
An Improved Surrogate Constraints Method for
Separable Nonlinear Integer Programming

著者 仲川 勇二
journal or
publication title

Journal of the Operations Research Society of
Japan

volume 46
number 2
page range 145-163
year 2003-06
権利 (C) The Operations Research Society of Japan

2003, All rights reserved, Original Text is
available at
http://ci.nii.ac.jp/els/110001183565.pdf?id=AR
T0001514088&type=pdf&lang=jp&host=cinii&order_
no=&ppv_type=0&lang_sw=&no=1352269014&cp=

URL http://hdl.handle.net/10112/7432

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kansai University Repository

https://core.ac.uk/display/228729802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of the Operations Research
Society of Japan

2003, Vol. 46, No. 2, 145-163

AN IMPROVED SURROGATE CONSTRAINTS

METHOD FOR SEPARABLE NONLINEAR

INTEGER PROGRAMMING

Yuji Nakagawa
Kansai University

(Received Received February 6, 2002; Revised December 2, 2002)

Abstract An improved surrogate constraints method for solving separable nonlinear integer programming
problems with multiple constraints is presented. The surrogate constraints method is very effective in solving
problems with multiple constraints. The method solves a succession of surrogate constraints problems having
a single constraint instead of the original multiple constraint problem. A surrogate problem with an optimal
multiplier vector solves the original problem exactly if there is no duality gap. However, the surrogate
constraints method often has a duality gap, that is it fails to find an exact solution to the original problem.
The modification proposed closes the surrogate duality gap. The modification solves a succession of target
problems that enumerates all solutions hitting a particular target. The target problems are produced by
using an optimal surrogate multiplier vector. The computational results show that the modification is very
effective at closing the surrogate gap of multiple constraint problems.

Keywords: Combinatorial optimization, discrete optimization, separable nonlinear inte-
ger programming, multidimensional knapsack, nonlinear knapsack, surrogate constraints

1. Introduction

This paper presents a new surrogate constraints method [25] for solving a separable nonlinear
integer problem with multiple constraints. The existing surrogate constraints method solves
a succession of surrogate problems, which have a single constraint, instead of the original
multiple constraint problem. However, the surrogate constraints method often has a duality
gap, that is it fails to produce an exact optimal solution of the original problem. The new
surrogate constraints method can close the surrogate duality gap.

Consider the separable nonlinear integer programming problem:

[P] : Maximize f(x) =
n∑

i=1

fi(xi)

subject to gj(x) =
n∑

i=1

gji(xi) ≤ bj for j = 1, 2, . . . , m,

xi ∈ Ki for i = 1, 2, . . . , n,

where x = (x1, x2, . . . , xn) and Ki is a set of items, Ki = {1, 2, . . . , ki}, for i = 1, 2, . . . , n.
We assume all the problem data is non-negative. If a problem includes negative data, then
the problem can be equivalently transformed into a non-negative data problem by resetting

fi(k)← fi(k)− min
t=1,2,...,ki

{fi(t)} (k = 1, 2, . . . , ki, i = 1, 2, . . . , n),

gji(k)← gji(k)− min
t=1,2,...,ki

{gji(t)} (k = 1, 2, . . . , ki, i = 1, 2, . . . , n, j = 1, 2, . . . , m),

145

146 Y. Nakagawa

and

bj ← bj −
n∑

i=1

min
t=1,2,...,ki

{gji(t)} (j = 1, 2, . . . , m).

Note that Problem [P] is equivalent to the following 0-1 integer programming problem

[PIP] : Maximize
n∑

i=1

ki∑

k=1

cikyik

subject to
n∑

i=1

ki∑

k=1

ajikyik ≤ bj for j = 1, 2, . . . , m,

ki∑

k=1

yik = 1 for i = 1, 2, . . . , n,

yik = 0 or 1 for k = 1, 2, . . . , ki, i = 1, 2, . . . , n,

where cik = fi(k), ajik = gji(k).

Morin and Marsten [17] called [P] the Multi-dimensional Nonlinear Knapsack (MNK)
problem. Several special cases of the MNK problem include 1)Nonlinear Resource Allo-
cation Problem (Bretthauer and Shetty [2]) which has a differentiable convex objective
and constraint functions, 2)some resource allocation problems, e.g. Ibaraki and Katoh [9],
which have a convex objective function and the single constraint of the sum of variables,
and 3)Multiple-Choice Knapsack Problem (Nauss [26]) which is a linear problem of the
singly constrained MNK problem. The surrogate constraints were first used in mathemati-
cal programming by Glover [7]. Luenberger[13] showed that any quasi-convex programming
problems could be solved exactly if the surrogate multipliers are correctly chosen. Kar-
wan and Rardin [11] provided some empirical evidence on the effectiveness of surrogate
constraints in integer linear programming.

