parametric geometries reconfigurable

for all realizable geometries. Then, the specific shape is characterized for each class

of geometries. To verify the proposed technique, the designed artificial media are

numerically simulated using full-wave three dimensional electromagnetic simulators.

The introduced inclusions are the Rose curve resonators (RCRs), the Corrugated

rectangular resonators (CRRs) and the Sine oval resonators (SORs).

Finally, an AMM composed of Rose curve resonators is studied in more details to

be used in potential applications. Two devices, a microstrip band-stop filter and a

miniaturized patch antenna, are introduced. The devices exploit Rose curve artificial

materials to miniaturize the devices size. The devices are simulated by using full-wave

simulator software packages to characterize their features.
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1.2 Organization

The thesis contains eight chapters including preface and afterword and five appen-

dices.

In chapter 2, the concept of an artificial material is defined, and its feasible electro-

magnetic features are discussed. The discussion includes the plausibility of defining

effective constitutive parameters and the range of variation of these parameters. It

is also shown that the discussed parameters meet the causality relation. In addition,

artificial magnetic materials are defined as a separate category of artificial materials

which provides magnetism. Thereafter, various composite structures, available an-

alytical models describing the magnetic behavior of the structures as well as some

potential applications are introduced.

In chapter 3, a commonly accepted circuit model for periodic arrays of metallic

broken loops is presented. The model describes the magnetic behavior of an AMM

composed of an arbitrary shape inclusions in terms of lumped elements attributed to

capacitance of metallic traces and the inductance of the looped metallic inclusions.

The model’s capacitance and inductance are in connection with the area and perimeter

of an inclusion. A heuristic formulation is derived for the magnetic susceptibility and

permeability of an AMM based on a unique strategy of encapsulating the geometrical

and structural factors. The novel formulation is later used for design of AMMs.

In chapter 4, fundamental limitations of artificial magnetic materials are derived.

These limitation includes an equality on dispersive characteristic of the medium, a

relationship between the maximum achievable permeability and the magnetic loss

limit in the medium. Proper graphs as a design factbook for designer of artificial

magnetic materials is presented.

In chapter 5, guidelines for a methodic design of an artificial magnetic material

fulfilling a particular specification is developed. The design recipe is implemented on

a design case study, and each step is described in details. The output of the pro-

posed recipe is geometrical characteristics of the metallic inclusions, i.e., the area and

the perimeter. The methodology is limited to artificial magnetic materials composed

of metallic objects and operating in the microwave region of the electromagnetic fre-

quency spectrum. The design algorithm is also presented in a comprehensive flowchart

diagram, and implemented in a software package to simplify and expedite a design
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task. The software receives the magnetic properties of a desired AMM as an input,

and produces the geometrical parameters of inclusions as an output. The software

code is also available for academic purposes.

In chapter 6, three families of parametric curves are introduced. These curves

are considered as a generic inclusions for any feasible AMMs. Moreover, these curves

are customized to mimic the area and perimeter calculated in the design procedure.

Thereafter, AMMs composed of the inclusions of each type are simulated with full-

wave electromagnetic simulators. The results are compared with desired properties

and design errors are estimated. These parametric curves are referred to as Rose

curve resonators (RCRs), Corrugated rectangular resonators (CRRs) and Sine oval

resonators (SORs). A software package is also implemented to automatically configure

each curve in order to have a specific area and perimeter. The software is also available

for academic purposes. Next, an AMM composed of the Rose curve inclusions is

investigated further and its unique properties are introduced for suitable applications.

In addition, the ubiquitous split ring resonator and other inclusion geometry were

compared and their inability to be nominated as a generic inclusion is explicated.

In chapter 7, applying the RCRs, two key applications are introduced. The pro-

posed devices are a small-form microstrip stop-band filter with a complementary

Rose curve ground plane and an ultra-miniaturized low profile antenna with a sub-

strate of Rose curve resonators. Devices which embedding Rose curve inclusions show

enhanced features. The features are tested and simulated with a full-wave software

simulator.
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Chapter 2

Introduction

The world of electromagnetics has revealed recent breakthroughs in diverse areas of

science and technology such as telecommunications, biomedical imaging, chemical

spectroscopy and sub-wavelength sensing. Much of the progresses has been accom-

plished by the advent of complex engineered media especially at the mesoscopic scale.

At the dawn of the twenty first century, a family of artificial (or engineered) media

known with the generic title of Metamaterials has enabled incredible functionalities

not achievable through the natural materials. It has been known for at least half

a century that periodically or aperiodically structured electrically small particles al-

ter the electromagnetic properties of the host medium. However, due to the ease of

fabrication techniques and the need for new applications, the exceptional behaviors

of such structures have recently received considerable attention from the scientific

community, as witnessed by the exponential growth of the number of related publi-

cations. The surge of interest in the development of metamaterials has ramified in

experimental verifications, theoretical explications and technical applications, but not

yet ratified in methodical realization for commercially mass productions.

2.1 Artificial Materials

In microwave and sub-microwave frequencies, naturally occurring materials are lim-

ited to certain levels of polarization and magnetization. Even if certain levels of

magnetization and polarization are achievable, the materials suffer from high electric
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and magnetic loss. For example, ferrite composites are strongly magnetized yet they

suffer from appreciable magnetic loss and high resistivity in the microwave frequency

range [5], [6]. Due to these limitations, artificially engineered materials are designed

to provide specific permeability and permittivity over microwave frequency ranges.

An artificial material, also termed as a metamaterial, is an engineered structure

that has electromagnetic properties which are not readily available in nature. The

metamaterial is a material medium which is aggregated with electrically small inclu-

sions. The inclusions are periodically or aperiodically arranged in the host medium.

The engineered structure alters and advances the electromagnetic properties of the

host medium due to mainly the inclusions’ resonating behavior in presence of an elec-

tromagnetic excitation [7]. While such a composite is excited by an electromagnetic

radiation whose wavelength is much larger than inclusions’ dimension and separation,

the medium exhibits unique behaviors not covered by ordinary materials.

From electromagnetic point of view, the heterogenous artificial structure can be

featured as a homogenous medium ascribed by an effective material parameters, an

effective permittivity εeff and an effective permeability µeff. The effective description

would be valid if any length scale d associated with the structure is much smaller

than the electromagnetic radiation wavelength λ,

d� λ = 2πc/ω (2.1)

where ω is the angular frequency of the electromagnetic radiation. This condition

ensures that electromagnetic wave is refracted and not diffracted in the underlying

medium, and therefore, the effective permittivity and permeability are plausible con-

cepts. Note that, unlike the photonic bandgap structure (PBG), metamaterials are

not required to be periodic. However, in this context I mainly seek the properties of

periodically structured metamaterials.

The inequality (2.1) defines the effective medium limit [8], [9]. Thus, even though

the composite medium is complex, the electromagnetic response of the structure can

be sought through the effective response functions of εeff(ω) and µeff(ω). Hence, the

source-free Maxwell’s equations with a set of constitutive relations defined by εeff(ω)

and µeff(ω) describe the electromagnetic properties of the artificial medium. Design of

an artificial electromagnetic material with εeff and µeff is motivating if one can achieve

values of the effective functions which are not normally found in natural materials.
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However, a significant question is that whether there are limitations on εeff and µeff,

and if so, what are those limitations? I particularly address this question later in

the light of effective medium models for µeff. However, in general, for passive linear

media, the analysis of εeff(ω) and µeff(ω) leads to the following conditions [10]:

lim
ω→∞

εeff(ω) = 1 and lim
ω→∞

µeff(ω) = 1 (2.2)

d(ωεeff(ω))

dω
> 1 and

d(ωµeff(ω))

dω
> 1 (2.3)

The relations (2.2) imply that beyond some frequency, materials cannot be po-

larized or magnetized, thus, the effective permittivity and permeability are limited

to unity. At extremely high frequencies, the assumption in (2.1) is violated, and in

principle, it is not valid to introduce effective material parameters. The second condi-

tions in (2.3), derived from the Kramers-Kronig relation 1[10], [11], is a consequence

of the causality principle. These conditions apply a restriction on the frequency dis-

persion relation of the permittivity and permeability functions. In fact, the conditions

(2.3) imply that the absorbed energy density in a passive linear lossless medium must

always be larger than the energy density of the same field in vacuum.

Fig.2.1 shows the various possible combinations of εeff(ω) and µeff(ω). Consider

the propagation of an electromagnetic wave in the medium. The refractive index n(ω)

and the wave vector k are defined as:

n =
√
εeff(ω)µeff(ω) (2.4)

k =
ω

c
n(ω) (2.5)

In the first quadrant, since εeff(ω)µeff(ω) > 0, and hence, the wave vector is a real

number. All materials at least for a band of frequency lie in this quadrant. The

second quadrant are epsilon negative materials (ENGs),and provides an imaginary k

which implies that electromagnetic waves are evanescent. The noble metals at high

frequencies have negative permittivity. Another example is the plasma medium such

as the ionosphere.

1More details on Kramers-Kronig relations and causality constraints is provided in chapter 3.
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In the lower half-plane of ε−µ space in Fig.2.1, µeff is negative [12]. Note that the

occurrence of negative permeability in materials does not contradict with causality

due to the fact that the second inequality in relations (2.3) predicts this property

through sufficient frequency dispersion. Thus, realization of that through recon-

structing a composite medium has motivated many scientists in the last decade. In

the third quadrant, the permittivity and permeability functions are simultaneously

negative [13]. The materials in this quadrant are refereed to as left-handed materials

(LHMs) by Veselago [14] due to the fact that the triad (E,H,k) forms a left-handed

system, where E and H correspond to the electric and magnetic fields, respectively.

The left-handedness can clearly be seen through Maxwell’s equation written for a

harmonic electromagnetic field,

k× E =
ω

c
µ0µeff(ω)H (2.6)

k×H = −ω
c
ε0εeff(ω)E (2.7)

Interesting consequence of left-handedness is that the group velocity and phase

velocity are in opposite direction which is known as backward propagation of electro-

magnetic waves in double negative (DNG) media. As a consequence, the refractive

index n(ω) is negative in DNG materials [15], [16], [17], [18]. Negative refractive index

(NRI) materials have been fabricated and measured [19], [20]. The quadrant (IV)

specifies materials with negative permeability and positive permittivity functions.

This single negative (SNG) region is referred to as µ-negative materials (MNGs).

One important consequence of negativity of a medium parameter is the amplifi-

cation of evanescent waves in the SNG medium, which leads to a perfect lensing and

sub-wavelength imaging, a high-resolution imaging beyond the diffraction limit [21],

[22], [23], [24], [25], [26]. Metamaterials open the door to new applications such as

invisibility cloaking and the synthesis of materials index-matched to air, for potential

enhancement of light collection in solar cells.

Metamaterials based on their heterogeneities are classified in different types. Meta-

materials which are designed to enhance the magnetic properties of the host medium

are referred to as artificial magnetic materials (AMM). The inclusions in this type re-

spond significantly to the magnetic field. The limitations, synthesis and applications
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Figure 2.1: Effective material parameters represented on a set of ε− µ axes)

of artificial magnetic materials in microwave frequency are the main subject of this

thesis.

2.2 Artificial Magnetic Materials

Among artificial structures, those exhibiting magnetic properties have received tremen-

dous attention because of not only providing positive or even negative permeability

values at radio frequencies but also being an enabling technology in several key appli-

cations. Emergence of new magnetic features by means of artificial magnetic materials

has affected proliferating wireless systems such as the antenna technology useful in

telecommunication systems and near-field sensing probes such as portable ground-

penetrating sensors.

An artificial magnetic material (AMM) known as a magnetic metamaterial is a
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composition of electrically small metallic broken-loop inclusions, aligned in paral-

lel planes perpendicular to the direction of incident magnetic field. The incident

magnetic field induces electric current on the inclusions leading the emergence of an

enhanced magnetic response inside the medium at the vicinity of the LC resonances

of the looped ring.

In the microwave region, metals can be approximated as perfect conductors as

the skin depth is much smaller than the feature size of the structure. Thus, the res-

onance frequencies and dispersive behavior of AMMs are determined entirely by the

geometry and size of the metallic broken-loop inclusions. Hence, the LC resonances of

perfectly conducting metallic structures are referred to as geometric LC resonances.

The geometric-circuit analysis of AMMs can be extended roughly up to mid-IR fre-

quencies where the size of metallic component are comparable to or less than the skin

depth [27], [28]. However, in infra-red (IR) and optical frequencies, the electromag-

netic properties of metals dominate, and the magnetic response of inclusions is due

to electric and magnetic plasmonic resonances (PRs). For optical magnetism, various

shapes such as parallel plates, fishnet, u-shape and loop-dots magnetically respond

in presence of electromagnetic field [29]-[31].

The first inclusion, a single broken-loop, was proposed by Schelkunov and Friis in

1950’s [32]. Three decades later, Hardy and Whitehead introduced a cylindrical sheet

having a gap on its surface parallel to a cylinder axis to exhibit magnetic behavior

[33]. In addition, Kostin and Shevchenko arranged the broken loops in a periodic

lattice to create paramagnetic properties in a medium [34], [35].

An inundation of publication commenced by the appearance of Pendrys seminal

work on the feasibility of creating magnetism from metallic conductors [1]. The ever-

renowned split ring resonators (SRRs) and Swiss roll resonators (SR-Rs), a cylindrical

wounded metal sheet, were introduced by Pendry et al. [1]. Since then, to obtain

enhanced magnetic properties, numerous inclusions having various geometrical con-

figurations have been proposed in the literature [2]-[38]. Fig.2.2 shows a sample set

of metallic broken-loop inclusions presented in the literature as building blocks of

AMMs. Each proposed structure provides its own advantages and disadvantages in

terms of resultant permeability, dispersive characteristics and dissipation factor. A

modified SRR (m-SRR), or broadside coupled SRR (bc-SRR) was introduced in [36].

In [2], a new configuration named metasolenoid was proposed with the potential to
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Figure 2.2: Different inclusions used to implement artificial magnetic materials. (a)

Double Split Ring Resonators (d-SRR), (b) Double Split Square Resonators (d-SSR),

(c) Singly Split Ring Resonator (s-SRR), (d) Two-turn (circular) Spiral Resonator

(2c-SR), (e) Two-turn (rectangular) Spiral Resonator (2r-SR), (f) Hilbert Fractal

Resonator, (g) Modified Ring Resonator (m-SRR), (h) Metasolenoid, (i) cross section

of a Swiss Roll (SR).

provide higher permeability compared to SRR and m-SRR configurations, in [38],

the n-turn Spiral Resonator (n-SR) configuration was introduced, and in [37], [39]-

[43] inclusions based on fractal curves were proposed to reduce the size of inclusions.

Note that all various inclusions which are electrically small compared to incident

electromagnetic wavelength are being exploited as a building block of AMM slabs.

A number of analytical models were developed to explicate the physics behind the

peculiar characteristics of AMMs [1, 36, 44, 45]. When the periodicity and the size of

the inclusions are small compared to the wavelength, electromagnetic mixing formulas

such effective medium theory (EMT) and homogenization theories (HT) can be used

to derive the effective permeability and permittivity for composite media [46]. Using

the EMT technique, Pendry et al. calculated the effective permeability of a medium

containing looped metallic inclusions such as metal cylinders, Swiss Rolls, and SRRs

and showed that negative permeability can be obtained in microwave frequencies [1].

EMT allows identifying the average field propagating inside a composite medium with

respect to the field propagating inside a homogeneous medium with the same effective

electrical characteristic [47].
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The circuit-based models of metamaterials, especially artificial magnetic materials,

were developed to capture either the behavior of the entire composite medium or the

behavior of the separate inclusions [2]. These models, which depend on the geometry

and dimension of the inclusions, have been proposed to describe the magnetic behavior

of the inclusions rather than the electric behavior.

Different shapes of inclusions have been studied in the literature. The SRR con-

sists of two concentric metallic broken rings printed on a dielectric circuit board.

Marques et al. presented a quasi-static study of the SRR by proposing a circuit

model for the capacitive behavior of the inclusions [36]. Sauviac et al. and Shamonin

et al. proposed more accurate models for SRR inclusions [44], [48]. Sauviac et al.

used a detailed circuit-based model to extract the magnetic and electric polarization

of the SRR [44]. Shamonin et al. expanded a set of differential equations describing

the current and voltage distribution in SRRs [48]. Most recently, Ikonen et al. offered

a generalized equivalent-circuit model which mimics the experimental permeability

function [49].

The unique properties of metamaterials have encouraged researchers to use meta-

material slabs in various microwave applications including using metamaterials as a

substrate or a superstrate for enhancing low-profile antenna performance [50], [51], as

a probe for the near-field imaging [52], or for shielding applications and microwave ab-

sorbers [53]-[55]. In [50], extensive research was done on the performance of developed

engineered magnetic materials when used for antenna miniaturization. It was shown

in [37] that new inclusions can provide lower dispersion, nevertheless, high magnetic

losses persist. In [56], the effective properties of the medium are expressed in terms

of the Q-factor. It was claimed that by measuring the Q-factor of a single fabricated

SRR, the effective permeability and permittivity of an AMM can be estimated to

better than 20% accuracy. In addition, in [56], a lower limit for the magnetic loss

tangent was proposed for frequencies up to about 1GHz.
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Chapter 3

Formulating Artificial Magnetic

Materials

Various geometrical patterns have been proposed to develop artificial magnetic ma-

terials [1, 2, 57, 38]. The key idea to produce magnetic properties is to generate a

circulating electric current that mimics a magnetic dipole. The current circulation

occurs in a metallic contour leading to increased magnetic flux. To generate a capac-

itive property, another metallic contour is positioned concentrically adjacent to the

first contour. The coupling between the two contours creates capacitance between

them. The capacitive load with the solenoidal inductance of the rings leading to a

resonating behavior at a frequency. As a result, the magnetic field is enhanced in the

medium, and it to a net effective increase in the permeability of the medium. The

resultant capacitance and inductance create the potential for resonance at a certain

frequency, henceforth referred to as the resonance frequency.

Fig.2.2 (from chapter 2) shows a sample set of metallic loop resonators presented

in the literature as building blocks of AMMs. The ring resonators in a unit cell are

categorized in two general geometrical patterns based on the number of loops of rings

and the coupling scheme between rings. The first category consists of metallic rings

with (1) multiple elements such as double split ring resonators (Fig.2.2-a) and double

split square ring resonators (Fig.2.2-b) or (2) single element but spiral (Fig.2.2-d,-e,-

f) or helical shape [38], [58]. The second category divides ring resonators based on

the coupling scheme established between metallic rings of a unit cell. The coupling
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Figure 3.1: Different categories of inclusions. (a) Broadside-coupled 3-turn helical

inclusion, (b) Edge-coupled 2.5-turn spiral inclusion , (c) Broadside-coupled triple

split looped inclusion, (e) Edge-coupled double split looped inclusion.

Figure 3.2: A metamaterial slab (an artificial composite of metallic inclusions) com-

posed of generic metallic broken loop inclusion

schemes are edge-coupled, if the rings are concentric in a plane, and broadside-coupled,

if the rings are parallel along their axes [57]. Fig.3.1 shows an arbitrary inclusions

contour in different categories. The artificial magnetic medium is then created by

periodically or aperiodically reproducing the contour. Fig. 3.2 shows an artificial

magnetic medium composed of periodic unit cells of generic metallic rings.

