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Abstract: This paper develops an implicit enumeration method for solving difficult 
linear and nonlinear multidimensional knapsack problems where branching is 
accomplished based on the sub-problem complexity. Using the concept of entropy in 
information theory, we develop a (sub)problem-difficulty metric that is used to devise 
decision rules for problem partitioning within implicit enumeration. We demonstrate 
the effectiveness of this concept by specializing the scheme for the improved surrogate 
constraint (ISC) method for solving discrete nonlinear knapsack problems. The 
proposed entropy-based partitioning and enumeration approach enables the resulting 
hybrid ISC scheme to solve problems of larger size exactly and more efficiently. The 
effectiveness of the method is demonstrated using computational experiments on a 
diverse set of test problems that are generally recognized to be difficult problem 
instances, including both nonconvex and convex objective functions.   
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1.  Introduction  
 

This paper proposes a new approach for solving separable discrete mathematical 

programs, focusing in particular on nonlinear knapsack problems.  The approach is 

novel in that it uses the information theoretic concept of entropy to estimate the time 

required for solving a potential sub-problem, and this information is used to both 

partition the problem and determine how the sub-problem will be solved.  Information 

theory has previously been used to establish the complexity of a sorting algorithm 

(Takaoka, 1998); however, to our knowledge, this is the first attempt to use 

information theory for estimating the difficulty of a complex combinatorial optimization 

problem within an optimization solver. 

Virtually all modern software packages for solving mixed integer linear 

programming problems (MILPs) use a variant of the branch-and-cut approach. Despite 

vast improvements in its implementation over the past two decades and recent 

quantum leaps in computing power, many MILPs arising in practice remain difficult to 

solve by branch-and-cut.  The difficulty stems mainly from limitations in memory and 

processing power (Ralph, 2006). The entropy-based method presented here, however, 

succeeded in reducing the memory required by the Improved Surrogate Constraints 

(ISC) method (Nakagawa 2003) enabling large problems to be solved very efficiently. 

The proposed approach builds upon the ISC algorithm and is herein termed the 

Improved Surrogate Constraint method with Problem Partitioning (ISCpp).  ISCpp grew 

out of the authors' earlier work on surrogate constraint algorithms for nonlinear 

knapsack problems (Nakagawa and Iwasaki, 1999 and Nakagawa, 2003). The method 

partitions the problem into easier sub-problems using a problem difficulty measure 

based on the concept of entropy. We show that our specific entropy metric is strongly 

correlated to the expected CPU time required to solve a sub-problem, thus providing an 

effective measure of solution difficulty.    
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The remainder of the paper is organized as follows. In Section 2 we provide a 

useful background for understanding the context and relevance of the study. Section 3 

provides the foundation for the framework underlying the proposed algorithm and 

Section 4 presents the problem formulation together with the improved surrogate 

constraint method (ISC) used to solve the sub-problems. Section 5 introduces the basic 

methodology aimed at reducing space and time complexities to solve large MNK 

problems. The proposed entropy-based approach for problem partitioning is introduced 

in Section 6, followed by the ISC version that incorporates the ISCpp partitioning 

technique in Section 7. Section 8 presents the methodology to determine an 

appropriate probability function used to estimate problem difficulty. Computational 

experiments on several different kinds of knapsack problems are reported in Section 9, 

along with comparisons between the performance of ISCpp and that of other solvers.  

Finally, Section 10 summarizes the results and makes some concluding remarks. 

 

 
2.  Background  

 

The Multi-dimensional Nonlinear Knapsack (MNK) problem subsumes all other 

multi-dimensional knapsack problems as a special case, and therefore has a wide 

range of applications but is also the most difficult type of knapsack problem to solve.     

Many papers have discussed various instances and features of the Nonlinear 

Knapsack Problem. Cooper (1981) presents a survey which classifies and discusses 

algorithms for solving nonlinear pure integer programming problems. Marsten and 

Morin (1978) combine dynamic programming and branch-and-bound techniques to 

produce a hybrid algorithm for solving the problem with multiple constraints. The 

Multiple-choice Knapsack Problem (MCKP), presented by Nauss (1978), is a 

linearization of the single-constraint nonlinear knapsack problem. Sinha and Zoltner 
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(1979), Armstrong, Kung, Sinha and Zoltner (1983), and Dyer, Kayal and Walker 

(1984] all present different algorithms for solving the multiple-choice knapsack 

problem. Ibaraki and Katoh (1988) present a detailed discussion about the Resource 

Allocation Problem, which is the minimization of a nonlinear function over one 

constraint and bounded integer variables.  The separable version of the Resource 

Allocation Problem is a special case of the nonlinear knapsack problem. Bretthauer 

and Shetty (1995) develop a branch-and-bound algorithm to solve separable problems 

involving nonlinear resource allocation. Hochbaum (1995) discussed the computational 

complexity of convex quadratic knapsack problems subject to a single linear 

constraint.  

In recent years, much progress has been made in developing exact methods for 

special cases of the 0-1 (linear) knapsack problems and in developing near-optimal 

(heuristic) methods for other knapsack problems. Martello, Pisinger and Toth (1999) 

present a combination of two new algorithms, which is shown to outperform all 

previous methods, for solving a single-constraint 0-1 knapsack problem exactly. 

Bertsimas and Demir (2002) present an approximate dynamic programming approach 

for the multidimensional knapsack problem. Martello and Toth (2003) present an exact 

algorithm for the two-constraint 0-1 knapsack problem.  Many different kinds of 

heuristic approaches have been proposed in the literature across a broad range of 

academic journals (for example see Coit and Smith (1996a, 1996b), Ng and Sancho 

(2001), Hsieh (2002) and Liang and Smith (2004)).   

The knapsack problem has many applications over domains that include R&D 

(Petersen, 1967), capacity planning in computer networks (Gerla and Kleinrock, 1977), 

stratified sampling (Hughes and Rao, 1979), sales resource allocation (Zoltners and 

Sinha, 1980), catalog planning (Armstrong, Sinha and Zoltners, 1982),  production 

planning (Ziegler, 1982), capital budgeting (Mathur, Salkin and Morito, 1983), capacity 
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planning in manufacturing networks (Bitran and Tirupati, 1989a, 1989b), layout 

problem in the fashion industry (Degraeve and Vandebroek, 1998), allocating funds to 

highway safety improvements (Melachrinoudis and Kozanidis, 2002), multicomponent 

and multiproduct periodic-review assemble-to-order system (Akcay and Xu 2004), 

pricing and allocation of unique one-time digital products (Bapna, Goes, and Gupta, 

2005) and the production-distribution system design (Elhedhli and Goffin 2005). The 

Index fund Optimization problem is modeled as a nonlinear knapsack problem in 

Nakagawa, Isada and James (2005), as are the Index-plus-alpha fund optimization 

problems under the restriction of nonlinear execution cost (Nakagawa, James, Rego, 

Glover 2009).  Since MNK class of problems subsumes all of the above knapsack 

problems, an effective solution technique MNK would be useful in many different 

applications.  