There are several algorithms for yielding an optimal surrogate multiplier vector to a
MNK problem. Dyer [5] proposed two algorithms: one analogous to generalized linear
programming and the other to the subgradient method. Nakagawa et al. [20, 21] proposed
a Cutting-Off Polyhedron (COP) algorithm that generates a succession of multiplier vectors
by cutting off polyhedrons and then using the center of the polyhedron as the next multiplier
vector. Karwan, Rardin and Sarin [12] presented a measure (percent gap closure) of the
quality of the computed surrogate dual problem with respect to the linear programming
relaxation.

Unfortunately, most of MNK problems include surrogate duality gaps. In other words,
even if a surrogate constraints method solves a surrogate problem with an optimal surrogate
multiplier vector, the method fails to produce a feasible optimal solution of the original
multi-constrained problem. A new method, which we call the Slicing Algorithm (SA), is
proposed to search for exact optimal solutions to the original multi-constrained problem
from the feasible region of the optimal surrogate problem. The SA solves a succession of
target problems that enumerate all solutions in a slice of the feasible region. The target
problems can be solved by using a MA (Modular Approach) proposed by Nakagawa [22].
The MA executes the following steps (1) and (2), repeatedly.

(1) Apply the fathoming test to the current problem to reduce the decision space of the
variables.

c© Operations Research Society of JapanJORSJ (2003) 46-2

Improved Surrogate Constraints Method 147

(2) Combine two variables into one new variable to reduce the number of variables in
the current problem.

To solve a target problem exactly, we can use the feasibility test and the bounding test
as the fathoming test, but not the dominance test.

Sometimes we have difficulty in enumerating all the solutions to the target problem
since the target solution space is too large. The SA uses two techniques to reduce the
solution space size. One technique is to thin out the target solution space. Another is to
narrow the feasible region of target problem by reducing the value of the right-hand-side.
Computational results with the SA are presented in Section 5.

The rest of the paper is organized as follows. Section 2 describes the surrogate dual
problem and its properties. Section 3 presents an approach for closing the surrogate gap.
Section 4 illustrates the SA by using an example from the literature. Section 5 presents some
computational experiments using with test problems from the literature and randomly gen-
erated large-scale test problems. Section 6 makes some conclusions from these experiments.

2. Surrogate Dual

A surrogate problem [PS(u)] corresponding to the original problem [P] is written as follows:

[PS(u)] : Maximize f(x)

subject to ug(x) ≤ ub,

x ∈ K,

where

u = (u1, u2, . . . , um),

g(x) = (g1(x), g2(x), . . . , gm(x)),

b = (b1, b2, . . . , bm),

K = {x : xi ∈ Ki for i = 1, 2, . . . , n} .

The surrogate dual problem is defined by

[PSD] : min
{
vOPT[PS(u)] : u ∈ U

}

where vOPT[•] means the optimal objective function value of problem [•] and

U =

u ∈ Rm :

m∑

j=1

uj = 1,u ≥ 0

 .

The surrogate problem [PS(u)] has the following property.
Property 1 Let xq be an optimal solution of a problem [PS(uq)] for a surrogate multiplier
vector uq ∈ U. For any u ∈ U such that ug(xq) ≤ ub, it holds that

vOPT[PS(u)] ≥ f(xq).

Proof It is clear, since [PS(u)] includes xq as a feasible solution.
This property means that the region {u ∈ U : ug(xq) ≤ ub} can be removed from U. An
algorithm [21] using this property can solve the surrogate dual [PSD] exactly. The algorithm

c© Operations Research Society of JapanJORSJ (2003) 46-2

148 Y. Nakagawa

starts with the polyhedron U1 = U. Using the centroid of vertices the q − th polyhedron
Uq as a surrogate multiplier uq, we get an optimal solution xq of the surrogate problem
[PS(uq)] and then have a cutting plane ug(xq) ≥ ub. The hyperplane cuts the polyhedron
Uq to generate the next polyhedron Uq+1. Finally we have a finite set of multiplier vectors
u1,u2, . . . ,uq that covers the whole of U from Property 1. The multiplier vector u∗ is defined
such that

vOPT[PS(u∗)] = min
{

vOPT[PS(u1)], vOPT[PS(u2)], . . . , vOPT[PS(uq)]
}

is optimal to the surrogate dual [PSD].
Property 2 If an optimal solution xSD of the problem [PS(u∗)] is feasible to the original
multi-constrained problem [P], then xSD is an exact optimal solution of [P].
Proof Since the feasible region of [PS(u∗)] includes that of [P], xSD is an exact optimal
to [P].
When the succession of surrogate problems provides no feasible solutions of [P], it is said
that there exists a surrogate duality gap. In this case, the value f(xSD) is an upper bound
on the optimal objective function value of [P].