As the inclusions were arranged in parallel planes, the AMM in Fig.3.2 is es-

sentially anisotropic structure, and provides magnetic moment vectors only in the

direction perpendicular to the inclusion surface. Hence, the magnetic permeabil-

ity ¯̄µeff describing the medium is a tensor. If we consider the inclusions distributed

perpendicular to y-axis the induced magnetic moments are in y direction and the

permeability in x and z directions is equal to that of the host media which is unity

for nonmagnetic host medium. Therefore, the artificial magnetic material will be

anisotropic with permeability tensor of
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¯̄µeff =

 µr 0 0

0 µeff 0

0 0 µr

 (3.1)

where µr is the permeability of the host medium. To achieve an isotropic AMM

the same inclusions can be rearranged in parallel planes intersecting the plane of

inclusions, i.e., in x and z directions. Therefore, a unit cell is designed as a cubit cell

with inclusions attached on the three walls, i.e., in xy, xz and yz planes [59]. Also,

it has been discussed that among various orientations of the rings, for an isotropic

response the rings can only intersect along symmetric points 1 [60], [61].

In this chapter, a general formulation describing the magnetic behavior of an

AMM composed of generic inclusions is derived. The formulation is based on a

popular circuit model in the literature. In addition , the magnetic susceptibility

and permeability functions are reformulation is in a heuristic formalism suitable for

further study and synthesis of AMMs.

3.1 Characterization of an AMM

In an artificial medium impinged with an external monochromatic magnetic field

Hext, the effective magnetic susceptibility represents the degree of magnetization of

the medium in response to an applied magnetic field, defined as:

χm =
Mmed

Have

(3.2)

where Have, the magnitude of an averaged (macroscopic) magnetic field Have inside

the medium, is defined by averaging the magnetic field along the sides of the unit cell,

and Mmed is the magnitude of the magnetization vector of the medium. Magnetization

1A precise consideration of the behavior of the inclusions shows that near the resonance frequency,

the particles response to an external magnetic field not only as a strong magnetic dipole, but also as

a strong electric dipole. This behavior makes the structure bi-anisotropic. This effect is reduced for

the frequency of operation far enough from the resonance frequency, and it becomes negligible value

for inclusions coupled along their broadside. In this work, I only address the magnetic behavior of

the structures.
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is defined as the magnetic moment per volume. When the magnetic dipole moments

are in phase with the averaged magnetic field, the effective magnetic susceptibility

become larger than zero (correspondingly, the effective permeability become larger

than unity) causing the medium to be magnetized. Note that in some special cases

such as placing an AMM inside a long solenoid, Hext = Have [1], [2], [60].

An expression for the magnetic susceptibility is formulated by considering an

AMM with a general inclusion’s shape. Fig. 3.3 shows unit cell of a generic inclusion

in perspective. Fig. 3.3(a), (b) and (c) show a two-turn split ring resonator with an

arbitrary trace geometry denoted by Γ(s, l). Γ is characterized by s and l , the area

and the perimeter of the inclusion, respectively. Fig. 3.3(e) and Fig. 3.3(f) show an

edge-coupled and a broadside-coupled ring resonator, respectively. The unit sample

in Fig. 3.3 has a height of δz width of δx and depth of δy. The area of the cell

is A = δxδz and its volume is V = Aδy = δxδyδz. The conductor material used

in printed inclusions is assumed to have electric conductivity of σ, width of b, and

height of t. Without loss of generality, we can assume the other (twin) conductor is

positioned either inside and follow the shape of the outer conductor with the uniform

gap g (see Fig. 3.3(e)) or parallel to the former and separated by a distance of g (see

Fig. 3.3(f)). A dense array can be arranged in a periodic fashion, spread perpendicular

to y-axis and along the x, y and z axes to produce the AMM.

When an external monochromatic magnetic field Hext is applied, it induces a

circulating current on the metallic inclusion. As a consequence, an induced magnetic

field Hind develops. Based on Faraday’s law an electromotive force, Vemf , develops

on the metallic rings given by:

Vemf = −jωµ0ns (Have +Hind) (3.3)

Hind =
nI

δy
(3.4)

where Hind is the magnitude of the vectors Hind, I is the induced current, n is the

number of wire turns that carries the induced current (n = 2 for Fig. 2(a) [51], and

n = 1 for Figs. 2(b) and 2(c)) [2], ω is the angular frequency of the applied field, and

µ0 is the permeability of air. The inclusions are also distributed in the y-direction

(along their axis), and, thus, the produced magnetic field in each column passes
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Figure 3.3: (a) A configuration of a unit cell of an AMM with an arbitrary shape

SRR. V and A represent the volume and surface area of the unit cell. The inclusions’

contour, area and perimeter are denoted by Γ, s, and l, respectively. (b) Edge-coupled

inclusion, (c) Broadside-coupled inclusion.

through the other inclusions of the same stack. For evaluating the magnetic field, δy

is considered to be smaller than the largest dimension of the inclusion. Therefore,

each column of inclusions in the y-direction can properly be modeled as a solenoid

with the magnetic field given by (3.4).

The magnetic dipole moment of inclusions can be simply derived:

mincl = nIs (3.5)

To derive an explicit relation for the magnetic susceptibility based on physical and

geometrical characteristics of an inclusion, I propose a circuit model for the inclusions.

Accordingly, the induced Vemf dropped over any inclusion can be expressed by the

impedance of the rings and the induced current on the inclusion as [2]:

Vemf = I(R +
1

jωC
) (3.6)

where the effective impedance of the loops has been modeled with a resistor, R, in
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series with a capacitor, C 2. The main focus of this work in on frequencies less than

resonance frequency of the inclusions. Therefore, the skin depth of the conductor

determines the relationship between the resistance and the frequency. Therefore, R

is given by:

R =
1

δσ

(
n′l

b

)
=
n′l

b

(√
µ0ω

2σ

)
= R0l

√
ω (3.8)

where n′ is the number of wire turns which contribute to ohmic losses (n′ = 2 for case

(a), (b) and (c)), and R0 is

R0 =
n′

b

(√
µ0

2σ

)
. (3.9)

The relative permeability of the conductor in (3.9) was considered to be 1. Also,

C is given by

C = C0l (3.10)

R0

√
ω, and C0 are defined as the per-unit-length resistance and the per-unit-length

capacitance of the inclusion. The per-unit-length capacitance, for the edge-coupled

inclusion can be expressed as [63]:

C0 = ε0εr
F
(√

1− u2, π
2

)
F
(
u, π

2

) , u =
g

2b+ g
(3.11)

and for the broadside-coupled inclusion as [2]:

C0 =
1

4
ε0εr

F
(
u, π

2

)
F
(√

1− u2, π
2

) , u = tanh

(
πb

2g

)
(3.12)

2 The inductance of the ring’s trace was not considered in the formula due to the small value of

the inductive impedance compare to capacitive impedance of an inclusion. However, for obtaining

further accuracy in predicting the magnetic behavior of an AMM, it can be included in the model.

An approximate formula for inductance of a round loop of radius R made of a conducting strip of

width w can be read as [44], [62], [11]:

L = µ0R

[
ln

(
32R

c

)
− 2

]
. (3.7)
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where εr is the relative permittivity of the host substrate, and F (k, φ) is the elliptical

Integral of the first kind:

F (k, φ) =

∫ φ

0

dθ√
1− k2sin2θ

(3.13)

Note that in the case of metasolenoid [2] the gap, g, between the parallel inclusions

is equal to the unit cell height, δy.

Equating (3.3) and (3.6), and using (3.4) and (3.2), the effective magnetic suscep-

tibility can be expressed as:

χm = − s
A

(
jωL

R + jωL+ 1
jωC

)
=

s

A

(
ω2LC

1− ω2LC + jωRC

)
(3.14)

where the inductance,L, is defined as:

L =

(
n2µ0

δy

)
s = L0s (3.15)

and L0 is the per-unit-area inductance of the inclusion 3.

Substituting the resistance, inductance and capacitance from equation (3.8), (3.10)

and (3.15) in (3.14) results in an expression for the net magnetic susceptibility as a

function of the geometrical and physical properties of the contour Γ:

χm (ω) =
1

A

(
L0C0ω

2s2l

1− L0C0ω
2sl + jR0C0ω

√
ω l2

)
(3.16)

As observed in (3.16), the susceptibility is related to the perimeter l and area s of

the contour. Thus, inclusions with different topologies but having the same perimeter

and area, result in the same values for the magnetic susceptibility and permeability

(assuming all other physical parameters remain constant). Equation (3.16) can be

rewritten as:

χm (ω; s, l) =

(
ω
ω′0

)2 (
s
A

)
sl

1−
(

ω
ω′0

)2

sl + j
(

ω
ω′′0

)3/2

l2
(3.17)

3For obtaining more accuracy in the circuit model, the capacitance produced over the inclusion

slit can be considered as a small correction in the calculation of the circuit model.
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where ω′0, ω′′0 are defined as

ω′
2
0 =

1

L0C0

, ω′′
3
0 =

1

(R0C0)2

ω′0 and ω′′0 have the dimensions of (meter)
3
2/sec and (sec)

3
2/(meter)2, respectively.

The perimeter and area of the contour, however, are not independent parameters.

They are related according to the following relation:

ω0 =
1√
LC

=
1√

L0C0sl
=
Q
×

(sl)
−1
2 (3.18)

where Q is a function of the structural and electrical properties of the inclusions and

host medium. Hence,

s l =

(
ω′0
ω0

)2

(3.19)

where the frequency ω0 is considered as the resonance frequency of the artificial

magnetic medium.

Considering equation (3.19), grouping all the physical parameters into one param-

eter P , and defining Ω as the normalized frequency (with respect to the resonance

frequency ω0), (3.17) can be rewritten as 4:

4In the Literature, a prevalently accepted magnetic susceptibility model as an effective medium

description of an AMM expressed as:

χm(ω) =
Kω2

ω2
0 − ω2 + jγω

(3.20)

where K, (0 < K < 1), is the amplitude factor, ω0 is the resonant frequency of the inclusions,

defined to be the frequency at which χm is purely imaginary, and γ is the loss factor.

The model described in (3.20) provides valid responses at low frequencies and in the vicinity

of the resonance frequency. However, in the limit as ω → ∞, χm → −K, which contradicts the

expected physical behavior of χm. At extremely high frequencies, because of the electron’s inertia,

the materials cannot be magnetized, implying χm → 0, and hence, the model breaks down [10].

From (3.20) and (3.35), the equivalence between (3.20) and (3.29) is established through

F = K (3.21)

P =
γK2

√
ωω0

(3.22)

20



χm (Ω;F, P ) =
FΩ2

1− Ω2 + jPF−2
√

Ω3
(3.23)

where

Ω = ω/ω0, (3.24)

and F is the fractional area of the cell occupied by the interior of the inclusion,

ranging from 0 to 1, given by:

F =
s

δx δz
=

s

A
(3.25)

and P is defined as:

P =
1

A2

ω′0
4√

ω0
5ω′′0

3
(3.26)

P depends on the resonance frequency ω0, as well as the physical properties of the

design such as the permittivity of the host substrate, εr, width of the metal strips,

b, and space between the strips, g, (in edge-coupled inclusions) or gap, g, between

parallel contours in a unit cell (in broadside-coupled inclusion) and the resistance.

By factoring the frequency-related parts, the physical parameter P can be expressed

as:

P = K ω0
− 5

2 (3.27)

where K ≡ K(A, b, g, t, σ, εr, µr) is related only to the physical parameters (conduc-

tivity of inclusion, width and height of route of an inclusion, and permittivity of host

medium), and is expressed as:

K =
R0

A2L0
2C0

=
n′(δy)2

n4(δx)2(δz)2b
√

2µ0
3σC0 (εr, g, b, t)

(3.28)

Note that since γ has a linear dependence on
√
ω [49], and F and P are completely independent

of the operational frequency, the introduced model formulation is advantageous in forthcoming

applications presented in the following chapters.
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Note that P is expressed as the multiplication of a frequency-invariant coefficient,

K and a simple function of the resonance frequency which is typically specified in a

given design problem.

The relation in (3.23) can be expressed in terms of the susceptibility of the lossless

case χm0 as:

χm (Ω;F, P ) =
FΩ2

1− Ω2

 1

1 + j PΩ
√

Ω
F 2(1−Ω2)

 = χm0

(
1 + j

√
ξ(Ω)

)−1

(3.29)

where χm0 is

χm0 =
FΩ2

1− Ω2
, (3.30)

and ξ (Ω) is defined as:

ξ (Ω) =
P 2Ω3

F 4(1− Ω2)2 = α2 Ω3

(1− Ω2)2 (3.31)

and α = P/F 2.

The factor α determines the level of loss in the medium. The factor is referred

to as the dissipation factor. Since frequencies below the resonance frequency result

in permeability higher than one, the frequency range 0 < Ω < 1 is considered to be

the only frequency range of relevance when designing artificial magnetic permeability

that achieves enhanced positive permeability.

The real part of (3.23) is considered as the resultant magnetic susceptibility of the

medium. The real part of the magnetic susceptibility is given by:

χmRe (Ω;F, P ) = Re (χm (Ω;F, P )) =
F 5Ω2 (1− Ω2)

F 4 (1− Ω2)2 + P 2Ω3
(3.32)

and it can also be stated in the following form:

χmRe (Ω;F, P ) =
FΩ2

1− Ω2

{
1

1 + P 2Ω3

F 4(1−Ω2)2

}
= χm0 (1 + ξ(Ω))−1 (3.33)

22



The aforementioned closed form for the susceptibility function is an appropriate

form which is used in chapter 4 to derive some fundamental limitations and in chapter

5 for developing the design methodology of AMMs.

χm0(Ω), the magnetic susceptibility of lossless medium, and ξ(Ω), the loss factor,

can be written in the following form:

χm0(Ω) = F · f1(Ω) (3.34)

ξ(Ω) =
P 2

F 4
· f2(Ω) (3.35)

where

f2(Ω) =
f 2

1 (Ω)

Ω
=

Ω3

(1− Ω2)2
(3.36)

where f1(.) and f2(.) are only a function of Ω. This is a significant point which is

used for developing a design methodology.

Using (3.29), the permeability can be written as:

µ(Ω;F, P ) = 1 + χm(Ω;F, P ) = 1 + χ0(Ω)(1 + j
√
ξ(Ω))−1 (3.37)

Two significant parameters of an AMM are the real effective permeability and the

magnetic loss tangent (MLT), expressed respectively as:

µRe(Ω) = 1 + χ0(Ω)(1 + ξ(Ω))−1 (3.38)

tan δ(Ω) = −µIm(Ω)

µRe(Ω)
= χ0(Ω)

√
ξ(Ω) (1 + χ0(Ω) + ξ(Ω))−1 (3.39)

Fig.3.4 shows the real and imaginary part of the effective magnetic susceptibility

function for a typical AMM introduced by the presented model.

In subsequent chapters, the aforementioned equations are exploited to deriving

fundamental limitation of the magnetic behavior of AMMs and methodically design

AMMs meeting specific operational requirements.
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Figure 3.4: A typical response of an artificial magnetic material. The graph shows

the magnetic susceptibility as a function of frequency. Note no specific frequency

scale depicted.

3.2 Contribution

I derived generalized expressions for the magnetic permeability and susceptibility

governing the behavior of composite engineered magnetic materials with any arbitrary

shape of an inclusion. To generalize the expression for use in any frequency range,

it is expressed in terms of the normalized angular frequency Ω. Therefore, for any

structure, calculations of P and F are sufficient to obtain the effective magnetic

behavior.

The advantage of the formula in (3.29) is that the topological properties of the in-

clusion’s contour such as surface area and perimeter of the inclusions and the physical

properties of the design appear explicitly in the formula as two factors. In fact, the

strongest feature of the model is that inclusions with different topologies but having

identical perimeter and area, result in the same values for the magnetic susceptibility

and permeability.
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Chapter 4

Limitations

Artificial magnetic materials are designed to provide enhanced positive permeability

over a specific range of frequencies. For most applications, it is desirable to have a

uniform permeability over the range of frequencies of interest, however, due to the

resonating nature of inclusions, the permeability resulting from engineered magnetic

materials changes rapidly with frequency [1], [2]. The variation with frequency will

result in dispersion leading to limited if not poor performance in many applications

related to antenna miniaturization and gain enhancement [50]. In this chapter, it is

firstly shown that dispersion and loss are connected through Kramers-Kronig rela-

tions. Then, the fundamental limitations on frequency dispersion reduction in the

design of artificial magnetic materials are investigated for the lossless case where the

conductivity of the conductor is assumed infinite (the first section) and for the case

where Ohmic losses are presented (the second section). It is shown that the disper-

sion in an AMM is limited by the desired operational bandwidth. Moreover, in the

last sections, employing the formulation has been developed in the previous chapter,

a set of constraints is derived. The constraints are shown the effect of the newly

introduced parameters on the effective permeability of the medium and the magnetic

loss tangent.
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4.1 Kramers-Kronig Relations

In essence, the Kramers-Kronig relations describe the fundamental connection be-

tween the real and imaginary parts of a holomorphic function, and it is often used

to constitute the causality constraints on theoretical formulation of physical systems

[64]-[67]. Consider a complex analytic function A(ω) = ARe(ω) + jAIm(ω), where

A(ω) → 0 faster than 1
ω

as |ω| → ∞. The Kramers-Kronig equation can be written

as [68], [69]:

ARe(ω) =
1

π
P
∫ ∞
−∞

AIm(ξ)

ξ − ω
dξ (4.1)

AIm(ω) = − 1

π
P
∫ ∞
−∞

ARe(ξ)

ξ − ω
dξ (4.2)

where P denotes the Chauchy principal value. The relations show that real and

imaginary part of such a response are not independent functions. By knowing a

single part of a function, either real or imaginary part, over a continuous region

on the frequency spectrum, the other part is determined. The analyticity of εeff(ω)

and µeff(ω) in the upper half-ω-plane allows immediately the use of the Kramers-

Kronig relations. Also, it can be shown that from the symmetry property of εeff(ω)

and µeff(ω), εRe(ω) and µRe(ω) is even, and εIm(ω) and µIm(ω) is odd [11]. Thus,

the Kramers-Kronig relations can be transformed to span positive frequencies as for

εeff(ω):

εRe(ω) = 1 +
2

π
P
∫ ∞

0

ω′εIm(ω′)

ω′2 − ω2
dω′ (4.3)

εIm(ω) = −2ω

π
P
∫ ∞

0

ω′εRe(ω
′)− 1

ω′2 − ω2
dω′ (4.4)

and for µeff(ω):

µRe(ω) = 1 +
2

π
P
∫ ∞

0

ω′µIm(ω′)

ω′2 − ω2
dω′ (4.5)

µIm(ω) = −2ω

π
P
∫ ∞

0

ω′µRe(ω
′)− 1

ω′2 − ω2
dω′ (4.6)

These relations are very general mathematically, and somehow limited practically,

as the physical responses are not known over the whole spectrum. Expanding µIm(ω)
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from a very narrow absorption band at ω = ω0, the integrals in (4.5) can be expanded,

and µeff(ω) stated as:

µeff(ω) =

(
µ̃+

k

ω2
0 − ω2

+ ...

)
+ i

(
πk

2ω0

δ(ω − ω0) + ...

)
(4.7)

where k is a constant, and µ̃ represents a slowly varying function.

4.2 Dispersion Limitation

A typical response of an artificial magnetic medium is shown in Fig. 3.4. This mag-

netic response is generic, and widely accepted in the literature [1], [12].