In the context of global optimization, the MNK problem is a non-smooth, 

discontinuous, nonlinear, non-convex constrained model with integer variables. When 

the objective function and all of the constraints (except for integer restrictions) are 

differentiable nonlinear functions of the decision variables, the problem is called an 

integer nonlinear (smooth) optimization program. A number of solvers exist for 

determining global optimal solutions of smooth nonlinear convex or non-convex 

problems, see e.g. Bonmin (Bonami and Lee 2006, Bonami et al., 2005), Baron 

(Sahinidis and Tawarmalani, 2005, Tawarmalani and Sahinidis, 2004), and the 

commercial software Premium Solver Platform (2005). When the objective or any of the 

constraints are non-differentiable, the resulting problem is a non-smooth optimization 

model, which is also the most difficult class of optimization problems to solve.  

The approach proposed in this paper is a new method designed to find the exact 

optimal solution to these difficult non-smooth optimization problems.  Our new 

technique not only affords the ability to solve non-smooth problems, which were 
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unable to be solved previously, but also improves on prior approaches for solving large 

smooth problems.  

 
 
3. The Surrogate Constraint Framework and Entropy 

 

The surrogate constraint method that provides a primary component of our 

approach was first introduced to the field of mathematical programming by Glover 

(1965) for solving 0-1 integer programs. In its most common form, the approach is 

applied to solving multi-constrained optimization problems by solving a series of 

single-constraint (knapsack) problems. These problems arise by replacing the original 

problem constraints with a single surrogate constraint, generated by a weighted 

combination of the original constraints. The single constraint nonlinear knapsack 

problem can be solved efficiently by using the modular approach of Nakagawa and 

Iwasaki (1999). Optimal weights, called surrogate multipliers, can be calculated for the 

constraints using the algorithm proposed by Dyer (1980) or the cut-off polyhedron 

(COP) method proposed by Nakagawa et al. (1981, 1984).  

Surrogate constraint methods, while yielding stronger relaxations than 

Lagrangean methods, can encounter a duality gap, which means the optimal solution 

to a surrogate constraint relaxation may fail to produce an optimal solution to the 

original problem by virtue of failing to satisfy some of the original problem constraints. 

To overcome this difficulty, Nakagawa (2003) proposed an improved surrogate 

constraint method (ISC) for the solution of nonlinear separable discrete optimization 

problems, often permitting exceedingly large problems to be solved exactly.  

Notably, some large-scale problems are more easily solved by the ISC than some 

small-scale problems, indicating that the problem size, measured in terms of the 

number of variables or constraints is not the only factor that makes these problems 

difficult. The percent gap closure (PGC) value of Karwan, Rardin and Sarin (1987) for 
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measuring problem complexity suggests that problems with a large surrogate gap (i.e. 

a small PGC value) are more difficult to solve. Although this hypothesis often proves 

true, there are many instances where on the contrary problems having a small PGC 

value are easily solved by the ISC method.  

The ISCpp method proposed in this paper goes beyond the ISC method by using 

an information theoretic entropy metric to assess the difficulty of the multidimensional 

0-1 knapsack problem and then generalizing this to non 0-1 (multi-valued) integer 

knapsack problems. Each variable of the problem is binary, taking a value of 0 or 1 

according to whether the associated item is chosen for inclusion in the knapsack. 

When two items have very similar properties, both items may have the same 

probability of belonging in an optimal solution. On the other hand, if the properties of 

one item are quite different from another item, then one may be somewhat more likely 

than the other to be included in an optimal solution. A difficult problem is typically one 

that includes many variables that have similar properties and hence that are difficult 

to differentiate as possible members of an optimal solution. 

The ISC uses a technique similar to that of branch-and-bound with breadth-first-

search, and as a result generally consumes significant computer memory to solve a 

difficult problem instance. To overcome memory limitations, we propose a Problem 

Partition technique that utilizes a measure of problem difficulty in order to partition 

the problem, with each sub-problem being solved using the ISC method1.   

 

4. Problem Formulation and Fundamental Relationships 

4.1 Surrogate constraints relaxation for MNK 

Multi-dimensional nonlinear knapsack (MNK) problems can be stated as: 

                                                      

1 A trial version of the software implementing the pure ISC method, with a restriction on the problem size, can be obtained 
             from http://www.res.kutc.kansai-u.ac.jp/~nakagawa/orlib/code/hope. 
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where ( )1 2, , , nx x x=x …  is the decision variable vector, { }1,2, ,M m= …  is a set of 

constraint indices,  { }= …1,2, ,N n  is the set of variable indices and { }0,1,2, ,i iK k= …

identifies the alternative item set for each variable .ix  Without loss of generality, we 

assume that: 
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When x in problem P consists of binary variables and the functions ( )i if x  and ( )ji ig x  

are monotone non-decreasing the problem is a 0-1 (linear) knapsack problem. If x is 

binary and one of the functions ( )i if x  and ( )ji ig x  is non-decreasing and the other is 

non-increasing, P can still be rewritten as a 0-1 linear programming problem by using 

negative coefficients and modifying the appropriate constraint’s right-hand-side. Note 

that any separable discrete optimization problem can be transformed into problem P.  

Surrogate constraint relaxation provides an effective approach to compute an 

upper bound UBf on the optimal value ( )f x  and is the corner stone to our method for 

estimating the difficulty of the MNK.  

The surrogate problem SP ( )u , constituting a relaxation of the original problem P, 

can be written as 
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where = …1 2( , , , )mu u uu  is a vector of non-negative weights associated with the 

original problem constraints. 

The surrogate dual problem is defined by 

{ }∈SD Opt SP : min [P ( )] :v u u U
 

where  •Opt[ ]v  is the optimal objective function value of problem •,   

=

⎧ ⎫⎪ ⎪= ∈ = ≥⎨ ⎬
⎪ ⎪⎩ ⎭

∑
1

: 1, .
m

m
j

j
R uU u u 0  

If = …* * *
1 2* ( , , , )mu u uu  denotes the optimal surrogate multiplier, then the upper bound, 

UBf of P is calculated by solving the surrogate problem PS(u*). An optimal multiplier 

*u  for the surrogate dual SDP  can be obtained by using the algorithms proposed by 

Dyer (1980), Nakagawa and Miyazaki (1981), or Nakagawa, Hikita and Kamada (1984). 

When the optimal solution of the surrogate problem SP ( *)u  is infeasible for P, it is 

said that there exists a surrogate duality gap. In this case, the value SD( )f x  is an upper 

bound on the optimal objective function value of P. 