3. Resolution of the Surrogate Duality GAP

To close the surrogate duality gap, consider the target problem (Nakagawa et al. [19] and
Miyaji et al. [16]):

[PT(fT, bT)] : Enumerate all solutions x hitting

a target f(x) ≥ fT

subject to u∗g(x) ≤ bT,

x ∈ K,

where u∗ is an optimal multiplier vector of a surrogate dual problem [PSD] corresponding
to the original multi-constrained problem [P]. The feasible solutions hitting the target are
called target solutions.

Property 3 If fT ≤ vOPT[P], then all exact optimal solutions of [P] are target solutions
to the target problem [PT(fT,u∗b)].
Proof All of the exact optimal solutions of [P] hit the target f(x) ≥ fT and are feasible
to the surrogate constraint u∗g(x) ≤ u∗b, since fT ≤ vOPT[P] and any feasible solution of
[P] satisfies u∗g(x) ≤ u∗b, respectively.
Property 3 means that if fT ≤ vOPT[P] and we can enumerate every target solution of
problem [PT(fT,u∗b)], then we have all the exact optimal solutions of [P]. If we have a
heuristic method that produces near-optimal solutions of good quality, then we can use
the near-optimal value as the target value fT of [PT(fT,u∗b)]. However, if we use a poor
near-optimal solution value as the target value fT , then it may waste a large amount of
computational time and memory.

When we have poor quality estimate of the optimal value, the target values fT will be
chosen from an interval such as f(xNear) ≤ fT ≤ f(xSD), where xNear is an estimate of
the optimal solution of [P]. A near optimal solution can be obtained by using an existing
heuristic algorithm, e.g., Ohtagaki et al. [27]. The solutions hitting a target are called target
solutions. Implementing the MA without dominance testing can solve the target problem

c© Operations Research Society of JapanJORSJ (2003) 46-2

Improved Surrogate Constraints Method 149

Figure 1 Exact case of the SA Figure 2 Heuristic case of the SA

[PT(fT, u∗b)] exactly using the SA. The problem [PT(fT, u∗b)] becomes harder to solve
with a decreasing value of fT, because of the increasing number of target solutions.

Consider a succession of κ + 1 problems [PT(fT, u∗b)] with fT = ϕ0, ϕ1, . . . , ϕκ,
where

ϕt =
(κ− t)f(xSD) + tf(xNear)

κ
(t = 0, 1, 2, . . . , κ).

These target problems are solved in the order [PT(ϕ0,u
∗b)],. . . , [PT(ϕκ,u

∗b)] using the
SA, as shown in Figure 1. When the SA finds an exact optimal solution to [P] out of the
target solutions, the algorithm stops. However, the problems become harder to solve as the
problem size increases. There are two main reasons for this. The first reason is that there
exist too many target solutions with the same optimal objective function value. The second
reason is that the target region is too wide. In the SA, two techniques are used to decrease
these difficulties. One technique is to thin out the target solutions. When the number
of items for a variable exceeds a certain threshold value in the MA code, a thinning-out
technique is carried out. Another technique is to slice off piece-by-piece parts of the feasible
region by changing the value of right-hand-side bT. It should be noted that the solutions
obtained by using these techniques cannot be guaranteed to be exact optimal to the original
multi-constrained problem [P].

Consider a succession of ν + 1 problems [PT(ϕk, b
T)] with bT = β0, β1, . . . , βν ,

where

βs =
(ν − s)u∗g(xNear) + su∗b

ν
(s = 0, 1, 2, . . . , ν).