4.2.1 Lossless Case

By assuming zero resistance in the metallic inclusions, the resultant susceptibility of

the lossless case, χm0 from (3.30) and (3.24) will be a real number and is equal to:

χm0 (ω) =

(
ω
ω0

)2

F

1−
(
ω
ω0

)2 (4.8)

Assuming ω1 and ω2 as the lowest and highest operational frequencies (ω1 < ω2),

and µ1, µ2 as the resultant permeability at these frequencies respectively, I am seeking

a general relationship between, δµ = µ2 − µ1, and, BW = ω2 − ω1. (Since the

engineered magnetic materials are designed to provide permeability higher than one,

the frequencies ω1 and ω2, are chosen to be less than the resonance frequency ω0.)

Enforcing (4.8) at ω1 and ω2, we have:


χ1=

F
(
ω1
ω0

)2

1−
(
ω1
ω0

)2

χ2=
F
(
ω2
ω0

)2

1−
(
ω2
ω0

)2

(4.9)

Solving the system of equations (4.9) for F yields:
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F =
(ω2

2−ω1
2) (χ2χ1)

χ2ω1
2 − χ1ω2

2
(4.10)

Recall that since F is the fractional area occupied by the interior of the inclusion

in the unit cell, F is bound by unity. Satisfying the conditions of 0 < F < 1

leads to restrictions on the susceptibilities at two selected frequencies. For the first

condition F > 0, it is clear that the permeability is larger than one and therefore

the susceptibility is positive for all frequencies less than ω0, (i.e., µ2, µ1 > 1 and

χ2, χ1 > 0). Consequently, since ω2 > ω1, we have:

(
ω2

ω1

)2

≤ χ2

χ1

(4.11)

The above equation shows an interesting constraint which limits the ratio of the

susceptibility at any two arbitrary frequencies to the square of the ratio of those

frequencies. Another interesting observation is that the relationship given in (4.11) is

independent of both physical and geometrical characteristics of the designed inclusion.

Any effort to improve the frequency bandwidth of the resultant permeability is strictly

confined to this limitation. As an example, suppose ω2 = 3ω1, then χ2/χ1 cannot be

less than 9.

For the second condition, namely, F < 1, I consider (4.10) and after some algebraic

manipulations, we have:

(
ω2

ω1

)2

≤
(
χ2

χ1

)(
χ1 + 1

χ2 + 1

)
(4.12)

or equivalently:

(
ω2

ω1

)2

≤
(
χ2

χ1

)(
µ1

µ2

)
(4.13)

Since the ratio of (χ1 + 1)/(χ2 + 1) is always less than one, the limit achieved in

(4.13) is even stronger than that of (4.11). Therefore, the change of susceptibility

with frequency is even more rapid than the square of frequency.

By defining mean permeability µc and central frequency ωc, respectively, as:
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µc = 1

2
(µ2 + µ1)

ωc = 1
2

(ω2 + ω1)

(4.14)

and δχ and δµ as the deviation of susceptibility and permeability, respectively, 4.13)

can be rewritten as:

(
χc+

δχ
2

χc− δχ
2

)(
µc − δµ

2

µc + δµ
2

)
≥

(
ωc + BW

2

ωc − BW
2

)2

(4.15)

In many application BW � ωc and δµ � µc. Using these conditions, (4.15) can

be simplified using first-order binomial expansions as:

(
ω2

ω1

)2

=

(
ωc + BW

2

ωc − BW
2

)2

∼= 1 +
2BW

ωc
(4.16)

(
χ2

χ1

)(
µ1

µ2

)
=

(
χc + δχ

2

χc − δχ
2

)(
µc − δµ

2

µc + δµ
2

)
∼=
(

1 +
δχ

χc

)(
1− δµ

µc

)
∼= 1 + δµ

(
1

χc
− 1

µc

)
= 1 +

δµ

χcµc

(4.17)

Substituting (4.16) and (4.17) in (4.13) results in:

BW

ωc
≤ 1

2χc

(
δµ

µc

)
(4.18)

The condition in (4.18) relates the deviation in the relative permeability to the

relative bandwidth. Since the bandwidth BW is inversely proportional to the mean

permeability µc, there is a tradeoff between maximizing the effective permeability

and broadening the frequency range in which the smooth deviation of permeability

is obtainable. In fact, for two different designs with the same relative permeability

deviation, wider bandwidth can be achieved in the design with lower permeability.
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Figure 4.1: The relative frequency bandwidth is depicted versus the relative perme-

ability deviation. The grey area determines the possible interval for the bandwidth.

Notice that the slope is inversely proportional to the central susceptibility.

Fig. 4.1 illustrates (4.18) graphically. For any design, the resultant bandwidth lies

in the gray area shown in Fig. 4.1. As an example, for µc equal to 5, requiring the

relative permeability deviation to be less than 1 percent bounds the relative frequency

bandwidth to 0.125%, and say, for a central frequency of 200MHz the bandwidths

would theoretically be less than 250kHz. As a second example, if µc = 2, having 1%

deviation in the permeability leads to a maximum of 0.5% relative bandwidth.

Although first-order terms were used in the Taylor’s expansion in (4.18), it can

be shown that making the approximation more accurate by including second-order

terms in the expansion gives identical conclusions.

4.2.2 Lossy Case

By considering loss, the resultant permeability in (3.37) or the resultant suscepti-

bility in (3.29) will have real and imaginary parts. Since only the real part affects

the permeability in the artificial magnetic medium and the imaginary part appears

only when introducing loss in the medium, the deviation with frequency is mostly

important for the real part. In this section, the frequency deviation of the real part
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will only be discussed.

As shown in previous chapter, the resultant permeability can be modeled as the

response of an RLC circuit. It is expected that adding resistance or loss to the system

(inclusions) leads to a smoother frequency response. Therefore, it is expected that

the fundamental limits achieved for the frequency response of the permeability for

the lossless case to be sufficient for the lossy case. Note that in the context of this

work, the attention is only on the positive range of Ω (i.e., 0 < Ω < 1).

The function ξ (Ω) (Eq.3.31) has a second-order simple singularity at the normal-

ized resonance frequency (i.e. Ω = 1), thus ξ (Ω) approaches infinity as Ω approaches

one. The factor α in (3.31) is a parameter that scales the magnitude of ξ (Ω) and all

its derivatives. Differentiation of ξ (Ω) with respect to Ω gives:

dξ (Ω)

dΩ
= α2 Ω2 (3 + Ω2)

(1− Ω2)3 =

(
Ω +

3

Ω

)
ξ(Ω) (4.19)

In the range 0 < Ω < 1 , (4.19) is always positive, therefore, the function increases

monotonically with respect to Ω. So, for Ω2 > Ω1, we have:

ξ (Ω2) ≥ ξ (Ω1) (4.20)

Using (4.19), equation (3.32) leads to:

χm0 (Ω1)− χmRe (Ω1)

χmRe (Ω1)
≤ χm0 (Ω2)− χmRe (Ω2)

χmRe (Ω2)
(4.21)

Simplification of (4.21) results in:

χmRe (Ω2)

χmRe (Ω1)
≤ χm0 (Ω2)

χm0 (Ω1)
(4.22)

The inequality in (4.23) states that the ratio of the magnetic susceptibility at two

different frequencies for the lossless case is larger than that of the lossy case. This

indicates that the magnetic susceptibility function is flatter for the lossy case than

for the lossless case. Note that the limit achieved in equation (4.18) is independent

of the topology of the inclusion.
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4.3 Physical and Geometrical Effects on Disper-

sion and Loss

As shown in Chapter 3, all physical properties are summarized in one parameter,

P , and all geometrical properties are summarized in one parameter F . Equation

(3.29) and Equation (3.37) give the magnetic susceptibility and consequently the

permeability in terms of these two parameters, P and F . Therefore, the study of the

effect of physical and geometrical parameters on the resultant permeability and its

frequency domain behavior will be confined to F and P .

4.3.1 Effects on Real Effective Permeability

Differentiation of (3.38) with respect to F while using (3.31) gives:

∂µRe (Ω;F )

∂F
=
∂χRe (Ω;F )

∂F
=

1

1 + ξ

∂χm0

∂F
− 1

(1 + ξ)2

∂ξ

∂F

=
Ω2 (1− Ω2)

(
(1− Ω2)

2
+ 5P 2 F−4Ω

3
)

(
(1− Ω2)2 + P 2Ω3 F−4

)2

=
Ω2

1− Ω2

(
1 + 5ξ(Ω)

1 + ξ(Ω)

)
(4.23)

In the frequency range of interest, 0 < Ω < 1, we have:

∂µRe (Ω;F )

∂F
> 0 (4.24)

Therefore, the larger F , the higher the permeability. Since F is defined as the

ratio of the surface enclosed by the inclusion to the total surface of the unit cell,

the contours which provide higher enclosed surface lead to higher permeability. On

the other hand, the surface of the inclusion and its length are related to each other

through the resonance frequency in (3.18). Indeed, they are inversely proportional at

a fixed resonance frequency. Therefore, for all inclusions designed to operate at the

same resonance frequencies, the ones that provide larger enclosed surface (or larger F )

and shorter total length (i.e., perimeter) will result in higher value for permeability.
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Figure 4.2: Real part of the permeability as a function of the normalized frequency,

Ω, for different values of F . The inclusion trace is made of copper and the dimensions

are g = b = 0.127mm, εr = 3.38, δy = 3.028mm, δx = δz = 20mm.

Fig. 4.2 shows the real part of the permeability as a function of Ω for different values

of F . Furthermore, Fig. 4.2 shows that an increase in F leads to a larger value of the

permeability which is expected from (4.24).

In (3.38), ξ(Ω) is a function of P . Taking the derivative of (3.38) with respect to

P gives:

∂µRe (Ω, P )

∂P
=
∂χmRe (Ω, P )

∂P
=

1

1 + ξ

∂χm0

∂F
− 1

(1 + ξ)2

∂ξ

∂F

= − 2

P

FΩ2

1− Ω2

ξ(Ω)

(1 + ξ(Ω))2
= − 2

P

ξ(Ω)

1 + ξ (Ω)
χmRe (Ω;F )

(4.25)

Notice that (4.25) is always negative for 0 < Ω < 1. Therefore, by increasing P ,

one can expect the permeability to decrease. However, what is interesting is that for

33



Figure 4.3: The real part of permeability for different values of P , the geometrical

parameter F is assumed to be 0.8. Notice that all curves are almost overlapping.

practical considerations, µ is highly insensitive to changes in P . Fig. 4.3 shows a plot

of µ vs. Ω, for the case of F = 0.8 (this case was simply selected as an example). one

can observe that as P changes by one order of magnitude, the resultant permeability

remains practically constant. Notice that the curves in Fig. 4.3 are indistinguishable.

This is due to the fact that in (3.38), the only part that is a function of P is ξ(Ω)

which is much smaller than 1. (Since α = P/F 2, and from (3.29), it can be shown

that for practical geometries such as those considered in Table 1, ξ(Ω) << 1. Notice

that I am assuming that the upper frequency of interest is not close to the resonance

frequency. As the resonance frequency is approached, the function ξ(Ω) starts to

diverge and is no longer much smaller than one.)

Table 4.1 shows three P values for designs proposed earlier in the literature. In

all cases, the P factor was small, even in some cases smaller than the numbers I

considered for the graph in Fig. 4.3.
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Table 4.1: Parameters of Some Previously Designed Inclusions

Design A(mm2) K ω0(GHz) P F

Solenoid [2] 110 2.3× 1019 0.998 9.8× 10−6 0.11

SRR [1] 100 9.0× 1021 32.58 4.9× 10−4 0.53

Hilbert-SRR [37] 400 7.5× 1019 0.981 2.4× 10−2 0.42

4.3.2 Effects on Magnetic Loss Tangent

An important parameter in designing artificial magnetic materials is the Magnetic

Loss Tangent , tan δ, which represents the magnetic loss in the medium1. In most

applications, it is desirable to have tan δ as small as possible. In this section, the

behavior of tan δ with respect to the geometrical and physical parameters, F and P ,

is investigated.

The magnetic loss tangent is defined as:

tan δ =− Im (µ (ω))

Re (µ (ω))
(4.26)

Recall from (3.39), and using (3.30) tan δ can be rewritten as:

tan δ =
FΩ2

√
ξ (Ω)

(1 + ξ(Ω)) (1− Ω2) + FΩ2
(4.27)

Differentiating (4.27) with respect to F , we obtain:

∂(tan δ)

∂F
= −

Ω2 (1− Ω2) (1− 3ξ (Ω))
√
ξ (Ω)

((1 + ξ(Ω)) (1− Ω2) + FΩ2)2 (4.28)

In (4.28), all terms except (1 − 3ξ(Ω)), are positive for all values of F and Ω.

Since ξ(Ω) is inversely related to F (see Eq.(3.29)), tan δ has a local maximum at a

specific value of F denoted as Fmax. In Fig. 4.4, tan δ is plotted as a function of F

for different values of P and Ω. Notice that, Fmax, the value of F corresponding to

1Note that the physical loss in the medium is described by the imaginary part of the refractive

index, extinction factor, the relation between the extinction factor and magnetic tangent is derived.

Please see Appendix [A].
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Figure 4.4: The magnetic loss tangent, tan δ , as a function of the geometrical pa-

rameter, F , for different values of P and Ω.

maximum tan δ , is relatively small compared to unity, meaning that tan δ reaches a

maximum when the area of the inclusions is small in comparison to the area of the

unit cell. Since the permeability approaches unity for small values of F , it is most

desirable to achieve the highest permeability, hence, F is chosen to be greater than

Fmax.

For designs with F larger than Fmax, as shown in Fig. 4.4, increasing F leads to

a smaller value of tan δ. Consequently, an optimal design is a design with inclusions

whose area is close to the unit cell’s area (F → 1) which leads to a lower magnetic

loss. Hence, the minimum value of tan δ , achieved at F = 1, is:

min(tanδ) = tan δ |F=1
∼= Ω2

√
ξ (Ω) =

√
Ω7

1− Ω2
P (4.29)

Fig. 4.5 shows a three dimensional presentation of tan δ as a function of F and Ω.

As shown in this figure, the maximum value of tan δ occurs at the lower value of F .
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Figure 4.5: The magnetic loss tangent, tan δ , as a function of Ω and F , for P=0.05

For instance, for an inclusion with a physical factor P less than 0.002, the maximum

of tan δ at any frequency occurs at F less than 0.2. Moreover, as F increases, i.e., the

inclusion occupies more area of the unit cell, the maximum moves to larger Ω and

also becomes larger (from about 10 when Ω and F are close to zero, and more than

35 when Ω is 0.8 and F is 0.1). In addition, it can be observed that as F approaches

unity tan δ decreases.

To study the effect of physical parameters on loss, one needs to consider the

derivative of tan δ with respect to P :

∂(tan δ )

∂P
=
FΩ2

√
ξ(Ω) ((1− ξ(Ω)) (1− Ω2) + FΩ2)

P ((1 + ξ(Ω)) (1− Ω2) + FΩ2)2 (4.30)

For a specific value of P , denoted as Pmax, the term (1− ξ(Ω) (1− Ω2) + FΩ2)

vanishes, and tan δ reaches a maximum for a certain value of F and Ω. (It is a

simple exercise to show that tan δ has only one maximum within the range of P . In

Fig. 4.6, tan δ is plotted as a function of P for different values of F and Ω. As shown

in Fig. 4.6, the maximum of tan δ function occurs for values of P much higher than
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Figure 4.6: The magnetic loss tangent tan δ as a function of the physical parameter,

P for different values of F and Ω.

those used in practical structures.

4.4 The Permeability Maximum Value

In this section, the normalized frequency in which the permeability function maxi-

mizes is calculated. The normalized frequency is calculated in terms of the geomet-

rical and physical parameters. Correspondingly, a relationship for the maximum of

the permeability function is derived.

Recall from (3.33), the real part of the magnetic susceptibility can be written as

χmRe(Ω) = χ0(Ω)(1 + ξ(Ω))−1 (4.31)

By limiting Ω to 0 and 1, we have:
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 lim
Ω→0

χmRe(Ω) = 0

lim
Ω→1

χmRe(Ω) = 0
(4.32)

Therefore, because χmRe(Ω) is a positive function over the range of Ω ∈ [0, 1], it

is maximized at Ωmax ∈ (0, 1) which is the root of the first derivative of χmRe(Ω) over

an interval (0,1). Taking the derivative of χmRe(Ω) with respect to Ω,

1

χ0

dχ0

dΩ
=

1

(1 + ξ)

dξ

dΩ
(4.33)

By substituting from (3.34), (3.35) and (3.36) in (4.33), we have

B2 · Ω3(1 + Ω2)− (1− Ω2)2 = 0 (4.34)

where B = P
F 2 .

It is clear that the root of (4.34) and equivalently the maximum of χmRe approaches

one if and only if P → 0. In previous chapter, Table.4.1, it has been shown that for

practical applications, P 2

F 4 � 1. Hence, one can assume Ωmax = 1 − α where α � 1.

Substituting Ω = 1−α in (4.34) and considering up to the second order of expansion,

It is obtained:

(8− 13B2)α2 + 8B2α− 2B2 = 0 (4.35)

By solving (4.35) for α, Ωmax is obtained as

Ωmax = 1− 1

2
B +

1

2
B2 +O(B3) (4.36)

and accordingly

Max (χmRe) '
F

2B
− F

8
+

3F

64
B − 43F

256
B2 +O(B3) (4.37)

For the maximum value of F = 1 and B = 0.1 the error in the calculation of

the maximum value of the magnetic susceptibility is less than 0.1%. In fact, even by

taking only the first two terms in (4.36) and (4.37), the error remains less than 0.1%.

After substituting B = P
F 2 , and considering the first two term in (4.36) and (4.37), the
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frequency in which the permeability maximizes and the maximum of permeability is

approximately derived: {
Ωmax ' 1− 1

2
P
F 2

Max (χmRe) ' −F
8

+ F 3

2P

(4.38)

Equivalently, for the permeability, we have

Max (µmRe) ' 1− F

8
+
F 3

2P
(4.39)

4.5 Contribution

I presented fundamental limitations on the performance of artificial magnetic materi-

als. A fundamental constraint expressing the effect of the relative permeability on the

relative bandwidth were derived for the lossless and lossy structures. It is shown that

the achieved restriction is general and does not depend on the shape of the metallic

inclusions comprising the artificial magnetic medium.

The effect of the physical parameter P and geometrical parameter F , introduced

in the model presented in chapter 3, on the effective permeability of the medium and

the magnetic loss tangent were studied. It was found that increasing F increases the

effective permeability of the medium, however, it also leads to increased dispersion.

Increasing the geometrical factor F was found to decrease the loss. It was also found

that the physical parameter, P has very little impact on the effective permeability

and dispersion; however, it affects the loss more pronouncedly. Therefore, there is

a tradeoff between increasing the permeability and decreasing the loss on the one

hand, which results from increasing F , and reducing dispersion, on the other hand

by decreasing F . In other words, designing inclusions with larger surface area (i.e.,

increasing F ) results in lower loss and higher value for permeability; however, this

leads to an increase in the rate of change of permeability with frequency, thus higher

dispersion.

A simple but general enough circuit-based model is used for calculating the mag-

netic behavior of inclusions and the slab itself. Although more elaborate model pro-

posed in literature [44], [49] consider more circuit components such as the capacitance
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of the inclusions gap, inductance of the metallic routes and mutual induction between

adjacent inclusions, it has been shown that the general functionality of the effective

magnetic behavior of inclusions will not change [1], [2]. Thus, the derivations and

conclusions, in essence, are general, and they can be applied for any application and

design. It is worth noting that in this work, I only considered the magnetic loss, how-

ever, the total loss in the medium can be comprised of electric and magnetic losses.