 

4.2 The improved surrogate constraints (ISC) method 

Nakagawa (2003) proposed an improved surrogate constraints method (ISC) to 

close the surrogate duality gap by considering the following “target problem”:  

∈ ∈

≥

≤

∈ ∈

∑ ∑

T T

T

* *

P ( , *): Enumerate all solutions hitting
the target: ( )

s.t. ( )

( )

j j j j
j M j M

i i

f
f f

u g u b

x K i N

u x
x

x
 

where u* is an optimal multiplier vector of a surrogate dual problem PSD associated 

with the original multi-constrained problem P. The solutions hitting the target are 

called target solutions. The problem T TP ( , *)f u  is used to generate all target solutions, 
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which are the feasible solutions that have an objective value greater or equal to a given 

target value .Tf  

 

Property 1: If ≤T Opt[P]f v , then all exact optimal solutions of P are target solutions to 

the target problem T TP ( , *).f u  

 

As a result of this property, if ≤T Opt[P]f v  and if we can enumerate every target 

solution of problem T TP ( , *)f u  then we have all the exact optimal solutions of P. If in 

addition we have a heuristic method that can produce near-optimal solutions to the 

original problem P, then we can use the objective value of this near-optimal solution as 

the target value Tf  of T TP ( , *).f u  On the other hand, when such a near-optimal 

solution is not available, the target values Tf can be chosen from an interval

≤ ≤Near SD( ) ( ),Tf f fx x  where Nearx  is an estimate of the optimal solution of P. Near 

optimal values can be obtained by a heuristic approach.  

 

5. Basic Methodology 

5.1 The modular approach 

The target problems can be solved using a modular approach (MA) described in 

Nakagawa (1990) and Nakagawa and Iwasaki (1999). The MA consists of two 

fundamental components: (1) a fathoming test aimed at reducing the decision space of 

the variables of the current problem; and (2) an aggregation process that combines two 

variables into one new variable to reduce the number of variables in the current 

problem.  The aggregation is repeated until no further reduction is possible in either 

step (1) or (2). The process terminates when the number of variables in the problem 
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becomes smaller than a given number. The problem is then solved using the 

enumeration method outlined in James and Nakagawa (2005).  

MA can use three fathoming tests based respectively on feasibility, bounding and 

dominance. Each of these tests can be applied to the current problem for reducing the 

size of the corresponding variable decision space. To solve a target problem exactly, the 

feasibility test and the bounding test are used for fathoming. Dominance tests are not 

used for a target problem with a single surrogate constraint as their use could 

eliminate a branch that contains the exact optimal solution. For the aggregation 

process the algorithm implements the following policies according to the type of the 

problem (Nakagawa and Iwasaki, 1999): 

Homogeneous problems (with the same number of items) – Aggregate the next two 

variables in order of the variable index. 

Heterogeneous problems (with different numbers of items) – Aggregate one variable 

having the minimum number of items, the other the maximum number of items. 

         In order to calculate the upper bound of P, the following Integer Dominance and 

the Decreasing Gain Ratio (DGR) dominance in the optimal surrogate problem SP ( )∗u  

are used, where ∗u is the optimal multiplier vector: 

 

Integer dominance – A partial solution =ix k ( ik K∈ ) is dominated and has been 

fathomed, if there exists ik K′ ∈  such that 

′ ≥( ) ( )i if k f k  and ∗ ∗′ ≤( ) ( ),i ig k g k  

where  

∗ ∗

∈

= ∑( ) ( )i j ji
j M

g k u g k . 

DGR dominance  – A partial solution ix k=  ( ik K∈ ) is dominated, if there exists 

, ik k K′ ′′ ∈  such that 
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′ ′′− −
≤

′ ′′− −

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

i i i i

i i i i

f k f k f k f k
g k g k g k g k

, 
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′ ′′≤ ≤( ) ( ) ( )i i if k f k f k , 

∗ ∗ ∗′ ′′≤ ≤( ) ( ) ( )i i ig k g k g k . 

The DGR dominance for multiple-choice knapsack problems is equivalent to LP 

dominance as defined in Sinha and Zoltners (1979). After applying Integer Dominance 

and DGR Dominance to the problem SP ( )∗u , we obtain a Single-Constraint Nonlinear 

Knapsack problem of DGR type, as follows:  
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The well known greedy algorithm of Fox (1966) generates a greedy solution Gx  to the 

problem B B[P ( )]b  such that: 
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The greedy solution obtained may update the incumbent solution. The upper bound of 
 B B[P ( )]b  can be obtained by using the greedy solution xG .  
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Sinha and Zoltner (1979) give a stricter upper bound. Identify p  satisfying 
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The Sinha-Zoltoner upper bound is 

{ }=UB 1 2max ,f U U  
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The Sinha-Zoltner bound is used in our algorithm for calculating the entropy difficulty. 

 

5.2 Prior results and motivation 

The efficiency of the ISC method has been demonstrated in solving multi-

constraint nonlinear knapsack problems. In this setting, problems with 3 constraints, 

1000 variables, and 20 alternative items for each variable and problems with 8 

constraints, 500 variables, and 50 alternative items could be solved to optimality in a 

reasonable amount of time. Noticeably, these instances are exceedingly large in 

comparison to other similar types of problems in the literature. For example, the 

classical testbed for reliability design problem, formulated as a nonlinear separable 

discrete optimization problem, consists of 33 instances containing 2 constraints, 14 

variables and 216 or 1296 items for each variable. Exact optimal solutions for these 
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instances were unknown for many years. As exact methods were unable to solve these 

problems, heuristic approaches have often been the methodology of choice to seek high 

quality (but not necessarily the optimal) solutions for these instances. The latest 

research on heuristic methods for redundancy allocation problems uses an Ant Colony 

Optimization approach by Liang and Smith (2004) that succeeded in finding optimal 

solutions for 24 of these problems. By contrast, the ISC method yields exact optimal 

solutions for all 33 problem instances within one second for the entire problem set 

(Ohnishi et al. 2007).   

 

6. ISC with Problem Partition and Entropy: ISCpp 

The partitioning technique that underlies the ISCpp method operates as follows: 

1) The entropy value of the variables determines which two variables are to be 

combined in the aggregation process of the ISC method; 

2) The sum of the variable entropy is used to determine if the problem needs to be 

partitioned further before being solved with the ISC method.  

 

To apply our hypothesis that the difficulty of solving a problem depends on how 

difficult it is to determine which variables are hard to optimize in the problem, we 

define the variable difficulty of ix as the entropy or uncertainty that the value ∈ ik K of 

a variable i will be part of the optimal solution. The entropy can be measured by the 

probability ( )ip k  ( ∈ ik K ) of an item appearing in the optimal solution.  The probability 

( )ip k  is related to the associated standardized difference of the upper bounds, δ ( )i k , 

which is defined as:   

δ
− =

=
−

UB UB

UB LB

[P : ]
( ) i

i
f v x kk

f f
     ( ∈i N , ∈ ik K ) 
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where •UB[P : ]v  is an upper bound of P with a restriction ●, UBf is an upper bound of 

problem P, and LBf  is a lower bound of P, which is obtained by a near-optimal 

method. Note that we have 0 ( ) 1i kδ≤ ≤ , since if = <UB LB[P : ]iv x k f , then the branch 

where =ix k has been fathomed. 

However in order to convert ( )i kδ  into the probability of the variable i being in the 

final solution  ( ( ))ip k  we need to develop a distribution that represents the likelihood 

that if a variable has a given standardized difference how likely it is to be in the final 

solution.  In order to develop this distribution we examine a series of ( )i kδ  values for 

similar problems with known optimal solutions.  The ( )i kδ   values are then grouped 

into sets of decreasingly more “difficult” variables and the probability function ( )ip k  is 

created to approximate this distribution.  This process is demonstrated in Section 8.  