The method SA tries to solve the problems [PT(ϕk, βs)] in the order of s = 0, 1, 2, . . . , ν.
Figure 2 illustrates this technique. An algorithm for producing an exact optimal solution of
the original multi-constrained problem [P] is as follows:

Algorithm SA

c© Operations Research Society of JapanJORSJ (2003) 46-2

150 Y. Nakagawa

1. Solve the surrogate dual problem [PSD] and obtain u∗ and xSD;
2. If xSD is feasible to the constraints of [P] then
3. Set xExact ← xSD;
4. Terminate this algorithm;
5. Else
6. Obtain a near-optimal solution xNear of [P] by using a heuristic algorithm;
7. EndIf
8. Set bT ← u∗b and read a division number κ;
9. For t = 0, 1, . . . , κ

10. Set ϕt ← (κ−t)f(xSD)+tf(xNear)
κ

;

11. Enumerate the target solutions of [PT(ϕt, u∗b)] by using MA;
12. If there exists a target solution xT feasible to the constraints of [P] then
13. Set xSlc ← xT and fSlc ← f(xT); Exit this For loop;
14. EndIf
15. EndFor
16. Write the obtained solution xSlc and fSlc, which is an exact optimal solution;

4. Example

The SA will be demonstrated with a simple example, which is a variation of the Rosen-
Suzuki problem [29]. The example problem is:

[PEx] : max f(x) = −x2
1 − x2

2 − 2x2
3 − x2

4 + 5x1 + 5x2 + 21x3 − 7x4

s. t. g1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 ≤ 5,

g2(x) = x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 ≤ 5,

g3(x) = 2x2
1 + x2

2 + x2
3 + 2x1 − x2 − x4 ≤ 5,

−9 ≤ xi ≤ 10 for i = 1, 2, 3, 4,

xi integer for i = 1, 2, 3, 4.

A COP (Cutting-Off Polyhedron) algorithm proposed by Nakagawa et al. [21] is started

with a surrogate multiplier vector u1 =
(

1
3
, 1

3
, 1

3

)
, as shown in Figure 3. The surrogate

subproblem is [PS(u1)] : max f(x) subject to u1g(x) ≤ u1b and −9 ≤ xi ≤ 10, xi integer
for i= 1, 2, 3, 4. Using the MA produces an optimal solution x1 =(0, 0, 2, 0), f(x1)
=34, and g(x1) =(6, 4, 4), to the surrogate problem [PS(u1)]. We have the first cutting
plane 2u1 + 0u2 ≥ 1 from ug(x1) ≥ ub and u3 = 1 − u1 − u2. The COP algorithm
generates u2 =(0.666667, 0.166667, 0.166667) which is the center of balance of a material-
points-system that has an unit weight at every vertex. Similarly, the surrogate constraints
method generates x2 =(0, 1, 1, -1), f(x2) = 29, g(x2) =(4, 6, 2), and the last cutting
plane 2u1 + 4u2 ≥ 3. This plane cuts off the remaining region of U as shown in Figure 3.
Therefore the optimal surrogate multiplier is u∗ = u2, an optimal solution of the surrogate
dual problem is xSD = x2, f(xSD) = 29, from f(xSD) = min {f(x1), f(x2)}. However, xSD

is infeasible to the second constraint g2(x) ≤ b2 of the original problem [PEx]. There exists
a surrogate duality gap.

In order to close this surrogate gap, consider a succession of target problems [PT(fT, βT)]
with βT = u∗b = 5 and fT = 29, 28, 27, where a near optimal solution xNear = (1, 1, 1, 0),

c© Operations Research Society of JapanJORSJ (2003) 46-2

Improved Surrogate Constraints Method 151

Figure 3 Surrogate multipliers and cutting planes

f(xNear) = 27 by a heuristic method. The succession of target problems are solved by the
SA. The problems [PT (29, 5)], [PT (28, 5)] have no target solutions satisfying the constraints
of [PEx]. The problem [PT (27, 5)] provides a target solution [PSlc] =(1, 1, 1, 0) satisfying
all constraints of [PEx]. This target solution is guaranteed to be the optimal solution of the
original multi-constrained problem [PEx].

5. Computational Experience

The performance of the SA has been evaluated on the following four groups of test problems.
Group 1 are test problems from the literature and variations of them. Group 2, 3 and 4 sets
are randomly generated using a machine-independent random number generator (Marse and
Roberts [14]).

Group 1:
Problem 1: The following capital budgeting problem with 39 zero/one variables (Problem

6 in Petersen [28]):

Maximize
n∑

i=1

cixi

subject to
n∑

i=1

ajixi ≤ bj for j = 1, 2, . . . , 5,

xi = 0 or 1 for i = 1, 2, . . . , n,

where the data ci and aji are given in Table 5 of Appendix.
Problem 2: The capital budgeting test problem with 50 zero/one variables (Problem 7

in Petersen [28]).
Problem 3: The same problem as Problem 1 except for the variable restriction:

xi = 0, 1, . . . , or 5 for i = 1, 2, . . . , 39,

instead of xi = 0 or 1 for i = 1, 2, . . . , 39.
Problem 4: The same problem as Problem 2 except for the variable restriction:

c© Operations Research Society of JapanJORSJ (2003) 46-2

152 Y. Nakagawa

xi = 0, 1, . . . , or 5 for i = 1, 2, . . . , 50,

instead of xi = 0 or 1 for i = 1, 2, . . . , 50.
Problem 5: Maximize a nonlinear objective function

∑50
i=1 (cixi + a1ix

2
i + a2ix

3
i), subject

to the same constraints as Problem 4, where coefficients ci, a1i, a2i are the same values as
Problem 2. This objective function is from Cooper [4].