Moreover, an approximate limit for the maximum permeability attainable from an

AMM and its corresponding normalized frequency are calculated.

The constraints and relations derived in this work can be used to methodically

design artificial magnetic material meeting specific operational requirements.
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Chapter 5

Design Methodology

In this section, I introduce a design recipe for AMMs. I propose a strategy and

approach to design an AMM with specified unit cell size and effective magnetic per-

meability larger than unity over a range of frequencies. The resonant frequency of the

inclusions can be set through the design procedure, but the permeability is designed

for minimum allowable dispersion within the frequency band. Moreover, the design

is desired not to exceed a certain magnetic loss tangent over a specific frequency

range. The outcome of the design is the dimension of the inclusion or the geometrical

and physical parameters of the medium. However, many fabrication and structural

parameters cannot be varied due to fabrication and design constrains, such as the

thickness of the metal of the board, the conductivity of the conductor, the perme-

ability of the host medium, or width of the conductor’s routes. Therefore, all these

values will be considered as design constraints.

The procedure is summarized as follows: First step is testing the feasibility of

the design. In this step, the requested values will be tested against the fundamental

limitations of AMMs as discussed in [70], [56]. In the next step, by using the fixed and

requested design parameters, and employing relations (3.38) and (3.39), a valid inter-

val for the resonance frequency of the inclusions and subsequently for the geometrical

and physical factors will be calculated. The provided intervals of parameters specify

the magnetic properties of the structure within a range in which the desired values

are located. In the third step, the frequency range of the resonance frequency and

the geometrical and physical factors are modified to achieve a suitable tolerance for
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Figure 5.1: The flowchart shows the main steps to derive the geometrical and physical

factors from which the area and perimeter of inclusions will be determined.

the magnetic properties of the structure. Although a very narrow range of tolerance

can be obtained, it is preferable to determine the design ranges constrained by fab-

rication and application tolerances. Finally, by using the two calculated geometrical

and physical factors, the length and area of inclusions will be derived. Fig.5.1 shows

the main steps of the design methodology. A case study is considered next.

To the best of my knowledge, the synthesis approach that has been pursued in

this work was never attempted before. However, a 3D full-wave simulation-based op-

timization algorithms can be applied to synthesize, if possible, an AMM’s inclusion to

achieve certain real and imaginary permeability over a specific frequency band. These

algorithms extremely expensive in terms of run-time and memory requirements. For
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instance, performing an optimization based on Genetic Algorithm (GA) to achieve

an inclusion for a specific design needs about 105 epochs of a 3D full-wave simula-

tion. Each simulation to obtain the permeability function takes a couple of hours

on a modern PC with 4GB of RAM and a Quad-core Intel CPU. Thus, the total

optimization time is more than 274 years (105 hours). Moreover, the optimization

process doesn’t show that if the design problem is realizable with any inclusion or

not. Indeed, an non-realizable problem leads to an everlasting optimization process

if memory allows. Therefore, using an optimization algorithm wouldn’t be a possible

methodology to design an inclusion with specific magnetic properties.

5.1 Design Case Study

In this section, the design procedure for determining the geometry of the inclusions

for AMMs is described in details through a case study. Table 5.1 shows an example

of a design request sheet. The designed structure can possibly be used as a substrate

for miniaturizing a patch antenna operating at 600MHz. Some variables such as con-

ductivity and host medium permittivity were set. The design needs to meet a number

of conditions such as µRe at a specific operational frequency of fop = 6.00 × 108Hz

is equal 9.00 ± 5.0% within the frequency range of at least 2MHz, and MLT of less

than 5.00× 10−2.

5.1.1 Step I - The Feasibility Study

First, I verify if the frequency bandwidth is achievable within the specified tolerance

for the permeability. Recall from (4.18):

BW

ωop
≤ 1

2χop

(
δµ

µop

)
(5.1)

where ωop, µop and χop are the operational frequency, the effective permeability and

the magnetic susceptibility, respectively. BW and δµ represent the frequency band-

width and the permeability deviation, respectively. (Note that the operational fre-

quency should not be confused with the resonance frequency of the inclusion. The
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operational frequency basically represents a specific frequency at which certain appli-

cation, say an antenna, is operating).

The second constraint is to find a boundary for the physical and geometrical

factors by setting the maximum of the permeability function over all frequencies (see

Fig.3.4) high enough to cover the effective permeability requirement declared in Table

5.1. From Table 5.1, the real effective permeability is 8.55 < µRe < 9.45, as such,

the maximum of the real effective permeability function should be larger than 9.45

(µmax > 9.45). Recall from (4.39):

µmax ' 1− F

8
+
F 3

2P
(5.2)

Substituting the upper value of the permeability from Table 5.1 for µmax, (5.2)

can be rearranged as:

P <
4F 3

67.6 + F
(5.3)

which for F = 1 (F upper bound), one can get P < 0.0583, an upper limit for P .

5.1.2 Step II - Calculation of the Geometrical and Physical

Factors

In this step, first valid ranges for the normalized operational frequency, geometrical

factor and physical factor are being calculated consecutively. Then, by considering

the constraint on the maximum value of the permeability introduced in step I, ranges

are being modified for each parameter.

Solving the relation (3.38) and (3.39) simultaneously for a given value of the real

effective permeability and the magnetic tangent loss, we obtain:

ξ(Ωop) =

[
µReop
χmop

tan δop

]2

(5.4)

χ0(Ωop) = χmop

(
1 +

[
µReop
χmop

tan δop

]2
)

(5.5)
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Table 5.1: Design Data Sheet

Material Specifications

Host medium: Duroid 5880 (εr = 2.2)

Traces: Copper(σ = 59.6 S
µm

)

Fabrication Technique Parameters and Design Dimensions

Trace width: b = 200µm

Trace gap: g = 800µm

Metal thickness: t = 35µm

Fabrication tolerance: 0.25%

Unit cell size: (δx, δy, δz) = (20.0mm, 800µm, 20.0mm)

Design Request

Inclusion type: Metasolenoid

Operational frequency: fop = 600MHz

Real effective permeability: µop ± δµ = 9.00± 5.0%

Bandwidth: BW ≈ 2MHz

Magnetic Loss Tangent (MLT): tan δ < 0.050

Substituting from Table. 5.1 in (5.4) and (5.5), we obtain ξ(Ωop) = 3.164× 10−3

and χ0(Ωop) = 8.025. Afterwards, ξ and χ are considered fixed parameters for the

design, and Ω and P are calculated based on a valid range of F , accordingly.

By considering the definition (3.34) and sweeping F over the possible range of

[0, 1], the normalized operational frequency falls within [0.9430, 1]. Then, by using

data set of (F,Ωop) obtained from (3.34), the physical factor P is calculated from

(3.35), and the graph of P is plotted versus the geometrical factor F in Fig.5.2. The

graph shows a valid range of [0, 0.0068] for P . In fact, any point on the graph in

Fig.5.2 corresponds to a possible pair of (F, P ) meeting the properties promised in

Table.5.1 except the fact that one needs to choose a suitable pair for which the design

works at a specific operational frequency (here; 600MHz).

Next, the calculated ranges are modified to a smaller range by applying the in-

equality in (5.2). From Fig.5.2, the upper bound of P can be read as 6.806 × 10−3

which is clearly less than 0.0583 (see the example illustrated for inequality (5.2)).

Based on the relation (5.2), P = 6.806 × 10−3 limits F from the below to 0.4875
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Figure 5.2: Any point on the curve represents a pair of (F, P ) for which the design

meet desired properties introduced in Table. 5.1.

leading to a new valid range of [0.4875, 1] for F .

Fig.5.3 shows the normalized operational frequency plotted versus F with the

banned values of F cross-hashed in the figure. The graph shows a valid range of

[0.9430, 0.9710] for Ωop. The banned range of F has also been cross-hashed in the

graph of P versus F (see Fig.5.4). In fact, in Fig.5.3 and Fig.5.4, the white region

represent the criteria in which the maximum of the real effective permeability func-

tion goes above the requested permeability (here; 9.45).

5.1.3 Step III - Resonance Frequency Calculation

In this step, the resonance frequency for the the design is determined iteratively. Each

iteration involves two parts; first, calculating a range for the resonance frequency and
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Figure 5.3: The graph shows the relation between the normalized frequency Ω and

the geometrical factor F . The hashed area is an area which the peak of real effective

permeability function goes under the requested permeability.

then modifying the calculated range for the geometrical and physical factors. If the

iterations is successful, smaller ranges for the resonance frequency, the geometrical

and physical factors are achieved. The iterations is continued so that the variations

of the physical and geometrical factors over their calculated ranges are less than the

fabrication tolerance indicated in the Table. 5.1. This is due to the fact that the

variation of dimensions linearly affects the geometrical and physical factors [70].

In the first part, by using the data obtained in the Step II for the physical factor

P , the material specifications and fabrication characteristics provided in Table. 5.1

and (3.22), an interval for the feasible resonance frequency of the realizable inclusions

is calculated. Fig.5.5 shows the calculated resonance frequency as a function of P

and F . Also, the improper values of F has been cross-hashed in Fig.5.5. (Note that

due to the fact that F and P are not linearly dependant, the scale for the F axes

remained linear, however, the P axes is not linear. Therefore, each value on the P
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Figure 5.4: The banned area in Fig.5.2 introduced by inequality (5.2) has been cross-

hashed. The white area is the permitted range for pairs of (F, P ).

axes pertains to its F correspondent pair).

From Fig.5.3, It can be seen that 0.9430 < Ωop < 0.9710 which corresponds to

617.9MHz < fres < 636.3MHz (617.9MHz = fop
0.9710

). The calculated range for the

resonance frequency has been marked in Fig.5.5 with two horizontal dashed-lines.

In the second part, by using (3.27) and the calculated range of the resonance

frequency, the range for the physical factor is modified. Also, as the physical and

geometrical factors are coupled through relation (3.35) (also, see Fig.5.4), a range

for the geometrical factor is modified. The vertical dashed-lines in Fig.5.5 shows the

newly modified ranges of the physical and geometrical factors. From Fig.5.5, the

ranges of F and P can be read as 0.4916 < F < 0.5038 and 8.209 × 10−4 < P <

8.833× 10−4, respectively.

At this stage, the first iteration is over. The modified ranges of F and P are used
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Figure 5.5: The graph shows the relation between the resonance frequency fres (on

vertical axes) and the geometrical factor, F (upper horizontal axes) and the physical

factor, P (lower horizontal axes). The scale on F axes is linear, however, the scale

on P axes is not linear.

for calculating the resonance frequency in the next iteration. With the new range of F

and P , by referring to Fig.5.3, the normalized operational frequency and consequently

the possible range of the resonance frequency are modified to 0.9700 < Ωop < 0.9707

and 619.1MHz < fres < 619.6MHz.

Note that the updated range of the resonance frequency is within the previously

calulated range of the resonance frequency. In general, it is not obvious that these

two intervals overlap. There are three possible cases. Let Ii be the range of the

resonance frequency calculated in the i -th iteration:

• Case 1: If Ii ⊂ Ii−1, then the new range of the resonance frequency is considered

as Ii.

• Case 2: If Ii 6⊂ Ii−1 and Ii−1∩Ii 6= ∅, the intersecting range would be considered

as the valid range and it is renamed to Ii.
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• Case 3: If Ii−1 ∩ Ii = ∅, then no design will be obtained with the defined set

of parameters. An option to provide a solution is to change the structural or

fabrication parameters such as permeability of the host medium, the thickness

of the conductor traces and the gap between traces.

In summary, after performing the second iteration, the values for the set {Ωop, F, P}
can be chosen from the following intervals:

Ωop ∈ [0.9700, 0.9707]

F ∈ [0.4916, 0.5038]

P ∈ [8.209, 8.833]× 10−4

(5.6)

Note that any valid set of {Ωop, F, P} from (5.6) specifies inclusions producing an

AMM with µRe = 9 and tan δ < 0.05 at the operational frequency of fop = 600MHz.

Next, one needs check the tolerance of F and P to determine whether to terminate

the iterations and go to the next step or to proceed to the third iteration and obtain

narrower ranges. From (5.6), δF/F = 2.45% and δP/P = 7.32%, both are larger

than the fabrication tolerance declared in Table. 5.1, thus requiring further iteration.

Applying the third iteration, the lower and upper bound of the ranges of F and P

become identical up to three significant digits. Therefore, F and P tolerances are

smaller than the fabrication tolerance, and the iterations are terminated resulting in

the following values (calculated up to three significant digits):


Ωop
∼= 0.970

F ∼= 0.503

P ∼= 8.88× 10−4

fres ∼= 619.5× 108

(5.7)

Fig.5.6 shows the result of the second and the third iterations. Note that although

the number of iterations depends on the desired accuracy of the design, inaccuracy

in the circuit-based model and fabrication tolerances alter the characteristics of the

fabricated AMM from the designed properties. Thus, it is sometimes preferable to

run Step II one iteration less than the final iteration to have wider ranges for the

design parameters (i.e., F , P and fres).
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Figure 5.6: The graph shows the relation between the resonance frequency fres (on

vertical axes) and the geometrical factor, F , (upper horizontal axes) and the phys-

ical factor, P , (lower horizontal axes). Also, the calculated parameters in the third

iteration marked in the graph.

Before continuing to the next step, one needs to check if the calculated parameters

are substituted in the model (Eq. 3.38), the structure meets the design specifications.

Based on the parameters calculated in (5.7), the permeability and MLT have been

calculated over the requested bandwidth, and the results were summarized in Ta-

ble.5.2. From Table.5.2, it can be seen that the requested frequency bandwidth of

2MHz associated with a permeability deviation of about 10% is satisfied.

According to Table.5.2, the MLT at the upper frequency is about 9% above the

requested threshold. This is due to the fact that in the design procedure (specifi-

cally when using (5.5) and (5.4)) the value of MLT is kept 0.050 at the operational

frequency fop = 600MHz. As the MLT is a monotonically increasing function (in

absolute value) before the resonance frequency, the MLT becomes less than 0.050 at

the lower side of the frequency band, and becomes higher than 0.050 at the upper side

of the frequency band. Because the slope of the MLT function is not clear a priori,
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Table 5.2: The output summary of the design

freq(MHz) µRe tanδ

599 8.58 0.047

600 9.00 0.050

601 9.48 0.054

there are two possible ways to address this issue. First, the designer can perform

the design procedure by choosing a random number smaller than the value declared

for MLT in the Table.5.1. This method has the risk of choosing a number too small

which might fail the design procedure or choosing a number not small enough result-

ing in MLT violating the desired criteria. The second option is to repeat the design

procedure by subtracting the MLT at the operational frequency from the difference of

the MLT at the upper side of the frequency band and the desired value of MLT. For

instance, in the case study considered here, the adjusted value of MLT is 0.46. This

option incurs the cost of repeating the procedure one more time but it confidently

gives the proper result as the MLT function curves upward for frequencies closer

to the resonance frequency, and it gives a safe side for the new design so that the

new MLT at the upper side of the frequency band does not exceed the desired criteria.

5.1.4 Step IV - Perimeter and Area of the Inclusion

In this step, the area and the perimeter of inclusions are determined by using the

geometrical factor and the resonance frequency calculated in step III. From (3.25),

the area of an inclusion is s = FA. Also, the perimeter and area of an inclusion are

connected through the resonance frequency of the inclusion, i.e., l = [Q/2πfref ]2s−1

(see (3.18)). Using these relations, the perimeter of the inclusion is plotted in Fig.5.7

versus its area over the calculated range of the resonance frequency given by (5.6).

Each point (area,perimeter)=(s, l) of the curve in Fig.5.7 introduces a contour

Γ(s, l) with the perimeter of l and the area of s. The contour can accept any topology

as long as it fits the pair (s, l).

Let G introduce the set (s, l) which is the outcome of the design procedure. From

Fig.5.7, the end points of the sl-curve are:
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Figure 5.7: The graph shows the relation between s and l. The hashed region describes

pairs of (s, l) which do not fit in any physically realized geometry.

(196.6mm2, 64.56mm), (201.5mm2, 66.79mm) ∈ G (5.8)

The point P (201.2mm2, 66.66mm) corresponds to the selection in (5.7). In fact,

an AMM composed of inclusion’s topologies with the area and perimeter equal to

201.2mm2 and 66.66mm, respectively, create an analytical magnetic response similar

to what summarized in Table.5.2.

Despite of the fact that the set G has been obtained from the physics of the

problem, the pair (s, l) may or may not be fit in an actual geometrical shape. Based

on Dido’s isoperimetric problem [71], among all possible contours with the same

surface area, the circle provides the minimum circumference. Hence, for a certain

area s and perimeter l, an actual geometry satisfies Dido’s inequality formulated as:

l ≥ 2
√
πs (5.9)

In Fig.5.7, the region corresponding to non-realizable geometries is cross-hashed.

It can be seen from the figure that all inclusions introduced by the curve are realizable.

54



In other words, no pair (s, l) of inclusions introduced in G will be eliminated by Dido’s

geometrical constraint. If the set of pairs (s, l) which satisfies Dido’s inequality is

denoted by D, the outcome of the design procedure is G ∩ D.

In General, there are three possibilities for a curve characterized by s and l ac-

cording to Dido’s inequality. These possibilities are:

• Case 1: If G ⊂ D, then G is the outcome of the design procedure.

• Case2: If G is not completely located in D, then G ∩ D is the outcome of the

design procedure.

• Case3: If G ∩ D = ∅, the design procedure does not provide any inclusions

geometry to meet the design objectives. An option to provide a solution is to

change the structural or fabrication parameters such as permeability of the host

medium, the thickness of the conductor traces and the gap between traces.

Note that, as 0 < F < 1, from (3.25), 0 < s < A. In other words, the maximum

inclusion’s area which can be determined through the design methodology is less than

the unit cell area A. The inclusion’s perimeter is only limited from below to 2
√
πs due

to Dido’s inequality, and it doesn’t have an upper limit. Therefore, the inclusion’s

perimeter can be determined to any value through the design methodology.

Fig.5.8 summarizes the design steps in a flowchart. It can also be proved that the

proposed routine converges. The details of this proof is left for future work.

5.2 Discussions

5.2.1 Accuracy of the Circuit Model

Due to the small feature size of the inclusions in a composite medium and the small

skin depth compared to the radiation field wavelength, the magnetic response of such

a medium can be simply interpreted in terms of the geometrical parameters of the

inclusions rather than electromagnetic properties of the metals. This fact, for frequen-

cies reaching up to mid-IR, has been reported in the literature [27], [29]. However,

in general, an interpretation of the magnetic response of artificial magnetic materials
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based on only the area and perimeter of the inclusions is an approximate calcula-

tion. Some possible sources of the approximation are using a solenoidal estimation

of the magnetic flux passing through inclusions, neglecting the capacitance of the

inclusions’ slit, and ignoring the variation in the curvature of the inclusions along the

metallic trace. In addition, in the case of inclusions having a small area and large

perimeter, there is a capacitive coupling across the different part of an individual in-

clusion. Moreover, the model fails for a lattice of discrete inclusions (inclusions with

different geometry). However, it is important to note that if the magnetic response

of the structure can be modeled by an RLC resonance circuit, it can consequently be

expressed in terms of the geometry of the inclusions. The first two components for

geometrical interpretation of a contour are the area and the perimeter of an inclu-

sion. The area is related to inductance and the perimeter, to capacitance. This idea

is widely used in the literature to derive the circuit model for AMMs. Many models

express their calculations based on the capacitance per unit length and inductance

per unit area. Therefore, this concept can be used as the first, simple and proper

approximation for study of the magnetic behaviour of the medium. Incorporating

the effect of the inclusion’s curvature for improvement of the present model would

be a part of the future work. The preliminary work can be reviewed in a previously

published conference paper [III].