We conjecture that the difficulty of a variable is correlated with its level of 

uncertainty and may be estimated using the concept of entropy from information 

theory and statistical mechanics (Shannon, 1948). Under this assumption, the entropy 

of a variable i taking the value ik K∈  as part of the optimal solution be calculated as:  

∈

= −∑ 2( )log ( ).
i

i i i
k K

h p k p k  

Variable entropy is maximized when the item probability ( )ip k  is near 1/ ik  and 

minimized when every ( )ip k  is near 0.0 or 1.0.  It is difficult to determine an optimal 

value of a variable when the variable entropy is high. Conversely, it can be said that an 

optimal value of the item is easily determined when the variable entropy is small.  It is 

difficult to solve problems that contain too many variables with high entropy.  By 

contrast, problems containing a large number of variables with low levels of variable 

entropy should be easy to solve.  Hence, the sum of the entropy values over all 

variables provides a meaningful metric to estimate the problem difficulty, that is:  
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∈

= ∑ .i
i N

H h  

7. The ISCpp Algorithm 

          Our proposed ISCpp algorithm modifies the modular approach used in the 

original ISC method by introducing the variable entropy measure as the criterion for 

selecting the two variables to be combined into one. A small entropy value generally 

signals that the variable’s optimal item can be determined easily. We use an 

aggregation policy of choosing one variable that has the minimum entropy and one 

variable that has maximum entropy. After aggregating a sufficient number of variables, 

easy variables disappear from the problem and difficult variables with high entropy 

remain.  

When choosing a bounding test for fathoming, there is a trade-off between the 

computational time of obtaining a better upper bound and the saving of computational 

time through the use of a better upper bound. At this stage, an enumeration technique 

with a relatively light loaded bounding test (i.e. the bounds are computed quickly and 

less accurately) is helpful for solving the problems having only difficult variables, since 

high loaded bounding tests are not accurate enough to calculate bounds for problems 

containing just difficult variables. An enumeration technique (James and Nakagawa, 

2005) has been developed for this purpose. The method employs a so-called “move 

table technique” to determine the next variable with a better objective value that 

satisfies the constraint requirement for each variable and constraint. The present 

solver uses the ISC method with this enumeration technique. 

The ISCpp algorithm can be sketched as follows. The method operates on a 

candidate list, L, of subproblems, initialized with the original problem P. The method 

iterates by selecting one subproblem PS from the list L, applying the fathoming test to 

PS and calculating the entropy of the problem in order to determine its difficulty.  If the 

problem difficulty falls below a given threshold σ ,  the problem PS is judged easy 
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enough to be solved by the ISC method. Otherwise, a variable with maximum difficulty 

is selected from the variables in PS. The subproblem PS is then partitioned into several 

problems by fixing the variables selected to be assigned to specific items and the 

associated new subproblems are added to the candidate list L.  This procedure is 

repeated until the list L becomes empty.  The ISCpp selects the variable with the 

highest entropy to be assigned to specific items. This policy is like the branch selection 

process in a LP-based branch-and-bound used in today’s MIP solvers (Achterberg, 

Koch and Martin, 2005).  However the entropy measure is based on the upper bounds 

of the problem as opposed to using a score based on the change in the objective 

function of the LP relaxations of the child subproblems and the LP relaxation of the 

parent sub-problem. In the branch-and-bound the variable having the best score is 

usually selected for the next branch. 

The fathoming test comprises two independent tests for narrowing the decision 

space (i.e. item space) of the subproblem PS:   

(1) Feasibility test (FT) – If the subproblem PS does not include any feasible solutions, 

then the problem has been fathomed. 

(2) Bounding test (BT) – If an upper bound of the subproblem PS is less than the 

objective function value of the current solution, then the problem has been 

fathomed. 

The general procedure for the ISCpp is described in Figure 3, making use of the 

following functions: 

• ProblemExtraction (L, PE): returns one problem, PS, out of the problem candidate 

list L based on a specified policy PE.  

• FathomingTest (PS): applies the FT and BT fathoming tests to the problem PS and 

returns the reduced problem PS.  
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• ProblemDifficultyEstimate (PS, PDE): returns an estimate of the problem difficulty, 

δ ,  of the problem PS according to the criterion (or metric) specified by PDE.  

• FixedVariableSelection (PS, FVS): selects one variable ix  from the subproblem PS 

based on the policy defined by FVS, and returns the variable index, i . 

• ISC (PS): execute the specialized surrogate constraint method of Nakagawa (2003) 

and return an exact optimal solution, x to the problem PS. 

 

Figure 3. The General procedure for the ISCpp method 

 

 

 

8  Creating the Item Probability Function 

The development of the item probability function to estimate problem difficulty is 

critical to the effectiveness of the partitioning method and so to the efficiency of our 

ISCpp algorithm.  To assess accuracy of the proposed estimation technique for the 

Procedure ISCPP-Method (L, Exactx , Exact ,f σ ) 
 While (L is not empty) do 
  PS ← ProblemExtraction (L, PE)   
  PS ← FathomingTest (PS)  
  δ  ← ProblemDifficultyEstimate (PS, PDE) 
  If (δ  < σ )  
       x ←  ISC (PS)   
       If ( > Exact( )f fx )   

     ←Exact ( )f f x ; 
     ←Exactx ;x  

      Endif 
  Else 

      ←i FixedVariableSelection (PS, FVS)  
      Partition PS into several subproblems by setting the value of 

         variable ix  to each of the allowed values; 
      Add the new subproblems obtained to the candidate list L; 

  Endif 
 Endwhile 
End. 
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problem difficulty, a representative set of 30 classical multi-dimensional 0-1 knapsack 

benchmark problems presented in Chu and Beasley (1998)2 was analyzed. This testbed 

is characterized by problems generated using correlated random numbers, yielding 

instances that are significantly more difficult to solve than problems generated by 

independent random numbers. There are 30 problem instances for each size problem. 

The tightness of the constraints has been changed for every 10 problems so that when 

the constraint becomes loose, an optimal solution is likely to contain more items. A 

constraint tightness of 0.25, 0.5, and 0.75 is used to generate problems 00~09, 10~19, 

and 20~29, respectively.  The problems with 5 constraints and 250 binary variables 

are used to create a function that estimates the variable uncertainty.  

Table 1 shows the proportion of error (a measure of uncertainty) that result when 

the δ ( )i k  ratios, as defined in Section 3, for { }∈ 0,1 ,k  are grouped into variables of 

similar difficulty. To illustrate the process, consider the first proportion of 0.5469 for 

the problems numbers 00~09 and a δ ( )i k  of 0.00~0.01. There were 64 variables whose 

values fell into this category.  For 35 of these 64 variables the smallest upper bound 

was generated when the variable is set to its known optimal value, i.e. for these 

variables ⎡ ⎤ ⎡ ⎤≠ ≥ =⎣ ⎦ ⎣ ⎦
UB * UB *P : P : .i iv x k v x k  For the remaining 29 variables the known 

optimal value produced a larger upper bound i.e. for these variables 

UB * UB *P : P : .i iv x k v x k⎡ ⎤ ⎡ ⎤≠ ≤ =⎣ ⎦ ⎣ ⎦  The proportion comes from the fraction 

35/64=0.5469.  In each column a total of 2500 variables are classified from the 10 

sample problem instances.  