Problem 6: Maximize the same objective function as Problem 5, subject to the nonlinear
constraints

∑50
i=1 (ajix

2
i − aj+1,ixi) ≤ bj for j = 1,2,3,4, and xi = 0, 1, 2, . . . , or 10 for i =

1, 2, . . . , 50, where coefficients aji are the same values as Problem 2. The constraint function
is from Bretthouer and Shetty [2].

Group 2:
Problem 1-30: All of the objective and constraint functions of [P] are nonlinear and

monotone increasing:

0 ≤ fi(k) < fi(k + 1) ≤ 256ki (k = 1, 2, . . . , ki − 1, i = 1, 2, . . . , n),

0 ≤ gj i(k) < gj i(k+1) ≤ 256ki (k = 1, 2, . . . , ki−1, i = 1, 2, . . . , n, j = 1, 2, . . . , m),

fi(k), gji(k) are all integers, and

bj =
⌊
1

2

∑n

i=1
(gji(1) + gji(ki))

⌋
(i = 1, 2, . . . , n, j = 1, 2, . . . , m).

Group 3:
Problem 1-5: All of the objective and constraint functions of [P] are nonlinear and

monotone increasing:

0 ≤ fi(k) < fi(k + 1) ≤ 8ki (k = 1, 2, . . . , ki − 1, i = 1, 2, . . . , n),

0 ≤ gj i(k) < gj i(k + 1) ≤ 8ki (k = 1, 2, . . . , ki − 1, i = 1, 2, . . . , n, j = 1, 2, . . . , m),

fi(k), gji(k) are all integers, and

bj =
⌊
1

2

∑n

i=1
(gji(1) + gji(ki))

⌋
(i = 1, 2, . . . , n, j = 1, 2, . . . , m).

Group 4:
Problem 1-30: All of the objective and constraint functions of [P] are nonlinear and

non-monotone:

0 ≤ fi(k) ≤ 256(ki − 1) (k = 1, 2, . . . , ki, i = 1, 2, . . . , n),

0 ≤ gji(k) ≤ 256(ki − 1) (k = 1, 2, . . . , ki, i = 1, 2, . . . , n, j = 1, 2, . . . , m),

fi(k), gji(k) are all integers, and

bj =
⌊
1

2

∑n

i=1
(gji(1) + gji(ki))

⌋
(i = 1, 2, . . . , n, j = 1, 2, . . . , m).

c© Operations Research Society of JapanJORSJ (2003) 46-2

Improved Surrogate Constraints Method 153

and reset

fi(k) ← fi(k)− min
t=1,2,...,ki

{fi(t)} (i = 1, 2, . . . , n),

gji(k) ← γjigji(k) (k = 1, 2, . . . , ki, i = 1, 2, . . . , n, j = 1, 2, . . . , m),

where γji are zero/one variables that set so that 25% are zero elements. Problems 1-30
in Group 2 set and Problems 1-5 in Group 3 set are generated referring to test problems
presented in Sinha and Zoltners [30] Problems 1-30 in Group 4 set are generated with 75%
nonzero elements as used by Karwan, Rardin and Sarin [12].

All algorithms are coded in a Modula 2- like C language developed by Nakagawa [23].
This language is oriented to scientific calculations, implemented by using the macro expan-
sion of the C preprocessor, and compiled by a C compiler. The algorithms were tested on
a Windows computer (Pentium 4/1.7GHz) with the Code Warrior C compiler. The algo-
rithms implement an upper-bound calculation technique presented by Sinha and Zoltners
[30] is used. When the algorithm solves a succession of target problems, the bounding test
in the code utilizes not only the constraint of the optimal surrogate problem, but also the
constraints of the original multi-constrained problem [P]. The algorithm is a modification of
a MA algorithm used in Nakagawa and Iwasaki [24]. The calculations of all the real-valued
numbers in this code have been executed in double precision (64 bits).