5.2.2 Operational Frequency

Note that most circuit models present a rough estimation of magnetic behaviour of

an AMM at the vicinity of the resonance frequency. Therefore, while the observing

frequency is moving away from the resonance frequency, the circuit models provide

more accurate results, and many factors which are effective at resonance frequency

are negligible at lower frequencies. I stress that my design methodology aims to

provide a design recipe for an application that require a positive and low dispersion

permeability. This can be achieved by an AMM designed to work in frequencies

sufficiently away from the resonance frequency of the inclusions. In addition, the

model has been tested and simulated for various design cases based on the proposed

design methodology; the results showed a reasonable consistency with the desired

properties. Some cases are illustrated in the following chapter.
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5.2.3 Strategy in Methodology

Although the design methodology needs to incorporate a specific circuit model, it

can be applied to many circuit models available in the literature. In fact, the design

recipe has been developed based on a generic strategy. An interested designer may

apply the same strategy to his/her personal circuit model describing an AMM, and

develop a similar recipe. The circuit model exploited in this chapter is simple but

general and useful, and it is used to convey the strategy behind the methodology.

The significant elements of the strategy are to extract the geometrical and physical

components, and to segregate the frequency dependency in a function form. The

main and most important fact of the re-formulation process (see chapter 3) is that

the geometrical and physical components in a circuit model were extracted, and the

extracted factors were encapsulated in a few new parameters which are frequency

independent. This approach is also applicable to any new and extensively elaborated

model.

Hence, the proposed methodology is generic and its accuracy can be improved by

adopting a new circuit model and modifying the proposed design recipe.

5.2.4 Spatial Dispersion

The AMMs are characterized based on not only time-dispersion but also spatial dis-

persion. The source of spatial dispersion is the phase alteration while the electromag-

netic wave is propagated throughout the AMM. In fact, the spatial dispersion would

be effective for small wavelength limits (i.e. higher frequencies) for which the wave-

length and the feature size of the structure (such as the unit cell size) are comparable.

For large wavelengths, the spatial dispersion is negligible and the time dispersion is

significantly dominant.

Baena et al. presented a general circuit model describing the effect of the spatial

and temporal dispersion in AMMs [72]. They proposed a circuit model which de-

scribes both time and spatial dispersion of AMMs. Applying the same strategy, one

can define a procedure for designing an AMM which considers the spatial dispersion

as well.
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5.2.5 Effects of Bianisotropy

The structure designed by the proposed methodology is bianisotropic. This phe-

nomenon has been studied in the literature such as in the work of Marques et al.

[36]. However, the defined methodology only addresses the magnetic response and

design for specific magnetic characteristics of the medium, and the electric response

was not the focus of this investigation. Without a doubt, it could be a motivation to

a new study for designing AMMs with specific magnetic and electric properties. How-

ever, it limits the range of possible design, as it needs to fulfill two criteria (magnetic

specifications and electric specifications) rather than solely the design for magnetic

properties. Consequently, the enhanced design methodology, if possible, considers the

bianisotropy effect, which would reduce the possibility of design, due to higher re-

striction. For example, instead of fulfilling a specific magnetic property, the structure

has to fulfil excessive electric properties throughout the design procedure; proposing

a design algorithm for a specific magnetic response is crucial.

5.3 Contribution

I proposed a novel design methodology for artificial magnetic material with desired

properties. The design methodology was developed based on a circuit model pre-

sented in chapter 3. The analytical model shows that the magnetic properties such

as the real effective permeability, the magnetic tangent loss, and the flatness of the

permeability function of the medium, all depend on the geometrical properties such as

surface area and perimeter of the inclusion. A four-step iterative design methodology

was proposed for design of AMMs. In the first step, the feasibility of the design is

tested to meet the fundamental constraints. In consecutive steps, the geometrical and

physical factors of the inclusion are synthesized, and finally the area and perimeter of

the inclusion is calculated. An updated range of the inclusion’s area and perimeter is

obtained through consecutive iterations. Finally, if the outcome of the iterative pro-

cedure results in geometrical parameters that satisfy Dido’s criterion, then a physical

geometry exists, thus meeting the design specifications. At the end of the chapter,

a discussion to check the validity, universality, reliability, robustness and accuracy

of the proposed design methodology is presented. It is noticeable that other circuit

58



models with more accuracy to describe AMMs’ behavior can be adopted. However,

the strategy behind the design methodology is nonetheless generic and can be applied

to any adopted circuit-based model for AMMs.

In addition, a software code has been developed to automatically design an AMM

meeting desired properties. The code receives the magnetic properties of desired

AMM as an input, and generates the resistance per unit length R0, capacitance per

unit length C0, inductance per the area L0, K parameter as an intermediate output.

The software also produces a series of intervals for geometrical factor F , physical

factor P , normalized resonance frequency Ω, resonance frequency ω0, area s, length

l, real part of effective permeability µRe and magnetic tangent loss tan δ at each

iteration. The code provided in Appendix B for academic purposes.
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Figure 5.8: A flowchart as the design methodology.
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Chapter 6

Inclusion’s Geometry

Metallic open-loop inclusions are categorized in two general geometrical patterns

based on the number of loops of inclusions and the coupling scheme. The first

category are inclusions with multiple elements such as double split ring resonators

(Fig.2.2-a) and double split square ring resonators (Fig.2.2-b) or single element but

spiral (Fig.2.2-d,-e,-f) or helical shape. The second category divides inclusions into

broadside-coupled or edge-coupled. Fig.6.1 shows an arbitrary inclusions contour in

different categories.

The most common inclusions are split circular ring resonators and split square ring

resonators. The area Ar and the perimeter Pr of a square and a circle are related

through the equations of Pr2 = 16Ar and Pr2 = 4πAr, respectively. Therefore, the

area and perimeter of the circle and square are strongly dependent, and either cannot

be tuned independently of the other. Hence, the circle or the square cannot be options

Figure 6.1: Different categories of inclusions. (a) Broadside-coupled 3-turn helical

inclusion, (b) Edge-coupled 2.5-turn spiral inclusion , (c) Broadside-coupled triple

split looped inclusion, (e) Edge-coupled double split looped inclusion.

61



for the geometry of the inclusions of an AMM with desired properties. Unlike the

circle and square, the rectangle and ellipse provide independent area and perimeter

relations. For the rectangle or the ellipse, the area and perimeter can be formulated

using a system of equations in terms of two sides of the rectangle or in terms of the

semimajor and semiminor axes of the ellipse.

For a given (Ar, Pr) pair describing an inclusion, and considering the rectangle

for the inclusion’s shape, the sides d1, d2 of the rectangle are determined by the roots

of the following quadratic equation in terms of di where i = 1, 2:

d2
i −

Pr

2
di + Ar = 0 (6.1)

When considering the ellipse as the inclusion’s shape, the semimajor axis rM and

semiminor axes rm of the ellipse are the roots of the following integral equation in

terms of ri where i stands for M,m:

Pr = 4riE

√1−
(
Ar

π

)2

r−4
i

 (6.2)

where E(k) =
∫ π

2

0

√
1− k2 sin2 θ dθ.

Equation (6.1) has a real solution if Pr2 ≥ 16Ar. This inequality provides more

restriction on the (s, l) pair calculated through the design methodology with respect

to Dido’s inequality. In summary, there is a set of geometrically realizable (s, l) pairs

(i.e, {(s, l)|2
√
πs ≤ l ≤ 4

√
s}) which cannot be realized in a rectangular topology.

Another constraint on the (Ar, Pr) pair is that the realized geometry has to be

bounded within the unit cell area. It was shown in the first part of this paper that

the s value determined through the design steps is bounded above by the inclusion’s

unit cell area. Therefore, Ar ≤ δx · δz, where δx and δz are the dimensions of the

unit cell of an AMM. For the rectangular and elliptical shape inclusions, although

the area and perimeter values are independent, the calculated sides of the rectangle

or the major axes of the ellipse need to be smaller than the unit cell dimensions (for

the rectangle: di ≤ min(δx, δz) and for the ellipse: rM ≤ min(δx, δz)).

These constraints define a set of restrictions on the the (Ar, Pr) pair realizable by

a rectangular or elliptical shape. For a rectangular shape inclusion, we have
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{
0 < Ar < δx · δz

4
√
Ar < Pr < 2(τ + Ar

τ
)

(6.3)

where τ = min(δx, δz). Therefore, the maximum perimeter which can be obtained

by rectangular inclusions is 2(δx + δz). Also, by considering the constraints for an

elliptical shape inclusion, we have:

{
0 < Ar < π

4
δx · δz

2
√
πAr < Pr < 2

√
1
8
π2τ 2 + 2Ar2

τ2

(6.4)

From (6.4), the maximum area and perimeter which can be obtained by an ellip-

tical inclusion are 78.5% of the unit cell area and π
√

δx2+δz2

2
, respectively.

As an example, I consider a Design Data Sheet discussed in the previous chapter

of this work. As a result, an AMM is designed to meet the desired criteria addressed

in Table 5.1. The AMM is composed of inclusions with the following (s, l) pair (recall

from chapter 5):

(s, l) = (201.2mm2, 66.66mm) (6.5)

If considering rectangular inclusions, then by solving equation (6.1), the dimen-

sions of the inclusions are obtained as d1 = 25.4mm and d2 = 7.92mm. The values

for the dimensions of the inclusions are not acceptable because the larger side of the

rectangle exceeds the unit cell size (d1 = 25.4mm > δx = 20.0mm). Therefore, there

are no rectangular inclusions to provide the desired magnetic properties.

In the case of the elliptical inclusion, by solving equation (6.2) , the semimajor

and semiminor axes of the ellipse are obtained as rM = 15.4mm and rm = 4.16mm.

As 2rM = 30.8mm > δx = 20.0mm, thus, the ellipse cannot be confined within the

unit cell.

When the calculated dimensions of the rectangular or elliptical inclusions exceed

the AMM’s unit cell dimensions, neither of the two geometries become a feasible

choice for the inclusions shape, as a single inclusion cannot exceed the unit cell area.

In an AMM, the magnetic flux generated by the current induced on the open-loop

inclusions due to the presence of an external magnetic field passes through adjacent
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inclusions and enhances the magnetic flux density in the medium. Therefore, the

medium is magnetized. As the inclusions are periodically distributed in an AMM,

at the unit cell level, the fractional area F of the unit cell occupied by the inclusion

plays the key roll in magnetization of the AMM. In fact, a larger fractional area

receives more magnetic flux leading to a larger magnetization. Since 0 < F < 1, for

a given unit cell area A = δx · δz, we have 0 < s < A. This inequality gives an

upper limit for the inclusion’s area and it reveals that the fractional area is a real

design parameters. Consequently, the unit cell area can be a fixed design parameter,

as it has been given in Table.5.1. Note that to meet desired magnetic properties for

an AMM, the perimeter of the inclusions can vary as long as it does not violate the

Dido’s inequality.

Thus far, it has been shown that the inclusions proposed in the literature are not

appropriate candidates for a generic inclusion topology by virtue of having several ge-

ometrical limitations. my goal is to formulate generic inclusion that can be configured

to produce all geometrically realizable combination of (s, l) pairs.

Three types of parametric geometries are proposed to achieve inclusions with

specific area and perimeter combination while confined to a specific unit cell. The

first type has a circular base combined with a sinusoidal curve, the second type has a

square base combined with a square-wave curve or corrugation on its sides, and the

third type is a grooved oval shape varying from an ellipse to a rectangle. Throughout,

I will assume that the inclusion’s trace width and thickness to be negligible.

6.1 The nth order Rose Curve Resonators, Rn(r0, a)

The first inclusion’s geometry is a circle which is combined with a sinusoidal curve.

Henceforth, the pattern is referred to as the Rose curve (see Fig.6.3). The area of the

produced curve is approximately equal to the area of the base circle because the area

added with the sinusoidal crests are equal to the area reduced with the sinusoidal

troughs. Although the area of the shape remains similar to the original circle, the

desired perimeter can be adjusted by tuning the amplitude and choosing the frequency

of the sinusoidal function. The fact that the area and perimeter of the Rose curve can

be adjusted individually makes the Rose curve topology a suitable candidate for the

geometry of a generic inclusion. The following equation characterizes the nth order
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Rose curve in the polar coordinate system:

Rn(r0, a) : r(θ) = r0 + a cos(nθ) (6.6)

where r(θ) represents the position of the contour in the xz-plane, and the angle θ

sweeps the curve aside from a small slit on the contour and is measured from the

x-axis; thus, θ ∈ [h
2
, 2π− h

2
], where h is the width of the curve’s opening in radians. a

is the amplitude of the sinusoidal function added to a circle with the radius r0. The

order of the Rose curve, n is a positive integer number and determines the number

of crests and troughs along the circle’s circumference. The parameters r0 and a are

calculated so that the final curve has a certain area and perimeter. Although the

parameter n can be chosen freely, for all geometrically realizable (s, l) pairs, there

is always a minimum order for which the Rose curve can be configured to have the

desired area and perimeter. In other words, by increasing the order and tuning the

parameters, a Rose curve with arbitrary perimeter and confined within the unit cell

can be generated. Fig.6.2 shows a typical topology for the Rose curve inclusion.

A zeroth order Rose curve and a Rose curve with a = 0 are simply a circle.

Therefore, the Rose curve at most can cover π
4
' 78.5% of the unit cell area, and it

cannot be used for design of inclusions which requires area larger than 78.5% of the

unit cell area (i.e., F > 0.7854).

The area, Ar[Rn(r0, a)], and perimeter, Pr[Rn(r0, a)], of the nth order Rose curve

can be calculated using the following relations:

Ar[Rn] = πr2
0 +

πa2

2
(6.7)

Pr[Rn] =
2

κ

∫ π

h
2

√
1 + η1 cosnϕ+ η2 cos 2nϕ dϕ (6.8)

where

κ = (2r2
0 + a2(1 + n2))−

1
2

η1 = 2r0aκ
2

η2 = κ2a2(1− n2)
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Figure 6.2: (a) A 5th order Rose curve with r0 = 1, a = 0.2, (b) An edge-coupled

inclusion designed using a 7th order Rose curve.

Next, I design a Rose curve to achieve the design requirements stated in (6.5).

Table.6.1 presents the radius r0 and the amplitude a of the Rose curves which is

generated for different values of n ranging from 3 to 9. The last column in Table.6.1,

parameter D, gives the diameter of the circle circumscribing the Rose curve. This

parameter is useful to check if the Rose curve fits within the unit cell.

From Table.6.1, for the the Rose curve with n = 3, 4 and 5, D is larger than the

unit cell size and therefore, the curve cannot fit within the unit cell since 20mm < D.

Even the 6th order Rose curve is not a good candidate for the case under consideration

because if one considers the trace width of the inclusion with n = 6, the circumscribing

circle has a diameter of D + 0.4mm = 20.00mm, implying the overlap of adjacent

curves. Therefore, the Rose curve with n = 7, 8 and 9 are appropriate solutions.

Rose curve with n > 9 presents the possibility of inter-element coupling which was not

considered in the circuit model describing the AMM. Numerical analysis is performed

with a full-wave three dimensional electromagnetic commercial software. 1.

1The effective parameters of the medium is determined from the physical quantities of in the

propagation of the field, i.e., the reflection coefficient S11 and the transmission coefficient S12 . The

S-parameters have been simulated with Ansoft HFSS. Then, by use of a software application, the
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Table 6.1: A Set of Candidates for Rose-Curved Inclusions
n r0(mm) a(mm) D(mm)

3 7.63 3.58 22.42

4 7.80 2.70 21.00

5 7.89 2.17 20.12

6 7.95 1.81 19.60

7 8.00 1.56 19.12

8 8.02 1.36 18.72

9 8.03 1.21 18.46

Fig.6.3 shows the analytically and numerically calculated permeability functions

of media with inclusions introduced with Rose curves of n = 7, 8 and 9. The analytical

response was generated using the circuit model and thus all the curves (for all the

orders considered here) are expected to be identical. The numerical results were

obtained using full-wave simulation using periodic boundary conditions to account

for periodically positioned inclusions.

Note that the AMM is designed to work at the frequency of 600MHz with 2MHz

bandwidth. Despite the fact that there is a slight shift in the resonance frequency

or the maximum magnitude of the permeability function, the graphs show a robust

design satisfying the design criteria. For instance, for the case of n = 7, the numer-

ical simulation shows µRe = 9 ± 5.6% at the frequency of 599.5MHz with 2MHz

bandwidth. The shift in frequency from the desired magnetic property requested in

Table.5.1 is about 0.08%. The achieved MLT is 0.048 which is also within the desired

range.

6.1.1 Parametric Study

Moreover, for a comprehensive study of the nth order Rose curve resonators (n-RCRs)

a set of parametric study is performed. The parametric studies are to verify the gen-

eral theory developed in chapter 2 and 3 on limitations and performance of inclusions

and examine the potential application and general characteristics of n-RCRs.

HFSS results have been converted to desired parameters based on the extraction formula available

in the literature [73], [74]. For the detail on the derivation please see Appendix C.
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Figure 6.3: The dashed lines shows the simulated permeability function of the medium

for n =7, 8 and 9. The solid line shows the analytically calculated permeability

function of the medium for n = 7, 8 and 9. The plots of analytical solutions cannot

be distinguished because they are identical.

Parametric studies are carried out on the effect of area and perimeters on the

magnetic response of the same order Rose curves. Fig.6.4 shows the numerical analysis

of 7th order Rose curve inclusions with similar surface area, equal to the half of the unit

cell area and different perimeters. It is observed that inclusions with larger perimeter

resonates at lower frequencies and thus, they provide a larger miniaturization factor,
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Figure 6.4: The real permeability of inclusions which occupied half of unit cell area

and vary in length. (b) The real permeability of inclusions which encompasses differ-

ent areas with the same trace length.

referred to as M-factor2 , for certain applications.

In addition, Fig.6.5 shows the numerical analysis of 7th order Rose curve inclusion

with equal perimeter and different areas. The areas vary from 30% to 70% of the

unit cell area. Increase in the area size leading to more flux penetration throughout

the inclusions, and higher inductance. Thus, the resonance frequency is shifted down

2Miniaturization factor or M-factor is defined as:

Mfactor =
λ0
`

(6.9)

where λ is the wavelength of an electromagnetic wave in free space, and ` is the form factor, feature

size or the larger dimension of the structure or a unit cell of a structure.

The miniaturization is referred to two different meanings, 1) The ratio of the wavelength to the

unit cell size of an AMM, This definition is useful to express the size of a unit cell of an engineered

structure with respect to the radiation wavelength. Indeed, it expresses the validity of HT describing

a composite medium and also the quasi-static nature of a model. 2) The ratio of the form factor or

device dimension with respect to the radiation wavelength for the fabrication purposes and comparing

the compactness of electronics and microwave devices.
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Figure 6.5: The real permeability of inclusions which encompasses different areas with

the same trace length.

the spectrum and the larger-area inclusions provide a higher M-factor.

Although two scenarios, increasing the area (perimeter) and keeping the perimeter

(area) constant, leads to enhance in the M-factor, a careful observation shows that

increase in the perimeter creates a higher level of dispersion in the medium and a

higher value of permeability whereas the other change generates a flatter permeability

function and a lower permeability maximum value in the AMM. These observation

has been predicated by the proposed model and limitations in chapters 3 and 4.