                                                      

2 These test instances are currently available at http://people.brunel.ac.uk/~mastjjb/jeb/info.html 
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 Proportion of variables in the range δ ( )i k  where the largest 
upper bound is generated with a non-optimal item 

Approximated 
error function 

 Problem Number  
(Size 5*250) 

 

δ ( )i k  00~09 10~19 20~29 φ ( )i k  

0.00~ 0.5469 0.5517 0.4098 0.4595 
0.01~ 0.2800 0.2937 0.3085 0.2146 
0.10~ 0.1161 0.1008 0.1221 0.0921 
0.20~ 0.0421 0.0382 0.0490 0.0396 
0.30~ 0.0265 0.0167 0.0187 0.0170 
0.40~ 0.0074 0.0000 0.0000 0.0073 
0.50~ 0.0000 0.0000 0.0000 0.0031 
0.60~ 0.0000 0.0000 0.0000 0.0013 
0.70~ 0.0000 0.0000 0.0000 0.0006 
0.80~ 0.0000 0.0000 0.0000 0.0002 

0.9~1.0 0.0000 0.0000 0.0000 0.0001 

Table 1. The relationship between the optimal probability  
and the associated upper bound ratio 

The upper bound ratio has a strong correlation with the probability of the value 

(either 0 or 1) that each variable can take. The following approximate equation of the 

error is used instead of the actual data as shown in the right hand column of Table 1:  

δφ − −= 12.2* ( ) 1.0( ) 2 .i k
i k  

It should be noted thatδ =( ) 0.0i k produces ( ) 0.5.i kφ =  

The relationship between the optimal probability ( )ip k  and the upper bound ratio 

δ ( )i k  is made via the function ( ).i kφ  If we define φ
θ

φ
=

−
( )

( ) ,
1 ( )

i
i

i

kk
k

 the item probability, 

i.e. the probability that the item ∈ ik K is part of the optimal solution, is then assumed 

to be: 

θ
θ

∈

=
∑

( )
( )

( )
i

i
i

i
s K

kp k
s

 ( ∈ ik K , ∈i N ). 

In the case of 0-1 problems, we have φ= −(0) 1 (1)i ip
 
and φ=(1) (1)i ip  for = ≥UB[P : 0]iv x  

=UB[P : 1]iv x , since we have UBf = =UB[P : 0]iv x  and φ =(0) 0.5i for most variables. Our 

concern is to estimate the problem difficulty for these 30 test problems with 5 

constraints and 250 variables.  A personal computer (Pentium IV with a 3.2GHz 

processor and 2GB of memory) was used for these experiments. Exact optimal 
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solutions are obtained with the ISCpp algorithm. The correlation between the problem 

difficulty entropy value and the logarithm of CPU time by ISC is shown in Figure 1. The 

correlation coefficient is 0.910 and therefore this corresponds comparatively well. 

.  
Figure 1 Computation time and difficulty entropy 

 

As a comparison, consider the PGC (Percent Gap Closure) values of Karwan, 

Rardin and Sarin (1987) applied to the same test problems. The PGC value is given by 

UB Opt SD

UB Opt
[P ] 100
[P]

f v
f v

−
×

−
 

with Opt[ ]v •  denoting the optimal objective function value of problem ● and PSD 

being the surrogate dual problem of the original problem P. The correlation coefficient 

between PGC value and the logarithm of the ISC CPU time is -0.072, hence no strong 

correlation can be found.  
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9. Computational Results 

Our computational tests showed that our ISCpp method was able to solve several 

important classes of problems that other methods, such as CPLEX, performed very 

poorly and in some cases proving unable to solve even a single instance of the test 

problems considered. On the other hand, on those problem instances where CPLEX 

performed well, our method did not lag far behind in its performance.  

Although the proposed ISCpp is general and accepts instances where variables 

may have a different number of alternative items, all test problems considered in this 

study are instances where all variables have the same number of items (i.e. ik κ=  for 

all ∈ ).i N  Therefore, problem sizes may be expressed as ,m n k× ×  without loss of 

generality.  

We evaluated the performance of the ISCpp on 190 multidimensional nonlinear 

knapsack problem instances each of which are classified into one of three distinct sets, 

and within each set there are a number of subsets. 

Set A contains three subsets of 0-1 knapsack problems each from Chu and 

Beasley (1998). The instances are characteristically more difficult to solve than 

arbitrary instances of similar size. 

A1: Thirty 5 × 250 × 2 linear knapsack instances. 

A2: Thirty 5 × 500 × 2 linear knapsack instances. 

A3: Thirty 10 × 100 × 2 linear knapsack instances. 

Set B contains non 0-1 (multi-valued) knapsack problems based on Petersen 

(1967), in which 11.6% of the coefficients are zero. There are twenty 5 × 50 × 11 convex 

quadratic knapsack problem instances. 

The instances are generated by using variables restrictions of xi =  0, 1, …, 2 or 10 

instead of the original restriction xi = 0 or 1 and the following convex quadratic 

objective functions is used: 
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min  
=

= −∑ 2

1

( ) ( 10) ,
n

i i
i

f c xx  

where ic are coefficients of objective function of the Petersen problem. The right-hand-

sides of the constraints in the instances are generated by setting 

 γ
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑

1
/2

n

j ji i
i

b floor a k  and 20 values of γ =0.60, 0.65, 0.70, …, 1.55. 

Set C contains two subsets of non 0-1 knapsack problems based on Chu and 

Beasley (1998), which do not include any zero coefficients.  

C1: 30 instances of a convex quadratic knapsack problem with size of 5 × 250 × 4, 

C2: 30 instances of a cubic knapsack problem with size of 5 × 250 × 4, 

where instances are generated by using variables restrictions of  xi =  0, 1, 2, or 3 

instead of the original restriction xi = 0 or 1, and convex quadratic and cubic objective 

functions are used for instances of C1 and C2, respectively. Subset C1 uses the 

following quadratic objective function: 

min  
=

′= −∑ 2

1

( ) ( 10) ,
n

i i
i

f c xx  

while subset C2 uses the following cubic objective function: 

max 2 3
1 2

1

( ) ,
n

i i i i i i
i

f c x a x a x
=

′ ′ ′= + +∑x  

where ic ′ , 1ia ′ , and 2ia ′  are the coefficients of the objective function, first constraint, 

and second constraint of the Chu and Beasley problem, respectively.  The cubic 

function comes from Cooper (1980). Specifically, set A corresponds to 0-1 linear 

knapsack problems. Sets B and C are multi-valued smooth (differentiable) optimization 

problems. More details about the characteristics of the test sets will be given as the 

results are presented and analyzed. We first define the parameters considered in the 

implementation of the algorithm as well as the specification of the computational 
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environment used in our experiments. All computational tests were carried out on a 

Pentium IV, 3.2GHz personal computer with 2GB of memory.   