Karwan, Rardin and Sarin [12] have provided a measure of Percent Gap Closure (PGC).
The PGC value is defined as:

fReal − vOPT[PSD]

fReal − vOPT[P]
× 100

where fReal is the linear programming relaxation of the linear integer programming problem
corresponding to the original problem [P]. This paper adopts the PGC value to measure the
difficulty of the original problem [P]. A small PGC value means that the surrogate duality
gap is wide. The value 100% of PGC suggests that the optimal function value of [PSD] is
equivalent to the optimal value of [P].

The near-optimal solutions of test problems were generated by a heuristic method (a
smart greedy algorithm). The greedy algorithm was proposed by Ohtagaki et al. [27] and
is an improvement on a heuristic algorithm by Nakagawa et al. [18]. The greedy algorithm
generates several greedy solutions by using multiple greedy criteria designated by a balance
coefficient between the objective function and constraints. It then chooses the best solution
among greedy solutions as a smart greedy solution.

The computational times for xSlc indicated in tables 1, 2, 3 and 4 are the CPU seconds
taken by the SA to find the solution xSlc. The target values used by the SA are the objective
function values of the best known near-optimal solutions, most of which are exact optimal
values. It should be noted that these computational times are actual times if we assume to
use a heuristic algorithm for producing very good near-optimal solutions. The target value
fNS is the minimum value whose target problem can be solved exactly by SA and have
been constructed such that there are no feasible solutions to the original multi-constrained
problem.

These test problems are available publicly from the Web site:
http://www.res.kutc.kansai-u.ac.jp/~nakagawa/orlib/jorsj/.

Tables 1a and 1b report the computational results for the six test problems of Group 1.
Table 1a gives the optimal solutions to the test problems. The obtained solution xSlc for

c© Operations Research Society of JapanJORSJ (2003) 46-2

154 Y. Nakagawa

Problems 1 and 2 are the same as the optimal solutions in Petersen [28]. Computational
results for the performance of the SA are shown in table 1b. Since Problem 3 has a wide
gap in the surrogate duality (the PGC value of Problem 3 is 2.5-4.6%). The SA fails to yield
a solution guaranteed to be exactly optimal to the original problem [P]. However, a near-
optimal solution, f(xSlc) = 14,296, has been obtained, which is better than the near-optimal
solution, f(xNear) = 13,981, yielded by the smart greedy algorithm. Except for Problem 3,
the SA has succeeded in finding the exact optimal solutions for all problems in Group 1.

Table 1a Computational results for test problems in Group 1
Problem No. Computational Results (solutions by the Slicing Algorithm)

1 b= (600, 500, 500, 500, 600), u∗=(0.413040, 0.150670, 0.090110, 0.000333, 0.345848), u∗b= 575.89,

xSlc=(1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,1,1,1,1,1,0,0,1,0,1,0,1,1,1,0,1,1,0,1,1,1,1,1,1),

u∗g(xSlc)= 573.39, g(xSlc)= (597, 496, 493, 427, 600).

2 b= (800, 650, 550, 550, 650), u∗=(0.444075, 0.113238, 0.136335, 0.000004, 0.306349), u∗b= 702.98,

xSlc=(0,0,0,1,0,1,0,1,1,0,1,1,1,0,1,1,1,0,1,1,0,0,1, 0,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1),

u∗g(xSlc)= 701.60, g(xSlc)= (800, 639, 549, 472, 650).

3 b= (600, 500, 500, 500, 600), u∗= (0.282473, 0.379201, 0.128373, 0.113609, 0.096344), u∗b= 537.88,

xSlc= (0,0,0,0,0,3,0,0,0,0, 0,0,5,5,5,1,5,0,5,4, 0,0,0,0,4,0,1,0,5,5, 2,5,0,0,0,4,0,3,0),

u∗g(xSlc)= 533.44, g(xSlc)= (600, 500, 474, 492, 598)

4 b= (800, 650, 550, 550, 650), u∗= (0.701090, 0.000041, 0.295762, 0.003077, 0.000031), u∗b= 725.28,

xSlc= (0,0,0,0,0,0,0,0,0,0, 0,0,5,0,4,0,5,0,5,4, 0,0,0,0,0,0,0,0,0,5, 0,5,0,0,0,0,0,0,5,0, 0,5,4,0,0,0,1,5,4,0),

u∗g(xSlc)= 725.21, g(xSlc)= (800, 497, 550, 530, 532)