Note that near the resonance the real part of the effective permeability can be

negative if the quality factor of the resonator is enough high. Another attractive

feature of the proposed Rose curves is widening of the frequency bandwidth over which

the medium provides negative permeability with minimized dispersion by increasing

the order of RCRs. Simulations shows that the frequency bandwidth is about 2 times

widened. The comparison was made for two cases of a medium composed of third

order RCRs and a medium composed of seventeenth order RCRs.

In addition, the effect of curvature of the RCRs on the resonance frequency is

studied. The curvature of inclusions introduces a new coupling in forms of capacitive
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and inductive effect. Redefining the formulation of the magnetic response of an AMM

by adding the curvature effect is a laborious task, and could be a topic of future work. I

study the effect of the curvature of RCR inclusions. I compare the resonance frequency

for different media composed of inclusions having identical perimeter (isoperimetric)

and area (equiareal) but different curvatures. For this investigation, I define a new

dimensionless measure in form of a curvature integral as:

Λ =

∫
κ2(θ)dλ (6.10)

where dλ is the length element and κ(θ) is the curvature function of the RCR nor-

malized to the total length of the contour, defined in a polar coordinate as:

κ(θ) =
1

Pr(Γ)

r2 + 2r2
θ − rθrθθ

(r2 + r2
θ)

3
2

(6.11)

where rθ and rθθ are the first and the second derivatives of r(θ), respectively.

For characterizing the effect of curvature, I considered an inclusion with structural

and fabrication specifications summarized in Table 5.1. The inclusion’s metallic trace

follows Rose curve functions of the order n = 3 to n = 50 over the angle θ ∈
[hn, 2π − hn], where hn varies for different n to keep the slit width on the inclusions

equal 1mm. The slit behaves as a capacitor in an inclusion’s circuit model. In this

study, inclusions’ area and perimeter are kept 160mm2 and 60mm, respectively.

In Fig.6.6-a, the integral curvature factor Λ(n) is plotted versus the order of the

Rose curve,n. The plot shows a linear increase in the curvature of the Rose curve.

Thus, it can be considered as a proper parametrization of the curvature effect on

the magnetic response. Fig.6.6-b shows the graph of resonance frequency versus the

parameter Λ. In spite of the fact that the curvature does not provide a hight impact

on the resonance frequency, but it shows a minimum value for a certain curvature.

6.2 The kth order Corrugated Rectangular Res-

onators, C i
k(a, h)

The next candidate for inclusions’s geometry is a square or a rectangle with corrugated

sides. The corrugations are a square wave added to one side or two parallel sides of
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Figure 6.6: (a) The curvature integral function of the n = 3 to 50 has been plotted.

The graph shows a linear relation between the order of the curve and its curvature in-

tegral. (b) The resonance frequency of AMMs composed of Rose curve inclusions with

equal area and perimeter but different order has been plotted versus the curvature

integral of the inclusions.

the base square shape. The pattern is called Corrugated rectangle and plotted in

Fig.6.7. The figure shows Corrugated rectangular curve of the order k = 0, 1 and 2

over one side and two sides of a square.

The area of the final contour can be approximated as the area of the base square;

however, the perimeter reaches a desired value by choosing the right order of the

corrugation, i.e., the frequency of grooves and the amplitude of the added square

wave. The area and the perimeter of the kth order Corrugated rectangular curves are

calculated as

1. One-sided Corrugated Rectangle, C1
k(a, h)

Ar[C1
k ] = (2k + 1)2a2 − kah (6.12)

Pr[C1
k ] = 4(2k + 1)a+ (2k)h (6.13)

2. Two-sided Corrugated Rectangle, C2
k(a, h)

Ar[C2
k ] = (2k + 1)2a2 − 2kah (6.14)

Pr[C2
k ] = 4(2k + 1)a+ 2(2k)h (6.15)
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Figure 6.7: Corrugated rectangular curve of the order k = 0, 1 and 2. The upper

figures are curves with the corrugation on one side, and lower figures are curve with

the corrugation on two sides.

Note that the length of the inclusion’s slits needs to be included in the final

inclusion’s length. Also, L = (2k+ 1)a, the length of enclosing square of the contour,

has to be smaller than the unit cell length, and h < L for one side corrugation and

2h < L for two sides corrugation. Solving for a, we obtain:

a =
Pr

γ1

(
1 +

√
1 + 4γ1

Ar

Pr2

)
(6.16)

where γ1 = 4(2k + 1)(2k + 3); and h can be obtained from (6.12) and (6.14) for the

one-sided or two-sided Corrugated rectangular inclusions, respectively, as:

h1 =
Pr

γ2

(
1 +

√
1 + 4γ

Ar

Pr2

)
− Ar

ka
(6.17)

h2 =
h1

2
(6.18)

where γ2 = 2k+1
4k(2k+3)

.

It can be shown that for a given k, the maximum perimeter is 6(2k + 1)a. So, by

increasing k any perimeter values is achievable. As the base curve of the Corrugated
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Table 6.2: A Set of Candidates for one-sided Corrugated rectangular inclusions

k a(mm) h(mm) L(mm)

1 4.94 3.70 14.81

2 2.92 2.06 14.60

3 2.07 1.45 14.50

4 1.60 1.12 14.43

5 1.31 0.91 14.39

6 1.10 0.77 14.36

7 0.96 0.66 14.34

8 0.84 0.59 14.32

rectangular curve is a square (i.e., where a = 0 or k = 0), the minimum possible

perimeter is Pr2 ≥ 16Ar. Thus, by calculating k, a and h, any arbitrary (s, l)

pair that satisfies the square inequality can be constructed. However, in practical

applications, the corrugations width cannot be very small due coupling effects that

might not be accounted for by the circuit model.

The hight and the frequency of grooves in a one-sided Corrugated rectangular

curve is calculated for the area and perimeter pair given in (6.5). The results of

the calculation for the Corrugated rectangular curves of the first to the sixth order

were summarized in Table.6.2. The curves are confined within the unit cell area and

realizable because h < L < δx.

The first, second and third order Corrugated rectangular inclusions were simu-

lated. The simulated and the analytical result were plotted in Fig.6.8. The simula-

tion of the AMM composed of the first order Corrugated rectangular curve shows the

effective permeability equal to 9 at the central frequency of 600.9MHz. The shift

from the desired magnetic property requested in Table.5.1 is about 0.15%. From the

simulation, the frequency bandwidth for ±5% deviation from the central permeability

is about 1.9MHz, and the magnetic loss tangent is less than 0.041.

Note that for the higher order curves (6, 7 and 8), if one considers the inclu-

sion’s trace width b, the grooves walls become so close that they create unpredicted

capacitive coupling which was not considered in the circuit model.
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Figure 6.8: The dashed lines shows the simulated permeability function of the medium

for k = 1, 2 and 3. The solid line shows the analytically calculated permeability

function of the medium for k = 1, 2 and 3. The plots of analytical solutions cannot

be distinguished because they are identical.

6.3 The mth order Sine Oval Resonators, Sm(b, aj)

The Rose curve and the Corrugated rectangular curve have limitations. The Rose

curve cannot cover the whole area of the unit cell as it has a circular base, and the

Corrugated rectangular curve cannot approach the Dido’s inequality [71] as it has a

rectangular base. An ideal curve needs to be reconfigured to a circle for approaching

Dido’s inequality and to a square for covering the unit cell area. A curve that can

accomplish such properties is anmth order Sine oval curve. The curve is parameterized

with θ in a Cartesian coordinate system, and expressed in a vectorial form denoted

by the vector
−→
Γ (x(θ), z(θ)), where the components x and z are stated as
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Sm(β, αj) : θ →
−→
Γ (x, z); 0 ≤ j ≤ m

{
x(θ) = β cos(θ)

z(θ) = α0 sin(α1 sin(...(αm−1 sin(αm sin(θ)))...))

(6.19)

The parameter θ sweeps the curve in the xz − plane aside from a small slit of

width h in radians; thus, θ ∈ [h
2
, 2π − h

2
]. β and αi are positive real numbers. A

set of conditions limit the αi parameters so that the area covered by the generated

curve is simply connected. For 0 < θ < π, z(θ) should be positive in order to avoid

curves with self-crossing points. For instance, considering θ = π/2 and m = 1, we

get z(π/2) = α0 sin(α1); thus, α1 < π. (The study of these conditions will not be

considered here).

From (6.19), it can be shown that the zeroth order Sine oval curve with β = α0 = r

is a circle with a radius of r. However, by increasing the order m and keeping

β = α0 = d and α1 = ... = αm = π
2
, the curve approaches a square shape with sides

equal to d. The key advantage of this parametric shape is that by configuring the

parameters and the order of the curve, all realizable geometries possessing a pair of

(s, l), ranging from a circle to a square, can be generated. Moreover, for a certain

configuration, the shape provides the minimal curvature function. Therefore, the

effect of unpredicted coupling due to adjacent traces would be less than previous

topologies considered in this work. Fig.6.9 shows sample shapes of the Sine oval

curve.

To explicitly determine the mth order Sine oval curve, (m + 2) parameters need

to be calculated. one can focus on two equations expressing the area and perimeter:

Ar[Sm] = 2

∫ π

0

z(θ)xθ(θ)dθ = −2β

∫ π

0

z sin θdθ (6.20)

Pr[Sm] = 2

∫ π

h
2

|
−→
Γ θ|dθ = 2

∫ π

h
2

√
z2
θ + β2 sin2 θdθ (6.21)

where xθ, zθ and
−→
Γ θ are derivatives of x(θ), z(θ) and

−→
Γ (x, z) with respect to θ,

respectively. The number of unknowns parameters exceeds the number of equations.

Therefore, the number of unknowns needs to be reduced in order to solve the equations
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Figure 6.9: Samples of the Sine oval curve, (a) m = 0, β = 1, α0 = 0.5, (b) m =

1, β = α0 = 1α1 = 2.5, (c) m = 3, β = 1α0 = α1 − 1 = α2 − 2 = α3 − 2.5 = 0.5, (d)

m = 4, β = α0 = α3 = α4 = 1, α1 = α2 = 2.5.

(6.20) and (6.21). one should enforce the condition β = α0, αj = π/2 for 1 ≤ j ≤ m−1

and α = αm. The first condition confines the inclusions within a box with sides of

β, and they never cross the unit cell boundaries. It can be shown that the second

condition makes the inclusions smoother at the edges, and with a single trough. Thus,

the mth order Sine oval function reduces to{
x(θ) = β cos(θ)

z(θ) = β sin(ςm(θ))
(6.22)

where

ςm(θ) =
π

2
sin(...(

π

2
sin(α sin(θ)))...)︸ ︷︷ ︸
m

for m ≥ 1, and ς0(θ) = θ.

The area and the perimeter of mth order Sine oval curve formulated in (6.22) are

expressed as:

Ar[Sm] = −2β2

∫ π

0

sin θ cos(ςm(θ))dθ (6.23)

Pr[Sm] = 2β

∫ π

h
2

(sin2 θ + α
(π

2

)m−1
m∏
i=0

cos2(ςi(θ)))
1
2dθ (6.24)
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Table 6.3: A Set of Candidates for Sine oval inclusions
m β(mm) α(mm)

1 8.50 2.61

2 8.20 2.81

3 8.09 2.94

4 8.10 3.02

5 8.21 3.07

6 8.40 3.10

7 7.93 3.11

8 8.16 3.12

For the pair expressed in (6.5), the parameters α and β are calculated for m = 1

to 8. The results were summarized in Table.6.3. For the zeroth order Sine oval curve,

the curve reduces to a circle with the radius equal to β; therefore, there is no zeroth

order Sine oval curve that holds the specified area and perimeter. Fig.6.10 shows

simulation results in comparison with the analytical result. For the first order Sine

oval curve, the permeability is 9 at the frequency of 600.5MHz which corresponds

to about 0.08% shifts in frequency for the desired magnetic response expressed in

Table.5.1. From the simulation, the frequency bandwidth for ±5% deviation over the

central frequency of 600MHz is about 2.0MHz, and the magnetic loss tangent is less

than 0.043.

6.4 Discussion

As a summary, comparing the proposed geometries, the nth order Rose curve and kth

order Corrugated rectangular curve are easier to configure with respect to the mth

order Sine oval curve. However, the Sine oval curve can be designed so that it provides

minimal curvature function and thus less unpredicted capacitive coupling, leading to

better matching between the designed and desired AMM for even higher order of the

curve. For example, the results simulated for the design of the pair in (6.5) shows that

the Sine oval curve provides better agreement with the desired magnetic response3.

3It is perceivable that the Sine oval Curves can be designed to provide minimum curvature

integral while possessing fixed area and perimeter, however, it is laborious task to characterize the
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Figure 6.10: The dashed lines shows the simulated permeability function of the

medium for m =1, 2 and 3. The solid line shows the analytically calculated perme-

ability function of the medium for m = 1, 2 and 3. The plots of analytical solutions

cannot be distinguished because they are identical.

For designing inclusions with area larger than 78.5% of the unit cell area, the Rose

curve cannot be a candidate as it is basically a circular shape. Also, the Corrugated

rectangular curve cannot be a candidate for an inclusion with the area and perimeter

follows the relation l2 < 16s. However, the Sine oval curve allows for design of any

geometrically realizable (s, l) pair circumscribed within the unit cell area.

An important question is: Are these the only curves can be offered as a generic

inclusion? if not, what else is available and how they can be generated? Definitely,

there are other curves that can be realize specific area and perimeter. However,

there are several points which needs to be considered for proposing a new inclusion’s

Sine oval curve for such an objective. The study of characterizing curves, in general, which provide

a minimum curvature integral with fixed area and perimeter has been performed by the author of

this dissertation. To the best of my knowledge, no one has touched this problem with this broad

objective. The new curve can also be used in design of ring resonators, which can be another subject

of future work.
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geometric family:

• ease of characterization for (s, l) pairs

• bijective for all realizable (s, l) pairs

• having uncorrelated area and perimeter functions

• can be compacted inside the unit cell

• provides minimum coupling

Rose curves satisfies options 1-3-4, Corrugated rectangular curves satisfies 1-3-4-5,

and Sine oval curves satisfies 2-3-4-5.

6.5 Contribution

I introduced three sets of novel geometries for the inclusions topologies in order to

realize AMMs with desirable magnetic properties. The introduced curves are tunable

to achieve any (s, l) pair calculated through the design methodology. The geometries

are the nth order Rose curve, kth order Corrugated rectangular curve and mth order

Sine oval curve. The new inclusion topologies were used to design an AMM meeting

specific criteria. Strong agreement was realized between the analytical results and

the numerical simulations testifying to the robustness of the design methodology and

flexibility and capability of the new geometries.

In addition, in parametric study, I investigated the potentials of Rose curve res-

onators as a generic candidate for AMMs. The study includes the effect of variation

of the area with a fixed perimeter, variation of the perimeter with a fixed area. the

effect of integral curvature on the resonance frequency of RCRs.

In addition, a Matlab software code has been developed to automatically char-

acterize Rose curve, Corrugated rectangular curve and Sine oval Curve. The code

receives the area and perimeter of a generic curve and produces a set of possible

curves that possess the same area and perimeter of an input. The code also has

an option of considering the length of gap in the contour and calculate the proper

length of the metallic trace. In fact, the output is in a form of data set corresponding
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to the parameters of Rose curve, corrugated rectangular curve and Sine oval curve.

Moreover, the code inversely can receive the parameters of the Rose curve, corru-

gated rectangular curve and Sine oval curve and calculate the area and perimeter of

the corresponding figure. In addition, this code can be linked to the code developed

for design of AMMs and create a full package for design of AMMs meeting desired

magnetic properties. The code has been presented in Appendix D for academic usage.
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Chapter 7

Applications

The limitations, techniques and several families of inclusions introduced in previous

chapters are general and can be applied to any application. However, in this chapter,

I use the Rose curve inclusions in two important applications:

• Designing a highly miniaturized stop-band filter using complimentary Rose

curve inclusions

• Miniaturizing a patch antenna using a slab of AMM composed of Rose curve

inclusions

In the first application, the Rose curve inclusions are etched off from the ground

plane to create complementary Rose curve resonators (CRCRs). CRCRs are electri-

cally coupled to signal line to implement an ultra miniaturized stop-band microstrip

filter.

The second application is a microstrip antenna being loaded with an AMM slab

used as a substrate. The AMM substrate is exploited to miniaturize the size of

the antenna. Such miniaturized antenna can have critical applications in narrow-

bandwidth sensor networks.

7.1 A Small-Form Microstrip Stop-band Filter

Various techniques have been addressed in order to miniaturize planar microwave

components. Traditionally, semi-lumped capacitors, inductors and resonators were

82



used for the design of microwave filters [75]. Recently, the use of electrically-small

looped resonators was proposed as an alternative approach to achieve a high degree of

miniaturization. In the resonant-type approach, the loading elements are complemen-

tary split ring resonators (CSRRs) [76]-[77], or complimentary spiral ring resonators

(CS-RRs) [78].

The concept of complementary resonators was primarily introduced to realize

resonant-based metamaterials exhibiting negative permittivity rather than perme-

ability [79]. In fact, complementary resonator counterparts are achieved by etching

the ring resonator geometry out from a metallic sheet. As the complementary ring

resonators are electromagnetically dual of the ring resonators by virtue of Babinet’s

principle, the normal electric field to the metallic sheet excites the resonators, Thus,

if complementary ring resonators are used for the ground plane of a microstrip stop-

band filter, just underneath the conductor strip, they are excited and electrically

coupled to the microstrip line, increases the equivalent capacitance of the structure,

and consequently reduces the electrical size of the filter [77]. In addition, by invoking

the duality analysis, the resonance frequency of both loop resonators and comple-

mentary resonators are approximately the same (some exact formulas for resonance

frequency of complementary resonators can be found in [80]. Hence, the quasi-static

design formula provided in chapter 3 can be used to design complementary resonators.

Several complementary resonators topologies such as complementary split ring

resonators (CSRR) and complementary spiral ring resonators (CS-RR) have been

used to design miniaturized filter with novel functionalities. This approach is widely

addressed in the literature [81], [38] and [3]. It has been shown that CS-RR structures

present more miniaturization than CSRR, and also CS-RR with higher number of

turns provides a larger M-factor. However, increasing the number of turns reduces

the effective area inside the resonators and compromises the further miniaturization.

Although the use of rectangular CS-RR can resolve this issue to some extent, it is

still limited.

Complementary Rose Curve resonators (CRCRs) are etched from the ground

plate, under the signal strip, of a microstrip stop-band filter to miniaturize the filter’s

dimension. Newly introduced Rose curve resonators (RCRs) are applied to enhance

the M-factor. The new complementary resonator has a higher potential for minia-

turization. The miniaturization is defined as the ratio of the wavelength at which
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Figure 7.1: The design schematic of a stop-band microstrip transmission line based

on complimentary split ring resonators.

the complementary inclusions resonate to the length of the signal strip in the filter

device. Over an identical surface area occupied by the resonator, a RCR can possess

more length with respect to its counterparts. Thus, CRCRs present higher equiv-

alent capacitance and larger reduction in the electrical size of the filter. In theory,

by increasing the parameters in the Rose curve parametric equation, a higher M-

factor can be obtained. However, practically, the design dimensions are limited to

the fabrication technology.