The following parameters were considered in the definition of the various functions 

of the ISCpp. PE is a depth-first strategy that preferentially selects the problem 

containing fewer active variables. FVS selects the variable with the highest entropy 

value. PDE is defined by the proposed problem difficulty entropy metric. As noted, a 

problem is considered easy if the corresponding entropy is small. Finally, we used the 

same threshold values, ,σ  for each subset, which is used to determine whether a sub-

problem should be partitioned. The value of σ can be determined roughly by using trial 

runs lasting for several minutes for several difficult problems in each subset.  A 

threshold of σ = 35 is used in the cases except set B where we use σ =22.  Empirically 

each instance seems to have its own proper value of σ .  Developing more appropriate 

procedures for determining the value of σ  remains a topic for future research.  

We now undertake the computational analysis of the algorithm on the different 

data sets. For convenience of the analysis we present summary tables of results for 

each problem set and refer to the Appendix section for the full set of results. Tables in 

the Appendix are numbered using the name of the corresponding problem class (or 

subset) to ease identification. 

We first discuss the problems where at least one competing method (namely 

CPLEX) performed well, starting with problem Set A. Problems in Set A, despite their 

relatively small size, are characteristically more difficult to solve than arbitrary 

instances of similar size due to the inherent correlation between the coefficients of the 

objective function and those of the constraints. For a comparative analysis, we provide 

results for ISCpp and CPLEX V9.0. Results for set A are summarized in Table 2. A full 

set of results for individual classes of problems in set A are given in Tables A1, A2, and 

A3 in the appendix. 
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          CPU Time 
Problem Entropy Proportion ISCpp CPLEX 
Class Ave Min Max Using PP Average Min Max Average Min Max 
A1 30.7 21.1 36.2 0/30 5.70 0.97 32.05 168.38 6.91 857.80 
A2 39.9 31.2 48.3 26/30 272.47 7.00 970.50 3783.67* 234.03 8507.64* 
A3 34.9 27.3 40.1 13/30 170.30 3.98 841.24 30.86 1.44 141.89 

* Over the 29 instances that were solved. 

Table 2 Results Summary for Set A Problem Instances 

ISCpp yields exact optimal solutions for all 90 test instances of set A. On the other 

hand, CPLEX failed to solve one of these problems (A2-8) (as seen in Table A2) and, on 

average, required roughly an order of magnitude more computation time. The 

effectiveness of our approach in these cases is noteworthy because the problems 

considered are at the limit of those that surrogate constraint methods are supposedly 

capable of handling. Normally such methods are considered useful for solving 

instances containing a large number of variables but a relatively small number of 

constraints. In many practical applications surrogate constraints methods are of 

limited effectiveness for problems containing more than half a dozen constraints. 

Problems in subset A3 contain 10 constraints and 100 variables, which are considered 

very difficult for surrogate constraint methods. Indeed CPLEX is faster than ISCpp on 

these A3 set as shown in Table 2.  The average computational time of the ISCpp over 

all 90 problems is 149.49 (or 145.54 for the 89 problems solved by CPLEX) seconds on 

a Pentium IV 3.2GHz while CPLEX took on average 1327.64 seconds on the same 

computer for the 89 problems it could solve. 

For problem sets B and C, which contain more difficult problem structures that 

include nonlinearities as well as discrete conditions, we initially intended to compare 

the ISCpp method to some of the major global optimization solvers in the field namely 

Bonmin, Baron, and the Interval Global Solver in the Frontline Premium Solver 

Platform version 6.5. Additionally, for quadratic convex knapsack instances, we use 

CPLEX and the LP/Quadratic Solver in Frontline Premium Solver Platform. 
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Unfortunately, Baron fails to produces exact solutions even for small instances (5 

constraints, 10 variables and 10 items). The Interval Global Solver is too slow to use 

for comparison. The LP/Quadratic Solver fails to produces exact solutions for some 

quadratic multi-valued integer knapsack instances. Therefore we only compare 

Bonmin and CPLEX to the ISCpp.  

The Bonmin algorithm finds the global optimum when the objective and 

constraint functions are convex but is only a heuristic when this is not the case. 

CPLEX can solve convex quadratic programs and linear programs. 

The computational results for set B are summarized in Table 3. The ISC without 

problem partitioning (non PP) could solve seven of the 20 problems. ISCpp showed its 

superiority by being able to solve 10 of the remaining 13 problems.  The final three 

problems could not be solved due to running out of memory.  When Bonmin was tested 

on a sample of four problems it proved capable of solving only one of them to 

completion, finding a suboptimal solution to the other three but running out of 

memory before finishing. CPLEX is clearly the dominant technique here solving the 

problems instances in less than 4 seconds.   Clearly the cutting-plane strategies of 

CPLEX work very well for set B. 

For the convex quadratic problem set, C1, six of the thirty problem instances 

could be solved with the ISC method without problem partitioning.  The remaining 

problems required the use of ISCpp to be solved.  Bonmin could not be used to solve 

these instances as it halts abnormally when used to solve any instance of this class of 

problem.  The cutting plane strategies that were very successfully used by CPLEX to 

solve problem set B do not work very well for problem set C1. The CPLEX quadratic 

solver does not solve any instance in C1 due to it running out of memory, even though 

a computer with 4 GB memory was used. On the other hand, the ISCpp solved all C1 
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instances on a computer with just 1 GB memory. This success is due to the problem 

partitioning technique.  

CPLEX and Bonmin cannot solve the cubic instances in problem set C2.  It should 

be noted that Bonmin can solve non-separable convex nonlinear problems. CPLEX 

does not solve nonlinear instances except for certain types of convex quadratic 

problems.  ISCpp is designed to solve separable nonlinear instances.  Note that the 

differentiable knapsacks are quite difficult to solve when the objective or constraint 

function is not convex. We are unaware of any other solver that can yield exact optimal 

solutions for problems with non-convex functions like those solved in C2.      

Problem no. Entropy 
CPU Sec. 

ISC Bonmin CPLEX 
B-00 11.5 0.05 7259.0 0.36 
B-04 15.9 0.15 > 5141.8 1.72 
B-07 17.2 0.58 > 5249.8 0.64 
B-15 19.4 1.35 > 6350.3 3.38 

 

Table 3.  CPU times for the four sample set B Instances solved by all solvers 

 

The corresponding correlation coefficients between the problem difficulty (i.e. 

entropy value) and common logarithm of CPU time of the ISCpp are shown in Table 4.  

Problem 
subset and 

type 
m n k× ×  PP rate 

ISCpp 

ISCpp 
correlation  

with entropy 
 

Winning ratio of 
CPLEX over ISCpp 

A1 Linear 5×250×2 0/30 0.91 0/30 
A2 Linear 5×500×2 26/30 0.94 0/30 
A3 Linear 10×100×2 13/30 0.94 30/30 
B VexQ1 5×50×11 13/20 0.95 16/20 
C1 VexQ1 5×250×4 24/30 0.66 0/30 
C2 CavC2 5×250×4 15/30 0.90  

Table 4 The correlation between the entropy and the 
logarithm of CPU time 
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The CPU time of the ISCpp is highly correlated with the entropy except for subset 

C1. The correlation between the entropy and the CPU time of the ISC without PP 

technique is 0.74 but the correlation between entropy and ISCpp is only 0.66. The ISC 

using PP seems to have an overhead in the computation which affects the correlation 

value.  