5 b= (800, 650, 550, 550, 650), u∗= (0.485373, 0.406892, 0.088352, 0.019063, 0.000321), u∗b= 712.06,

xSlc= (0,0,0,0,0,0,0,0,0,0, 0,0,5,5,3,0,5,0,5,0, 0,0,0,0,0,0,0,0,0,5, 0,5,0,0,0,0,0,0,5,0, 0,5,3,0,5,0,5,5,5,0),

u∗g(xSlc)= 711.062, g(xSlc)= (800, 650, 539, 549, 615)

6 b= (4000, 3000, 2500, 5000), u∗= (0.178335, 0.699742, 0.121727, 0.000196), u∗b= 3117.86,

xSlc= (2,1,1,3,1,1,1,2,1,2, 2,1,1,2,6,1,10,2,2,1, 1,1,1,1,3,1,1,1,2,4, 1,2,1,1,2,2,1,5,10,1, 1,3,4,1,4,1,1,2,1,2),

u∗g(xSlc)= 3116.25, g(xSlc)= (3996, 3000, 2493, 4766)

b : rigtht-hand-side vector of constraints.

u∗ : an optimal surrogate multiplier vector obtained by a surrogate constraints algorithm.

xSlc : a solution obtained by the SA.

Table 2a and 2b illustrate the performance of the SA for solving two or three constrained
nonlinear knapsack test problems in Group 2 with 250, 500, or 1000 variables. Each variable
is allowed to take 20 different integer values (items). Five test problems have been solved
for each problem size. Tables 2a and 2b show that the PGC value is a good measure of
the difficulty of the problems. The SA produces exact optimal solutions for all problem
sizes with two constraints. For problems with three constraints the SA succeeds in finding
exact optimal solutions for all problems with the exception of one problem. The SA failed
to produce a solution guaranteed to be exactly optimal to Problem 30 of the size m = 3,
n = 1000, ki = 20 in Table 2b. However, the solution by the SA is a near-optimal solution of
fairly high quality. Problem 30 has a small PGC value of 8.8-16.2%. Another hard problem
is Problem 25, which has a small PGC value of 17.5%. The SA succeeded in solving exactly
the target problem with fT = 1,592,158, but failed to solve exactly a target problem with
fT = 1,592,157. However the approximate solution produced by the SA is exactly optimal
to Problem 25. The SA has spent most of CPU time guaranteeing the exact optimality of
the solution. For example, the result for Problem 25 in Table 2b reports that SA took 16

c© Operations Research Society of JapanJORSJ (2003) 46-2

Improved Surrogate Constraints Method 155

Table 1b Computational results for Group 1

Problem Number 1 2 3 4 5 6
fReal 10,672.3 16,612.8 14,458.1 24,591.7 44,744.4 79,851.1

f(xSD) 10,659.0 16,599.0 14,454.0 24,582.0 44,625.0 79,798.0
f(xNear) 10,479.0 16,499.0 13,981.0 24,306.0 36,041.0 79,537.0

fNS − − 14,370.0 − − −
f(xSlc) 10,618.0 16,537.0 14,296.0 24,451.0 41,850.0 79,716.0

CPU time for fNS − − 6sec − − −
CPU time for xSlc <1sec <1sec 3sec <1sec <1sec 1sec
PGC value of xSD 24.6% 18.2% 2.5%-4.6% 6.9% 4.1% 39.3%

quality of xSlc exact exact near optimal exact exact exact

fReal : optimal value of a linear relaxation on problem of an optimal surrogate problem [PS(u∗)].

xSD : a solution of surrogate dual problem.

xNear : a near optimal solution obtained by the smart gready algorithm.

xSlc : a solution obtained by the SA.

fNS : minimum target value whose target problem can be solved exactly by the slicing algorithm and have been

constructed with no feasible solution to the original multi-constrained problem.

seconds to produce a better solution xSlc than the near-optimal solution xNear and took 111
seconds to guarantee the exact optimality of xSlc.

Table 3 is the computational results for problems with three constraints in Group 3.
Problems 1, 2, . . . , 5 of Group 3 are easy to solve except that they have too many exact
optimal solutions. This is overcome by a thinning-out technique. It should be noted that
all problems have the relationships f(xSD) = f(xSlc). A comparison between tables 2 and
3 shows that the test problems in Group 2 are rather harder to solve than problems of the
corresponding size in Group 3 and Group 4.

