1,225 research outputs found

    Algorithms for the continuous nonlinear resource allocation problem---new implementations and numerical studies

    Full text link
    Patriksson (2008) provided a then up-to-date survey on the continuous,separable, differentiable and convex resource allocation problem with a single resource constraint. Since the publication of that paper the interest in the problem has grown: several new applications have arisen where the problem at hand constitutes a subproblem, and several new algorithms have been developed for its efficient solution. This paper therefore serves three purposes. First, it provides an up-to-date extension of the survey of the literature of the field, complementing the survey in Patriksson (2008) with more then 20 books and articles. Second, it contributes improvements of some of these algorithms, in particular with an improvement of the pegging (that is, variable fixing) process in the relaxation algorithm, and an improved means to evaluate subsolutions. Third, it numerically evaluates several relaxation (primal) and breakpoint (dual) algorithms, incorporating a variety of pegging strategies, as well as a quasi-Newton method. Our conclusion is that our modification of the relaxation algorithm performs the best. At least for problem sizes up to 30 million variables the practical time complexity for the breakpoint and relaxation algorithms is linear

    Algorithm Engineering in Robust Optimization

    Full text link
    Robust optimization is a young and emerging field of research having received a considerable increase of interest over the last decade. In this paper, we argue that the the algorithm engineering methodology fits very well to the field of robust optimization and yields a rewarding new perspective on both the current state of research and open research directions. To this end we go through the algorithm engineering cycle of design and analysis of concepts, development and implementation of algorithms, and theoretical and experimental evaluation. We show that many ideas of algorithm engineering have already been applied in publications on robust optimization. Most work on robust optimization is devoted to analysis of the concepts and the development of algorithms, some papers deal with the evaluation of a particular concept in case studies, and work on comparison of concepts just starts. What is still a drawback in many papers on robustness is the missing link to include the results of the experiments again in the design

    An Improved Surrogate Constraints Method for Separable Nonlinear Integer Programming

    Get PDF
    An improved surrogate constraints method for solving separable nonlinear integer programming problems with multiple constraints is presented. The surrogate constraints method is very effective in solving problems with multiple constraints. The method solves a succession of surrogate constraints problems having a single constraint instead of the original multiple constraint problem. A surrogate problem with an optimal multiplier vector solves the original problem exactly if there is no duality gap. However, the surrogate constraints method often has a duality gap, that is it fails to find an exact solution to the original problem. The modification proposed closes the surrogate duality gap. The modification solves a succession of target problems that enumerates all solutions hitting a particular target. The target problems are produced by using an optimal surrogate multiplier vector. The computational results show that the modification is very effective at closing the surrogate gap of multiple constraint problems

    Budget-Constrained Regression Model Selection Using Mixed Integer Nonlinear Programming

    Get PDF
    Regression analysis fits predictive models to data on a response variable and corresponding values for a set of explanatory variables. Often data on the explanatory variables come at a cost from commercial databases, so the available budget may limit which ones are used in the final model. In this dissertation, two budget-constrained regression models are proposed for continuous and categorical variables respectively using Mixed Integer Nonlinear Programming (MINLP) to choose the explanatory variables to be included in solutions. First, we propose a budget-constrained linear regression model for continuous response variables. Properties such as solvability and global optimality of the proposed MINLP are established, and a data transformation is shown to signicantly reduce needed big-Ms. Illustrative computational results on realistic retail store data sets indicate that the proposed MINLP outperforms the statistical software outputs in optimizing the objective function under a limit on the number of explanatory variables selected. Also our proposed MINLP is shown to be capable of selecting the optimal combination of explanatory variables under a budget limit covering cost of acquiring data sets. A budget-constrained and or count-constrained logistic regression MINLP model is also proposed for categorical response variables limited to two possible discrete values. Alternative transformations to reduce needed big-Ms are included to speed up the solving process. Computational results on realistic data sets indicate that the proposed optimization model is able to select the best choice for an exact number of explanatory variables in a modest amount of time, and these results frequently outperform standard heuristic methods in terms of minimizing the negative log-likelihood function. Results also show that the method can compute the best choice of explanatory variables affordable within a given budget. Further study adjusting the objective function to minimize the Bayesian Information Criterion BIC value instead of negative log-likelihood function proves that the new optimization model can also reduce the risk of overfitting by introducing a penalty term to the objective function which grows with the number of parameters. Finally we present two refinements in our proposed MINLP models with emphasis on multiple linear regression to speed branch and bound (B&B) convergence and extend the size range of instances that can be solved exactly. One adds cutting planes to the formulation, and the second develops warm start methods for computing a good starting solution. Extensive computational results indicate that our two proposed refinements significantly reduce the time for solving the budget constrained multiple linear regression model using a B&B algorithm, especially for larger data sets. The dissertation concludes with a summary of main contributions and suggestions for extensions of all elements of the work in future research

    Reformulation and decomposition of integer programs

    Get PDF
    In this survey we examine ways to reformulate integer and mixed integer programs. Typically, but not exclusively, one reformulates so as to obtain stronger linear programming relaxations, and hence better bounds for use in a branch-and-bound based algorithm. First we cover in detail reformulations based on decomposition, such as Lagrangean relaxation, Dantzig-Wolfe column generation and the resulting branch-and-price algorithms. This is followed by an examination of Benders’ type algorithms based on projection. Finally we discuss in detail extended formulations involving additional variables that are based on problem structure. These can often be used to provide strengthened a priori formulations. Reformulations obtained by adding cutting planes in the original variables are not treated here.Integer program, Lagrangean relaxation, column generation, branch-and-price, extended formulation, Benders' algorithm
    corecore