7.1.1 Design and Simulation

To demonstrate the performance and compactness of the proposed stop-band filter

based on CRCRs, a prototype device with four inclusions of two types is designed

and simulated, and then the miniaturization factors is compared. The commercially

available Rogers RO3010 (εr = 10.2) is employed for the substrate. The full-wave

simulator Computer Simulation Technology (CST) studio suite 2009 is used to im-

plement the simulation setup. The setup for microstrip stop-band filter design with

CSRR and CRCR are demonstrated in Fig.7.1 and Fig.7.2 , respectively. The thick-

ness of the substrate is 1.27mm = 200mil. The width of the strip line is chosen to

be 1.2mm to maintain a characteristic impedance of 50Ω.

The resonance frequency of the complementary resonators are designed to be

about 2.5GHz. For circular ring resonators, this resonance frequency can be achieved

by split ring resonators of radius 2.25mm and 2.85mm and the trace width of 0.3mm

[57]. The area and perimeter corresponded to this structure is 20.43mm2 and 16.02mm,

respectively. For the Rose curve resonators, as it has been previously discussed, the
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Figure 7.2: The design schematic of a stop-band microstrip transmission line based

on complimentary Rose curve resonators.

resonance frequency is approximately proportional to the multiplication of the area

and perimeter values. Hence, to keep the resonance frequency and increasing M-

factor, The area of the inclusions are decreased while keeping the multiplication of

area and perimeter constant by increasing the perimeter correspondingly. Therefore,

the Rose curve parameters, i.e., the radius of the base circle r0 and the amplitude of

the cosine function a can be calculated for different order n of the rose curve. Appar-

ently, higher order provides more miniaturization. The filter has been designed for

n = 13 and n = 23. Note that the trace width was kept 0.3mm for CRCRs.

The transfer function has been plotted for all cases in Fig.7.3 and Fig.7.4. It

should be emphasized that the total length occupied by the CSRRs is 28 mm.

Hence, compared to the signal wavelength at resonance (45mm), the M-factor is

45mm/28mm = 1.6. However, for the 13th order CRCRs the total device length is

about 14mm. Hence, the new design is three times smaller than the microstrip filter

with plain ground plate. Also, the M-factor for the 35th order CRCRs is about 4

corresponding to the device length of 11mm. Note that the bandwidth of the filter

is significantly reduced in a filter designed with a CRCRs ground plane with respect

to a filter designed with a CSRRs ground plane. A suggestion to resolve the discrep-

ancy in the frequency band-stop can be by breaking the symmetry in design such as

reorient CRCRs in different angles with respect to normal axis to the ground plane

or slightly resizing the inclusions to cover different but close resonance frequency in

CRCRs.
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Figure 7.3: Simulated S11 parameters for the four-period ground plane in microstrip

filter technology based on complementary resonators.

7.2 A Super-Miniaturized Low Profile Antenna

Shrinking the size, simplifying the interface and encapsulating the multi-functionality

in wireless hand-held devices are of the highest priority in the communications indus-

try. This kind of demand is very challenging for antenna designers because the smaller

the devices are, the smaller the antennas should be. Of course, the smaller size an-

tennas should retain their capability to fulfill the ever shrinking system requirements.

For example, wide bandwidth and high performance are demanding parameters in

the antenna design. Recently, an influx of research has been devoted to antenna

miniaturization using AMMs [50], [51], [82]-[85]. AMMs seem to allow mobile-phone

manufacturers to reduce the size of antennas (e.g., the planar inverted F-antennas,

PIFAs) and accordingly handsets while maintaining good performance at low cost.

In this section, the performance of a patch antenna while lying on an AMM

substrate is analyzed. The important question is: what are the substrate parameters

while achieving desired antenna performance after size reduction? Let consider a
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Figure 7.4: Simulated S21 parameters for the four-period ground plane in microstrip

filter technology based on complementary resonators.

half-wavelength resonant patch antenna operating at an angular frequency ωop. One

can determine desire properties of the substrate, and then, design the substrate with

the proposed design methodology. The size of the antenna `a is proportional to the

wavelength in the substrate:

`a ∝ λ =
λ0√
εeffµeff

(7.1)

where λ0 is the wavelength of the radiation in the free space, and εeff and µeff are

the relative permittivity and permeability of the substrate. Increasing the effective

medium parameters results in antenna size reduction. However, when the antenna is

miniaturized using high permittivity dielectric, the antenna suffers from significant

reduction in bandwidth and deterioration in the impedance matching [86]-[92]. There-

fore, alternatively, for miniaturizing the size of the antenna, one can use magneto-

dielectric materials (εeff > 1, µeff > 1) or high permeability material for substrate.

This hypothesis has been examined by using a transmission-line analysis, and it was
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Figure 7.5: A schematic of a coaxial-fed patch antenna lying over an AMM composed

of Rose curve inclusions.

verified that a substrate with µeff � εeff and µeff � 1 retains the antenna bandwidth

and radiation quality factor after miniaturization [85], [93]. An approximate formula

for the impedance bandwidth of a probe-fed patch antenna over a AMM substrate

with the thickness d is given by [85]:

BW =
96d
√

µeff

εeff(
4
√

2 + 17
√

2µeffεeff

)
λ0

(7.2)

A resonant patch antenna which is mounted on a magneto-dielectric substrate is

designed to work at 600MHz. The substrate is an AMM slab composed of Rose

curve inclusions (see Fig.7.5). To check the performance of the antenna, I used

a pre-designed AMM. The AMM was designed to provide µeff = 9 ± 5% over a

frequency bandwidth of 2MHz and with an MLT of less than 0.05 (see chapters

(5) and (6) for design procedure). Fig.7.6 shows the real effective permeability and

permittivity of the designed AMM, and the electric and magnetic loss tangent in the

slab medium. Moreover, Fig.7.7 shows the real and imaginary part of the refractive

index and intrinsic impedance of the substrate slab. The values of effective parameters
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Figure 7.6: The left graph shows the permittivity and electric loss tangent function

of the substrate composed of ose curve inclusions. The right graph shows the perme-

ability and magnetic loss tangent of the substrate composed of ose curve inclusions.

at 600MHz are summarized in Table. 7.1. Indeed, the refractive index corresponds

to the M-factor.

To simulate the antenna setup and extract the operating parameters of antenna

a full-wave antenna simulator is used. However, due to the large feature size ratio

between the antenna and the AMM, a large amount of inclusions is needed to fill up

the substrate. Thus, embedding the metallic inclusions in the design setup consumes

a huge, and practically inefficient, resources for simulation. As a consequence, the

simulation is alternatively done with a homogeneous, yet anisotropic, substrate with

permittivity and permeability functions defined based on the AMM electromagnetic

characteristics extracted through separate plane wave analysis.

The simulation results are compared with similar patch antenna designs with

substrates composed of various AMM’s inclusions’ geometry. The new antenna is

designed to operate at the frequency of 600MHz. The schematic of the designed

Table 7.1: The effective parameters of designed AMM for an antenna substrate at

600MHz.
εeff Re tan δε µeffRe tan δµ neff zeff

6.795 9.50× 10−3 9.322 4.03× 10−2 7.961 + j0.123 1.171− j0.0292
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Figure 7.7: The left graph shows the refractive index and the extinction factor func-

tion of the substrate composed of ose curve inclusions. The right graph shows the real

and imaginary part of the intrinsic impedance the substrate composed of ose curve

inclusions.

structure is demonstrated in Fig.7.8. The simulated S11 is presented in Fig.7.9, and

it shows a relative bandwidth (S11 < −10dB) of 0.67%. The bandwidth of the

antenna is relatively low compared to other counterparts proposed in the literature,

and is useful for narrow band antenna applications such as sensor applications. The

radiation pattern is plotted in 2D and 3D in Fig.7.10 and Fig.7.11 . The numerical

calculations show a maximum gain of 1.5dBi at the boresight with the front-to-back

ratio of 4.4dB and 59% radiation efficiency for the miniaturized antenna. According

to the design dimensions, the size of antenna in the y direction is equal to Ly = 2.86cm

which is 1/17.4 of λ0 = 50cm, the wavelength at the resonance frequency of 600MHz.

Thus, a M-factor of 8.7 is achieved using artificial magnetic substrate. The ground

plane is taken at least twice of the patch size in each side to avoid restriction of the

gain. For completeness, a comparison of different experiment and simulation reported

in the literature summarized is in Table. 7.2.
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Figure 7.8: The design schematic of a coaxial-fed microstrip patch antenna.

7.3 Contribution

I examined the performance of a newly introduced nth order Rose curve resonators in

two key applications. The first application is a design of ultra miniaturized microstrip

stop-band filter with complementary Rose curve resonators as a ground plane. The

complimentary resonators’ response to the electric field is in accordance with the Babi-

net’s principle. The simulation results shows a controllable miniaturization potential

for RCRs. TheM-factor can be controlled by the parameters of RCRS. Particularly,

the higher order resonators make the higher miniaturizing effect due to the increase

in the length of the etched trace from the ground plane. My observation shows that

miniaturized devices provide narrower bandwidth, and they are limited to special

applications.

Next, I tested the effect of RCRs as a constituent of the substrate on the perfor-

mance of a patch antenna. Numerical simulation shows that maintaining the gain

and radiation efficiency of the antenna within an acceptable range in the process of

miniaturizing the antenna size is only compensated by the impedance bandwidth of

the antenna. Therefore, the miniaturized antenna can suitably be exploited in sensing

applications.

In general, I showed that Rose curve Resonators as a generic inclusions geometry
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Figure 7.9: Simulated return loss of a miniaturized patch antenna.

can be uniquely reconfigured for many applications. In addition, I believe that the

Corrugated rectangular resonators and Sine oval resonators at least are able to exhibit

the same potential in different applications. It is due to the fact that they can

theoretically be tuned for many desired magnetic responses. The investigation of

their potential is a matter of future work.
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Figure 7.10: Simulated 2-D radiation pattern of a miniaturized patch antenna.

Figure 7.11: Simulated 3-D radiation pattern of a miniaturized patch antenna.
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Table 7.2: Comparison table of different miniaturized antenna designs.

sim=simulation results, mes=measurment results, filling=a typical AMM dispersion

function.
Source inclusion fresMHz Gain BW Efficiency Mfactor sim/mes

[94] Hilbert 615MHz -3.4dB 2.1% 50% 5.8 mes

[95] Metasolenoid 860MHz - 1.3% 70% 1.2 mes

[96] CSRR 3.0GHz 1.3dB 3.3% - 1.4 sim

[96] CSRR 2.5GHz -0.5dB 3.2% - 1.5 mes

[51] Spiral 250MHz -3.9dB 0.8% 20% 6.5 mes

[97] filling 1.58GHz - 6.0% 89% 1.3 sim

[98] Using EBG 2.4GHz 5.2dB - 90% 1.3 mes

Thesis Rose curve 600MHz 1.5dB 0.6% 59% 8.4 sim
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Chapter 8

Afterword

8.1 Summary

Several advances have been added to the existing field of metamaterials under the

branch of artificial magnetic materials (AMMs). The advances include capturing fun-

damental limitations of the performance of AMMs and developing a design procedure

and introducing inclusions for generic applications.

In the field of metamaterials, many attempts have been made towards enhancing

the properties of composite media. Every day, new designs of AMM promise new

advantages. However, they mostly do not seek a target, and they are designed based

on the designer’s passion towards proposing new geometrical configurations. Hence-

forth, with the set of fundamental limitations on 1) the dispersion characteristics of

the permeability function, 2) the minimum achievable magnetic loss tangent through

the medium, and 3) the maximum permeability attainable through geometrical ma-

nipulation, designers can define a set of design goals to approach, rather than having a

random design and running everlasting optimization processes blindly. Note that the

limitations are valid within linear metamaterials and at the microwave level, where the

quasi-static approach for describing the composite medium is applicable. However,

the range of validity encompasses many applications such as antenna miniaturization,

filter design, and low profile gain enhancement, among others, using AMMs. The ap-

proach to derive the limitation is based on a common material model available in the

literature [1], [12], [99].
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In addition, based on a new formulation for AMMs composed of generic inclusions,

a set of propositions for the effect of geometrical changes was presented. For instance,

an increase in area of an inclusion increases the effective permeability of the medium,

but unfortunately also leads to increased dispersion. The propositions are essentially

used as design guidelines for AMMs.

Next, applying the design propositions, a general, methodical approach for the

design of microwave AMMs composed of metallic broken loop resonators was outlined.

The methodology was embodied based on a circuit model. The strategy, however,

is general and can be adopted with other full-fledged circuit models to increase the

accuracy of the design. Due to the fact that inclusions are much smaller than the

electromagnetic radiation wavelength, an AMM can fully be described through an

accurate RLC circuit. The design procedure was abridged in four steps, namely

checking the design feasibility, calculation of the resonance frequency of an inclusion

and the geometrical and physical parameter introduced in the model, modifying the

parameters through iterations and calculating the area and, finally, metallic race

length to fulfil the desired magnetic properties.

The outcome of the design methodology is the area and perimeter, (s, l) pair,

of AMM’s constituent. There are an infinite number of curves that possess a fixed

area and perimeters. I introduced three families of reconfigurable geometries with

the possibility of embedding in the unit cell and providing a minimum curvature in-

tegral. The introduced inclusions are the nth order Rose curve resonator (a circle

added with a sinusoidal function), the kth order Corrugated rectangular resonators

(a rectangle with corrugations) and the mth order Sine oval resonators. The former

inclusion was studied in detail to check its potential characteristics, including being a

generic inclusion for designing AMMs meeting desired magnetic properties, control-

lable miniaturization factor, and controllable bandwidth in which the permeability is

negative.

Finally, to practically verify the features of the Rose curves, they were exploited

in two crucial applications. The first application was using the complementary Rose

curve resonators in design of ground plane for a small-form microstrip stop-band

filter. The next application was using an AMM composed of Rose curve resonators

in design of a substrate for ultra miniaturized low profile antennas.
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8.2 Contributions

In this dissertation the following contributions were reported:

• A new formulation for describing artificial magnetic materials composed of par-

allel arrays of generic inclusion with a unique geometry has been derived.

• A new set of parameters (geometrical and physical) in the formulation of arti-

ficial magnetic materials has been introduced.

• A fundamental limitation for the minimum achievable dispersion over a specific

frequency bandwidth has been derived.

• All effects of the geometrical and physical parameters on the performance of

artificial magnetic materials have been reported. The report is used as design

guidelines for AMM engineers.

• A design recipe based on a generic circuit model for design of an artificial mag-

netic material fulfilling desired specifications has been developed. The strategy

used in the design recipe can also be applied to other circuit models.

• A software code for automating the AMM design has been implemented.

• The nth order Rose curve resonator as a generic family of inclusions with promis-

ing characteristics has been introduced.

• The kth order Corrugated rectangular resonators as a generic inclusion for de-

signing an AMM has been introduced.

• The mth order Sine oval resonators as another generic inclusion for designing

an AMM has been introduced.

• The effect of curvature integral of the inclusion’s geometry on the performance

of constructed AMM has been studied.

• A small-form microstrip stop-band filter based on complementary Rose curve

resonators has been designed.

• A highly miniaturized patch antenna with an AMM substrate composed of the

Rose curve resonators has been designed.
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8.3 Future Prospect

Followings are some possible future works:

Reformulating and adopting other circuit models for developing design recipes:

Other circuit models available in the literature can be adopted by the defined

strategy to develop a more accurate design recipe for AMMs.

Formulating a circuit model for describing the electric behavior of AMMs:

AMMs show bianisotropy. Therefore, providing a general circuit model for the

permittivity function of an AMM with generic inclusions is a crucial task.

Developing an AMM’s design recipe with desired magnetodielectric properties:

This problem can be solved by reformulating the permittivity function in terms

of the geometrical and physical parameters of the medium. Therefore, a method-

ology can be developed to address the magnetic and electric properties, i.e., the

permeability, permittivity and electric and magnetic tangent loss of the medium,

simultaneously.

Parametric Study of Corrugated rectangular resonators:

The same parametric study can be performed for investigating the performance

of the Corrugated rectangular resonators.

Parametric Study of Sine oval resonators:

The same parametric study can be performed for investigating the performance

of the Sine oval resonators.

Studying the effect of inclusions on the performance of AMMs:

A circuit model can be developed to incorporate the inclusions’ curvature func-

tion. The main advantage of this formulation is an increase in the accuracy of

the model and design process.

Characterizing inclusion’s geometry with a minimum curvature integral:

Controlling the curvature integral of an inclusion’s geometry advances the design

accuracy because the neglected capacitive and inductive coupling factors would

be less effective. The design accuracy would then be enhanced.
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Developing new applications of introduced inclusions:

The introduced inclusions can be used in many applications such as antenna

miniaturization and sensitivity enhancement of near-field probes. The generic

property of the inclusions made them suitable for any application that employ

AMMs in their structure.

Fabrication of proposed structures:

An important future work is the fabrication and experimental characterization

of the introduced inclusions. Moreover, two applications introduced in chapter

7 need to be experimentally verified.
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Appendix A

Loss in Materials

The loss of energy in materials corresponds to the imaginary part of the refractive

index, extinction factor. For a plane wave e−jkz traveling in the z-direction, and

passing through a medium with the refractive index of1

n = n′ − jn′′ (A.1)

it is obtained that

Energy ∝ |e−jkz|2 = |e−jnk0z|2 = |e−jn′k0ze−n
′′k0z|2 = e−2nk0z (A.2)

where k0 is a wave number in the vacuum. Clearly, from (A.2) the energy decays

while the wave is propagating along z-axis in the medium.

In general, the loss presented by n′′ is due to electric and magnetic losses. when an

electric field is applied to a dielectric, the the electric dipole constituent (molecules)

of the dielectric cannot response immediately. Since it takes a certain amount of time

to rotate due to inertia of the molecule and friction and collision with other molecules.

These collisions damp the energy of the applied field in form of heat. In an oscillating

field the dipoles attempt to follow the direction of the field. However, due to many

collision the actual energy consumes in the form of heat and creates the electric loss

in dielectrics. The response of a medium to electric field can be interpreted in terms of

1In this calculation the engineering notation in oppose to physics notation for refractive index

and constitutive parameters is considered and also j =
√
−1.
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the polarization, proportional to the applied electric field (i.e., P (t) = εε0E(t) where

ε0 is the intrinsic permittivity of the vacuum). The factor of this proportionality is

the permittivity of the medium in form of

ε = ε′ − jε′′ (A.3)

Note that in general the imaginary part of the permittivity includes the conduction

loss as well.

The same scenario can be explained about the magnetic loss of the medium. the

only difference is the exchange of electric dipoles with magnetic dipoles which respond

to magnetic field. Therefore, in the case of the magnetic field the magnetization can

be written proportional to the magnetic field while the permeability is the constant

of proportionality (i.e., M(t) = µµ0H(t) where µ0 is the intrinsic permeability of the

vacuum). Thus, the permeability is also written in complex form

µ = µ′ − jµ′′ (A.4)

Therefore, the total loss a medium is related to electric and magnetic losses. The

electric and magnetic loss tangent is defined in the following form:

{
ε = ε′

(
1− j ε′′

ε′

)
= ε′(1 + j tan δε) = |ε|ejδε

µ = µ′
(

1− j µ′′
µ′

)
= µ′(1 + j tan δµ) = |µ|ejδµ

(A.5)

From electromagnetics, the refractive index can be written as:

n =
√
εµ→

 n′ =
√
|ε||µ| cos

(
δε+δµ

2

)
n′′ = −

√
|ε||µ| sin

(
δε+δµ

2

) (A.6)

From (A.6) and the definitions of the loss tangent, it can be shown that: n′ = ±1√
2

√
ε′µ′ − ε′′µ′′ +

√
(ε′2 + ε′′2)(µ′2 + µ′′2)

n′′ = ±1√
2

√
ε′′µ′′ − ε′µ′ +

√
(ε′2 + ε′′2)(µ′2 + µ′′2)

(A.7)

For cases in which tan δε, tan δµ � 1, the relations in (A.7) are approximated as:
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 n′ '
√

ε′µ′

2
(1 + 1

8
(tan δ2

ε + tan δ2
µ))

n′′ ' 1
2

√
ε′µ′

2
(tan δε + tan δµ)

(A.8)

Hence, from (A.8) the total loss is approximately proportional to the sum of the

electric and magnetic tangent losses.