We hypothesized that the entropy data in Table 1 is applicable to other nonlinear 

knapsack problems. The computational results show that this hypothesis seems 

reasonable. 

 

10.  Summary and Conclusion 

It is well-established that problem size is not the only factor that makes a problem 

difficult to solve. In combinatorial optimization, where the feasible solution space is 

finite and discrete, it is important to find effective techniques to reduce the effect of the 

intrinsic combinatorial explosion. The degree by which the domain variable or solution 

space may be reduced is inversely related to the complexity (or difficulty) of the 

problem. A number of techniques have been proposed to determine appropriate 

metrics to estimate the problem difficulty.  

Unlike other methods that relate problem difficulty to the duality gap for a 

representative set of instances, we propose a new method to estimate the problem 

difficulty based on the concept of variable uncertainty as measured by entropy.  The 

variable uncertainty shows the degree of difficulty in determining the value a variable 

should take in the optimal solution. Problem difficulty is a function of the uncertainty 

defined over the set of all problem variables.  Statistical analysis carried out on various 

samples of problems proves the effectiveness of the proposed technique to estimate the 

problem difficulty, revealing that the underlying entropy metric provides an 

appropriate scale by which the degree of difficulty of the problem can be measured.  
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Our new method is a hybrid approach that combines problem partitioning with 

variable aggregation methods for the solution of large scale multidimensional nonlinear 

knapsack problems (MNK). The combinatorial explosion is tamed by successively 

partitioning a problem into smaller problems induced by the variable of maximum 

difficulty in a (sub)problem, and iteratively aggregating variables so that the problem is 

reduced to a minimum number of difficult variables. An enumeration procedure is then 

applied to solve the problem for the restricted set of difficult variables.   

Tests carried out on a variety of complex MNK problems clearly demonstrate the 

efficiency of our method to solve relatively large scale problems. These outcomes invite 

further investigation of the method’s potential to solve more complex problems and of 

generalizations to other combinatorial optimization problems. In this paper, we treat 

problems involving ten or fewer constraints, leaving the consideration of problems with 

more constraints as a topic for future research.  
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Appendix   

Problem 
No. f Exact Entropy nonPP 

or PP 
CPU time (sec.) 

ISCpp CPLEX V9.0 

A1-00 59312 26.7 non 1.5 22.5 

A1-01 61472 31.4 non 5.0 161.0 

A1-02 62130 26.7 non 1.0 8.8 

A1-03 59463 36.2 non 32.0 857.8 

A1-04 58951 31.8 non 4.9 270.1 

A1-05 60077 34.9 non 10.0 451.3 

A1-06 60414 28.1 non 2.0 111.8 

A1-07 61472 33.4 non 6.1 198.3 

A1-08 61885 30.5 non 3.2 60.5 

A1-09 58959 23.4 non 1.1 16.0 

A1-10 109109 32.6 non 6.1 125.9 

A1-11 109841 28.5 non 2.2 38.0 

A1-12 108508 31.8 non 4.1 144.0 

A1-13 109383 35.5 non 11.1 151.6 

A1-14 110720 35.3 non 18.5 618.6 

A1-15 110256 32.4 non 5.5 223.6 

A1-16 109040 30.3 non 4.3 184.7 

A1-17 109042 33.5 non 8.7 309.9 

A1-18 109971 34.8 non 4.5 162.9 

A1-19 107058 31.3 non 5.1 174.6 

A1-20 149665 31.8 non 5.1 99.0 

A1-21 155944 30.3 non 2.5 59.3 

A1-22 149334 31.9 non 5.4 148.6 

A1-23 152130 28.2 non 2.0 85.7 

A1-24 150353 33.3 non 4.3 87.4 

A1-25 150045 22.3 non 1.1 9.2 

A1-26 148607 21.1 non 1.0 6.9 

A1-27 149782 31.0 non 5.5 129.2 

A1-28 155075 29.3 non 2.2 19.7 

A1-29 154668 32.0 non 5.1 114.9 

Average  30.7 0/30 5.7 168.4 
 

Table A1 Computation time (sec.) of the ISCpp and CPLEX 9.0 for subset A1 
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Problem 
No. f Exact Entropy nonPP 

or PP 
CPU time (sec.) 

ISCpp CPLEX 

A2-00 120148 44.5 PP 574.8 8507.6 

A2-01 117879 37.1 PP 61.7 1086.6 

A2-02 121131 41.7 PP 317.0 4993.7 

A2-03 120804 40.3 PP 245.4 5244.8 

A2-04 122319 43.4 PP 255.4 2039.1 

A2-05 122024 43.5 PP 401.5 3965.8 

A2-06 119127 44.9 PP 695.0 7608.7 

A2-07 120568 38.4 PP 120.8 3178.6 

A2-08 121586 44.9 PP 615.8 - 

A2-09 120717 41.9 PP 435.2 6412.3 

A2-10 218428 42.5 PP 464.5 4268.1 

A2-11 221202 38.8 PP 52.5 2692.0 

A2-12 217542 44.8 PP 856.1 7492.9 

A2-13 223560 43.7 PP 713.2 7988.9 

A2-14 218966 39.2 PP 54.5 646.7 

A2-15 220530 39.3 PP 191.9 5922.1 

A2-16 219989 39.1 PP 176.9 2004.6 

A2-17 218215 36.3 PP 44.4 3031.4 

A2-18 216976 40.6 PP 185.5 4367.0 

A2-19 219719 48.3 PP 970.5 4228.9 

A2-20 295828 35.4 non 12.4 234.0 

A2-21 308086 38.2 PP 107.3 3409.8 

A2-22 299796 37.8 PP 35.9 528.2 

A2-23 306480 35.5 non 23.3 5223.5 

A2-24 300342 39.9 PP 150.7 1845.8 

A2-25 302571 37.6 PP 36.8 1876.4 

A2-26 301339 32.8 non 13.6 818.9 

A2-27 306454 31.2 non 7.0 550.9 

A2-28 302828 36.6 PP 55.5 1873.3 

A2-29 299910 39.6 PP 298.9 7685.7 

Average   26/30 272.5 3783.7 
 

Table A2 Computation time (sec.) of the ISCpp and CPLEX 9.0 for subset A2 
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Problem 
No. f Exact Entropy non PP 

or PP 
CPU time (sec.) 

ISCpp CPLEX V9.0 

A3-00 23064 39.2 PP 184.9 103.0 

A3-01 22801 39.2 PP 389.0 69.3 

A3-02 22131 35.3 non 43.6 15.6 

A3-03 22772 38.2 PP 565.4 141.9 

A3-04 22751 34.1 non 53.7 7.5 

A3-05 22777 38.9 PP 820.2 99.4 

A3-06 21875 34.8 non 38.3 19.1 

A3-07 22635 32.6 non 27.8 8.2 

A3-08 22511 32.7 non 15.6 12.2 

A3-09 22702 37.1 PP 253.9 23.3 

A3-10 41395 39.5 PP 133.7 41.4 

A3-11 42344 33.0 non 22.5 16.2 

A3-12 42401 37.0 PP 103.2 23.4 

A3-13 45624 36.4 PP 177.9 49.4 

A3-14 41884 35.3 non 75.3 16.4 

A3-15 42995 39.5 PP 233.0 35.8 

A3-16 43574 40.1 PP 841.2 48.5 

A3-17 42970 36.8 PP 176.4 19.1 

A3-18 42212 38.8 PP 187.0 27.0 

A3-19 41207 39.9 PP 392.6 52.1 

A3-20 57375 27.3 non 4.0 1.4 

A3-21 58978 33.7 non 68.5 20.4 

A3-22 58391 33.5 non 43.0 24.2 

A3-23 61966 28.5 non 4.6 2.7 

A3-24 60803 31.5 non 5.6 4.4 

A3-25 61437 31.3 non 9.4 6.5 

A3-26 56377 35.5 non 211.5 23.9 

A3-27 59391 27.4 non 4.0 2.5 

A3-28 60205 32.9 non 16.9 5.6 

A3-29 60633 28.1 non 6.0 5.7 

Average  34.9 13/30 170.3 30.9 
 

Table A3 Computation time (sec.) of the ISCpp and CPLEX 9.0 for subset A3 
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Problem 
No. f Exact Entropy nonPP 

or PP 
CPU time (sec.) 

ISCpp Bonmin CPLEX 

B-00 102723 11.5 non 0.03 7259.0 0.4 

B-01 128040 59.5 PP - - 1.1 

B-02 153492 22.7 non 13.7 - 1.8 

B-03 181954 26.4 PP 29.1 - 1.9 

B-04 212669 15.9 non 0.1 > 5141.8 1.7 

B-05 248250 63.8 PP - - 4.0 

B-06 283298 25.3 PP 21.2 - 1.1 

B-07 320495 17.2 non 0.4 > 5249.8 0.6 

B-08 361978 21.1 non 8.0 - 0.7 

B-09 406805 40.0 PP 196.9 - 1.0 

B-10 452572 41.8 PP 3893.6 - 0.7 

B-11 500180 28.7 PP 61.9 - 0.9 

B-12 552201 28.3 PP 33.5 - 2.0 

B-13 606288 33.9 PP 853.9 - 0.9 

B-14 661569 44.3 PP 5784.1 - 2.3 

B-15 718854 19.4 non 1.0 > 6350.3 3.4 

B-16 780545 20.4 non 10.9 - 0.5 

B-17 847078 62.7 PP - - 2.0 

B-18 912881 36.9 PP 413.2 - 0.9 

B-19 981939 28.7 PP 21.6 - 0.7 

Average  32.4 13/20 667.2  1.4 
 

Table B Computation time (sec.) of the ISCpp, Bonmin and CPLEX 9.0 for set B 
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Problem 
No. 

Objective 
value 
f Exact 

Entropy nonPP 
or PP 

CPU time (sec.) 

ISCpp CPLEX 
Quadratic 

C1-00 16905983 40.6 PP 33818.6 > 2387.25 

C1-01 17661527 29.9 non 22.4 > 2447.75 

C1-02 17826900 38.9 PP 38036.7 >2451.74 

C1-03 17640880 38.6 PP 6989.1 >2370.43 

C1-04 17213361 41.1 PP 11952.3 >2477.05 

C1-05 17472685 45.8 PP 271482.0 >2894.87 

C1-06 17785584 35.5 PP 14732.8 >2447.80 

C1-07 18018498 41.0 PP 33339.7 >2486.93 

C1-08 17809662 32.7 non 186.3 >2668.93 

C1-09 17292443 35.2 PP 3584.3 >2312.29 

C1-10 16602967 43.7 PP 4613.2 >2237.97 

C1-11 16350115 39.1 PP 1779.1 >2207.89 

C1-12 16280824 38.0 PP 310.1 >1969.29 

C1-13 16406519 46.4 PP 64816.2 >2133.15 

C1-14 16938577 49.9 PP 8299.6 >1937.81 

C1-15 16657783 35.6 non 103.7 >2387.54 

C1-16 16345554 43.2 PP 3108.6 >1984.31 

C1-17 16543132 44.8 PP 22291.1 >1940.24 

C1-18 16667744 37.2 non 143.1 >1903.12 

C1-19 16118851 37.2 non 230.5 >2244.81 

C1-20 15402773 51.5 PP 10688.0 >1926.91 

C1-21 15922625 45.8 PP 3389.6 >1983.50 

C1-22 15399844 39.5 PP 310.9 >1927.60 

C1-23 15591875 44.6 PP 2111.4 >1920.39 

C1-24 15357276 47.8 PP 6925.7 >1944.02 

C1-25 15282034 40.7 PP 667.5 >1898.07 

C1-26 15231092 33.2 non 27.3 >1911.12 

C1-27 15205396 41.3 PP 1308.8 >1849.41 

C1-28 15841810 45.8 PP 5110.2 >1903.38 

C1-29 15793696 43.5 PP 1814.0 >1839.61 

Average  40.9 24/30 876.1  
 

Table C1 Computation time (sec.) of the ISCpp and CPLEX 9.0 for subset C1 
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Problem 
No. 

f Exact 
ISCpp Entropy nonPP 

or PP 

CPU time 
(sec.) 
ISCpp 

C2-00 425472 35.3 non 24.28 

C2-01 445419 42.6 non 178.7 

C2-02 436044 39.6 non 490.6 

C2-03 433893 45.1 non 470.9 

C2-04 431991 43.8 non 729.7 

C2-05 428604 36.5 non 51.9 

C2-06 443166 42.9 non 1319.5 

C2-07 446634 39.5 non 287.9 

C2-08 445779 39.3 non 121.7 

C2-09 444030 39.4 non 137.1 

C2-10 878154 42.7 non 1242.0 

C2-11 887025 43.7 PP 2628.0 

C2-12 829734 32.1 non 21.5 

C2-13 877134 52.0 PP 7073.4 

C2-14 891336 48.5 PP 6208.1 

C2-15 875385 44.2 non 1149.9 

C2-16 875364 42.6 non 2041.2 

C2-17 857100 49.2 PP 2778.0 

C2-18 866436 48.1 PP 4460.1 

C2-19 842871 46.5 PP 2314.9 

C2-20 1307934 48.0 PP 5679.2 

C2-21 1285269 53.9 PP 9423.3 

C2-22 1354146 53.5 PP 3057.5 

C2-23 1316532 56.6 PP 8773.4 

C2-24 1272156 47.9 PP 2845.4 

C2-25 1279689 44.9 non 2123.2 

C2-26 1267677 54.7 PP 9566.4 

C2-27 1248228 53.3 PP 4734.9 

C2-28 1310874 48.0 PP 2833.3 

C2-29 1386237 47.3 PP 776.0 

Average  45.4 15/30 2784.7 
 

Table C2 Computation time (sec.) of the ISCpp for subset C2 
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