In addition from energy analysis in dispersive media, one can obtain [10]:∫ ∞
0

Qdt =

∫ ∞
0

ω(ε′′(ω)|E|2 + µ′′(ω)|H|2)dω (A.9)

where Q is heat.

Eq. (A.9) shows that the imaginary parts of the permittivity and permeability

functions determine the absorption (dissipation) of energy in the medium. Two terms

in (A.9) are referred to electric and magnetic loss. If the medium is in the thermo-

dynamic equilibrium, due to the law of increase of entropy, the dissipation of energy

is defined as evolution of heat, i.e., Q > 0; otherwise, Q can be negative. Thus, it is

proved that the imaginary parts of the effective permittivity and permeability can be

negative is some frequency band.
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Appendix B

Software Code for the design

methodology

A MATLAB software code has been developed to automatically design an AMM

meeting desired properties. The code receives the magnetic properties of desired

AMM, and generates the fixed intermediate parameters of resistance per unit length

R0, capacitance per unit length C0, inductance per the area L0, K parameter and

the sets of interval for output parameter of geometrical factor F , physical factor P ,

normalized resonance frequency Ω, resonance frequency ω0, area s, length l, real part

of effective permeability µRe and magnetic tangent loss tan δ.

B.1 Command Lines

function Designer(mu,Tol,BW,f_op,tandel)

\% mu: permeability

\% xi: susceptibility

\% Om: Normalized Omega

\% xi0: susceptinility at lossless

\% F: fraction of occupied area

\% alpha: dissipation factr - alpha=P/F^2

xi=mu-1;

mumax=mu+Tol*mu;
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mumin=mu-mu*Tol;

xsi=(mu*tandel/xi)^2;

xi0=xi*(1+xsi);

F=[0:1e-4:1]’;

\% Functions of the Rose curve paper

\% function (19) - maximum mu

Pmax=@(F) 4*F.^3./(8*(mumax-1)-F);P_max0=max(Pmax(1));

\% function (6) xi0 in terms of F and Om xi0=F*Om^2/(1-Om^2)

Om=@(F) sqrt(xi0./(xi0+F));Om_1=Om(F);

F_min0=min(F);F_max0=max(F);

subplot(2,2,1); plot(F,Om_1)

P=@(F) F.^2.*sqrt(xsi./Om(F)).*(1-Om(F).^2)./Om(F); P_1=P(F);

subplot(2,2,2); plot(F,P_1);

fmax = @(F) 4*F.^3+P(F).*F-8*P(F)*(mumax-1);

fmax = @(F) 4*F.^3+P(1).*F-8*P(1)*(mumax-1);

\%figure

F_min1=fzero(fmax,0.5); %F_min1=F_min1(3);% the minimum limit for F

F_max1=F_max0;

\% calculating the resonance frequency

\% parameters

ep_r=2.2; % substrate’s espsilon

b=0.2e-3; % b = width of the trace,

g=0.8e-3; % g = distance between traces

t=35e-6; % t = thickness of the traces

X=20.0e-3;Y=0.8e-3;Z=X; % dimensions of the unit cell

N=1; % factor for different coupling types (BS = 1, ED = 2)

NN=2; % Number of wire turns

mu0=pi*4e-7;ep0=8.85e-12;sig=5.96e7; % vacuuum and copper electrical properties

A=X*Z; % area of the unit cell

L0=N^2*mu0/Y; % inductance per unit length
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R0=NN*sqrt(mu0/(2*sig))/b; % Resistance per unit length

if N==1

u=tanh(0.5*pi*b/g); % capacitance per unit length for Broadside-coupled

C0=(0.25/1)*ep0*ep_r*ellipke(u)/ellipke((sqrt(1-u^2)));

else

u=g/(2*g+b); % capacitance per unit length for Edge-coupled

C0=ep0*ep_r*ellipke(sqrt(1-u^2))/ellipke(u);

end

K=R0/(A^2*L0^2*C0);

\%Parameters=[ep_r;b;g;t;X;Y;Z;A]

Parameters=struct(’A’,A,’R0’,R0,’L0’,L0,’u’,u,’C0’,C0,’K’,K)

Input=struct(’mu_op’,mu,’xi_op’,xi,’xi0_op’,xi0,’xsi_op’,xsi)

Iteration0=struct(’F_max’,F_max0,’F_min’,F_min0,’P_max’,P_max0,...

’P_min’,min(P_1),’Om_max’,1,’Om_min’,0)

\% Mu and Tan_delta Function

Alpha = @(f,p) p./f.^2;

XSI = @(f,p,om) Alpha(f,p).^2.*om.^3./(1-om.^2).^2;

XI0 = @(f,om) f.*om.^2./(1-om.^2);

MU = @(f,p,om) 1 + XI0(f,om)./(1 + sqrt(-XSI(f,p,om)));

TAN = @(f,p,om) -imag(MU(f,p,om))./real(MU(f,p,om));

\%%%%%%%%%% Iteration 1 %%%%%%%%%%%%%

disp(’==========================’)

Om_min1=Om(1); % F=1

Om_max1=Om_1(round(F_min1*10000));

P_max1=P(1);

P_min1=P(F_min1);

Iteration1=struct(’F_max’,F_max1,’F_min’,F_min1,’P_max’,P_max1,...

’P_min’,P_min1,’Om_max’,Om_max1,’Om_min’,Om_min1)

f_res=((K./P_1).^0.4)/(2*pi);

f_res_min=(f_op+0*BW)/Om_max1;

f_res_max=(f_op+0*BW)/Om_min1;
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Resonance1=struct(’f_res_min’,f_res_min,’f_res_max’,f_res_max)

subplot(2,2,3);

plot(F(round(F_min1*1e4):10001),f_res(round(F_min1*1e4):10001)/(1e9))

axis([F(round(F_min1*1e4)) 1 0.2 1])

%subplot(2,2,4);

f_set=[0:1e-4:F_max1];

check_TAN=real(TAN(f_set,P(f_set),Om(f_set)));

s_min1=F_min1*A;s_max1=F_max1*A;

l_min1=1/(4*pi^2*L0*C0*s_min1*f_res_min^2);

l_max1=1/(4*pi^2*L0*C0*s_max1*f_res_max^2);

Geometry1=struct(’small’,[s_min1 l_min1],’large’,[s_max1 l_max1])

x0_max1=F_min1*Om_max1^2/(1-Om_max1^2);

x0_min1=F_max1*Om_min1^2/(1-Om_min1^2);

xsi_min1=(P_min1/F_min1^2)^2*Om_max1^3/(1-Om_max1^2)^2;

xsi_max1=(P_max1/F_max1^2)^2*Om_min1^3/(1-Om_min1^2)^2;

mu_min1=1+x0_min1*(1+sqrt(-xsi_min1))^(-1);

mu_real_min1=real(mu_min1);tan_min1=-imag(mu_min1)/mu_real_min1;

mu_max1=1+x0_max1*(1+sqrt(-xsi_max1))^(-1);

mu_real_max1=real(mu_max1);tan_max1=-imag(mu_max1)/mu_real_max1;

Mu_Tan1=struct(’mu_max’,mu_real_max1,’mu_min’,mu_real_min1,...

’tan_max’,tan_max1,’tan_min’,tan_min1)

\%%%%%%%%%% Iteration 2 %%%%%%%%%%%%%

disp(’==========================’)

[v,vinx]=min(abs(f_res-f_res_min)); F_max2=F(vinx); P_max2=P(vinx/1e4);

[v,vinx]=min(abs(f_res-f_res_max)); F_min2=F(vinx); P_min2=P(vinx/1e4);

Om_max2=Om_1(round(F_min2*10000)); Om_min2=Om_1(round(F_max2*10000));

Iteration2=struct(’F_max’,F_max2,’F_min’,F_min2,’P_max’,P_max2,...

’P_min’,P_min2,’Om_max’,Om_max2,’Om_min’,Om_min2)

f_res_min=(f_op+0*BW)/Om_max2;

f_res_max=(f_op+0*BW)/Om_min2;
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Resonance2=struct(’f_res_min’,f_res_min,’f_res_max’,f_res_max)

sur=f_set’*A;leng=1./(4*pi^2*L0*C0*sur.*f_res.^2);

subplot(2,2,4)

plot(sur(round(F_min2*1e4):round(F_max2*1e4))...

,leng(round(F_min2*1e4):round(F_max2*1e4)))

s_min2=F_min2*A;s_max2=F_max2*A;

l_min2=1/(4*pi^2*L0*C0*s_min2*f_res_min^2);

l_max2=1/(4*pi^2*L0*C0*s_max2*f_res_max^2);

Geometry2=struct(’small’,[s_min2 l_min2],’large’,[s_max2 l_max2])

x0_max2=F_min2*Om_max2^2/(1-Om_max2^2);

x0_min2=F_max2*Om_min2^2/(1-Om_min2^2);

xsi_min2=(P_min2/F_min2^2)^2*Om_max2^3/(1-Om_max2^2)^2;

xsi_max2=(P_max2/F_max2^2)^2*Om_min2^3/(1-Om_min2^2)^2;

mu_min2=1+x0_min2*(1+sqrt(-xsi_min2))^(-1);

mu_real_min2=real(mu_min2);tan_min2=-imag(mu_min2)/mu_real_min2;

mu_max2=1+x0_max2*(1+sqrt(-xsi_max2))^(-1);

mu_real_max2=real(mu_max2);tan_max2=-imag(mu_max2)/mu_real_max2;

Mu_Tan2=struct(’mu_max’,mu_real_max2,’mu_min’,mu_real_min2,...

’tan_max’,tan_max2,’tan_min’,tan_min2)

\%%%%%%%%%% Iteration 3 %%%%%%%%%%%%%

disp(’==========================’)

[v,vinx]=min(abs(f_res-f_res_min)); F_max3=F(vinx); P_max3=P(vinx/1e4);

[v,vinx]=min(abs(f_res-f_res_max)); F_min3=F(vinx); P_min3=P(vinx/1e4);

Om_max3=Om_1(round(F_min3*10000)); Om_min3=Om_1(round(F_max3*10000));

Iteration3=struct(’F_max’,F_max3,’F_min’,F_min3,’P_max’,P_max3,...

’P_min’,P_min3,’Om_max’,Om_max3,’Om_min’,Om_min3)

f_res_min=(f_op+0*BW)/Om_max3;

f_res_max=(f_op+0*BW)/Om_min3;

Resonance3=struct(’f_res_min’,f_res_min,’f_res_max’,f_res_max)
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s_min3=F_min3*A;s_max3=F_max3*A;

l_min3=1/(4*pi^2*L0*C0*s_min3*f_res_min^2);

l_max3=1/(4*pi^2*L0*C0*s_max3*f_res_max^2);

Geometry3=struct(’small’,[s_min3 l_min3],’large’,[s_max3 l_max3])

x0_max3=F_min3*Om_max3^2/(1-Om_max3^2);

x0_min3=F_max3*Om_min3^2/(1-Om_min3^2);

xsi_min3=(P_min3/F_min3^2)^2*Om_max3^3/(1-Om_max3^2)^2;

xsi_max3=(P_max3/F_max3^2)^2*Om_min3^3/(1-Om_min3^2)^2;

mu_min3=1+x0_min3*(1+sqrt(-xsi_min3))^(-1);

mu_real_min3=real(mu_min3);tan_min3=-imag(mu_min3)/mu_real_min3;

mu_max3=1+x0_max3*(1+sqrt(-xsi_max3))^(-1);

mu_real_max3=real(mu_max3);tan_max3=-imag(mu_max3)/mu_real_max3;

Mu_Tan3=struct(’mu_max’,mu_real_max3,’mu_min’,mu_real_min3,...

’tan_max’,tan_max3,’tan_min’,tan_min3)

figure;

freq=[595e6:1e4:625e6]’;

Resonance3

MU_REAL=real(MU(F_min3,P_min3,freq/f_res_min));

plot(freq,MU_REAL)

TAN_DEL=TAN(F_min3,P_min3,freq/f_res_min);

hold on

plot(freq,-TAN_DEL,’--’)

B.2 Sample Output

The output of the code has been tested for a data presented in Table. 5.1.

Parameters =

A: 4.0000e-004

R0: 0.0010

L0: 0.0016

u: 0.3737

C0: 3.1367e-012
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K: 8.2916e+020

Input =

mu_op: 9

xi_op: 8

xi0_op: 8.0253

xsi_op: 0.0032

Iteration0 =

F_max: 1

F_min: 0

P_max: 0.0601

P_min: 0

Om_max: 1

Om_min: 0

==========================

Iteration1 =

F_max: 1

F_min: 0.4852

P_max: 0.0068

P_min: 7.8878e-004

Om_max: 0.9711

Om_min: 0.9430

Resonance1 =

f_res_min: 6.1787e+008

f_res_max: 6.3628e+008

Geometry1 =

small: [1.9407e-004 0.0694]

large: [4.0000e-004 0.0317]

Mu_Tan1 =

mu_max: 9.0011

mu_min: 9.0000

tan_max: 0.0500
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tan_min: 0.0500

==========================

Iteration2 =

F_max: 0.5038

F_min: 0.4916

P_max: 8.8325e-004

P_min: 8.2093e-004

Om_max: 0.9707

Om_min: 0.9700

Resonance2 =

f_res_min: 6.1810e+008

f_res_max: 6.1854e+008

Geometry2 =

small: [1.9664e-004 0.0684]

large: [2.0152e-004 0.0667]

Mu_Tan2 =

mu_max: 9.0016

mu_min: 9.0015

tan_max: 0.0500

tan_min: 0.0500

==========================

Iteration3 =

F_max: 0.5037

F_min: 0.5034

P_max: 8.8272e-004

P_min: 8.8116e-004

Om_max: 0.9700

Om_min: 0.9700

Resonance3 =

f_res_min: 6.1853e+008

f_res_max: 6.1854e+008
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Geometry3 =

small: [2.0136e-004 0.0667]

large: [2.0148e-004 0.0667]

Mu_Tan3 =

mu_max: 9.0015

mu_min: 9.0015

tan_max: 0.0500

tan_min: 0.0500

Resonance3 =

f_res_min: 6.1853e+008
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Appendix C

The Effective Parameters

Extraction

In this appendix, a proper formulation for determining the constitutive effective pa-

rameters of an AMM is introduce. Regardless of the extraction method, the param-

eters has to be calculated uniquely. Practically, the parameters which are available

in experiments are the reflection coefficient and transmission coefficient of the field

power. Inverting the classical relations for the reflection and transmission from a slab

of homogenous material of thickness d [73], [74]:

1

T
=

[
cos(nkd)− i

2

(
z +

1

z

)
sin(nkd)

]
eikd (C.1)

R

T
= −1

2
i

(
z − 1

z

)
sin(nkd)eikd (C.2)

the refractive index n and the impedance Z are calculated as:

n = ± cos−1

(
1− r2 − t2

2t

)
(C.3)

z = ±

√
(1 + r)2 − t2
(1− r)2 − t2

(C.4)

where r = R and t = Teikd, from which the permitivity and permeability parameters

can be calculated as:
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{
ε = n

z

µ = nz
(C.5)

Note that in the above relations complex functions are are with multiple branches.

This fact leads to ambiguities in determination of n and z and accordingly ε and µ.

However, it can be resolved by additional knowledge from materials. from Kramers-

Kronig relation (see Appendix A), it can be shown that for passive materials:{
Im(n) > 0

Re(z) > 0
(C.6)

Therefore, for Im(n), we get:

Im(n) = ±
{

1

kd
cos−1

∣∣∣∣1− r2 − t2

2t

∣∣∣∣} (C.7)

For calculating (C.7), we choose the sign which is consistent with condition in

(C.6). Note that the requirement that Im(n) > 0, uniquely identifies the sign of

Re(n) > 0.
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Appendix D

Software Code for an Inclusion

Reconfiguration

A Matlab software code has been developed to automatically characterize Rose curve,

Corrugated rectangular curve and Sine oval Curve. The code receives the area and

perimeter of a curve in general and produces a set of possible curves that possess the

same area and perimeter of an input. The code also has an option of considering

the length of gap in the contour and calculate the proposer length of the metallic

trace. In fact, the output is in a form of data set corresponding to the parameters

of Rose curve, corrugated rectangle curve and Sine oval curve. Moreover, the code

inversely can receive the parameters of the Rose curve, corrugated rectangle curve

and Sine oval curve and calculate the area and perimeter of the corresponding figure.

In addition, this code can be linked to the code developed for design of AMMs and

create a full package for design of AMMs meeting desired magnetic properties.

D.1 Command Lines

function [amp,r]=Rose_curve(area,perimeter,lower,steps,upper,h)

for n=lower:steps:upper

r=sqrt(area/pi);rr=r;

minperimeter=2*r*pi;

step = 1e-6;
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a=0;

precision1=1;

precision2=1;

b=[0:step:10e-3];

while precision1>1e-10

while precision2>1e-12

anlen=[];

sizeb=size(b,2);

for u=1:sizeb

a=b(u);

nlen=[];

th=h:.005:2*pi-h;

ro=r+a*sin(n*th);

[x,y]=pol2cart(th,ro);

sx=size(x,2);len=0;

for i=2:sx

dl=sqrt((x(i)-x(i-1))^2+(y(i)-y(i-1))^2);

len=len+dl;

end

len=len+sqrt((x(1)-x(sx))^2+(y(1)-y(sx))^2);

nlen=[nlen len];

anlen=[anlen;nlen];

end

[precision2,index]=min(abs(anlen-perimeter));

amp1=b(index-1);amp2=b(index+1);step=step/100;

b=[amp1:step:amp2];

end

amp=b(index);

r=sqrt((area-pi*amp^2/2)/pi);

precision1=abs(area-(pi*r^2+pi*amp^2/2));

precision2;

end

maxdim=2*(r+amp);

msg=sprintf(’n=%d \tamp=%.8g \tr=%.8g \tmaxdim=%.5g’,n,amp,r,maxdim);

disp(msg);

end
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D.2 Sample Output

The output of the code has been tested for thedata presented in (6.5). Units are in

meters.

Rose_curve(200e-6,70e-3,3,1,13,1e-3)

n=3 amp=0.0037266995 r=0.0075311243 maxdim=0.022516

n=4 amp=0.0028173226 r=0.0077261455 maxdim=0.021087

n=5 amp=0.0022620675 r=0.0078168729 maxdim=0.020158

n=6 amp=0.0018887714 r=0.0078662728 maxdim=0.01951

n=7 amp=0.0016208741 r=0.0078960978 maxdim=0.019034

n=8 amp=0.0014193677 r=0.0079154706 maxdim=0.01867

n=9 amp=0.0012623406 r=0.0079287594 maxdim=0.018382

n=10 amp=0.0011365525 r=0.0079382682 maxdim=0.01815

n=11 amp=0.0010335368 r=0.0079453054 maxdim=0.017958

n=12 amp=0.00094762989 r=0.0079506588 maxdim=0.017797

n=13 amp=0.00087490059 r=0.0079548257 maxdim=0.017659
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