To investigate the effect of allowing the objective and constraint functions to be non-
monotone and to have many constraints, the SA has been tested on problems in Group
4. The problems 1-30 in the Group 4 have eight constraints, which were generated as in
Karwan, Rardin and Sarin [12]. Problems 1-15 are nonlinear knapsack problems with 2
items for each variable. Problems 16-30 are nonlinear knapsack problems with 50 items for
each variable. The constraint functions gji(k) have 25% zero elements for every j = 1, 2,…,
m and i = 1, 2, …, n. Computational results for Problems 1-30 of Group 4 are reported in
Tables 4a and 4b. These tables show that Group 4 test problems are quite difficult for the
smart greedy algorithm to give good solutions. For most problems, the heuristic algorithm
fails to produce feasible solutions. Even if the algorithm succeeds to produce a feasible
solution, the obtained solution is very poor. On the other hand, the SA succeeds in finding
the exact optimal solutions for all problems in Group 4. The computational results suggest
that the SA is still powerful even for problems with many constraints and problems with
non-monotone functions. There is no clear relationship between the PCG values and the
CPU times for Group 4 problems.

Further computational experiments are found in James and Nakagawa [10]. An enumer-
ation method, in conjunction with the SA, is used to find the optimal solutions to a number
of 500-variables, 5-constraint multidimensional knapsack test problems presented in Chu
and Beasley [3]. The exact solutions to these problems were previously unknown.

c© Operations Research Society of JapanJORSJ (2003) 46-2

156 Y. Nakagawa

Table 2a Computational results for Group 2 (m× n× ki)
(a) 2× 250× 20

Problem Number 1 2 3 4 5
fReal 796,256.5 803,346.3 796,605.4 805,474.4 812,961.8

f(xSD) 796,238.0 803,340.0 796,596.0 805,460.0 812,958.0
f(xNear) 796,195.0 803,157.0 796,542.0 805,381.0 812,908.0

fNS − − − − −
f(xSlc) 796,220.0 803,317.0 796,575.0 805,432.0 812,943.0

CPU time for fNS − − − − −
CPU time for xSlc 1sec <1sec <1sec 3sec 1sec
PGC value of xSD 50.7% 21.5% 31.0% 34.0% 20.4%

quality of xSlc exact exact exact exact exact

(b) 2× 500× 20

Problem Number 6 7 8 9 10
fReal 1,590,219.7 1,594,289.4 1,595,970.8 1,606,619.8 1,608,771,3

f(xSD) 1,590,211.0 1,594,282.0 1,595,957.0 1,606,616.0 1,608,762.0
f(xNear) 1,590,187.0 1,594,246.0 1,595,934.0 1,606,598.0 1,608,683.0

fNS − − − − −
f(xSlc) 1,590,205.0 1,594,267.0 1,595,948.0 1,606,607.0 1,608,747.0

CPU time for fNS − − − − −
CPU time for xSlc 2sec 4sec 3sec 3sec 3sec
PGC value of xSD 59.0% 33.0% 60.5% 29.8% 38.2%

quality of xSlc exact exact exact exact exact

(c) 2× 1000× 20

Problem Number 11 12 13 14 15
fReal 3,185,590.9 3,202,766.9 3,193,243.7 3,210,199.7 3,208,589.7

f(xSD) 3,185,586.0 3,202,761.0 3,193,240.0 3,210,194.0 3,208,585.0
f(xNear) 3,185,563.0 3,202,732.0 3,193,205.0 3,210,167.0 3,208,504.0

fNS − − − − −
f(xSlc) 3,185,579.0 3,202,755.0 3,193,234.0 3,210,189.0 3,208,580.0

CPU time for fNS − − − − −
CPU time for xSlc 15sec 14sec 13sec 14sec 14sec
PGC value of xSD 41.1% 49.6% 38.1% 53.2% 48.6%

quality of xSlc exact exact exact exact exact

c© Operations Research Society of JapanJORSJ (2003) 46-2

Improved Surrogate Constraints Method 157

Table 2b Computational results for Group 2 (m× n× ki)
(a) 3× 250× 20

Problem Number 16 17 18 19 20
fReal 786,005.6 792,355.3 780,755.0 795,285.5 804,599.8

f(xSD) 785,993.0 792,339.0 780,745.0 795,274.0 804,585.0
f(xNear) 785,827.0 792,130.0 780,594.0 795,229.0 804,508.0

fNS − − − − −
f(xSlc) 785,964.0 792,310.0 780,707.0 795,242.0 804,565.0

CPU time for fNS − − − − −
CPU time for xSlc 3sec 3sec 10sec 21sec 1sec
PGC value of xSD 30.3% 36.0% 20.9% 26.4% 42.5%

quality of xSlc exact exact exact exact exact

(b) 3× 500× 20

Problem Number 21 22 23 24 25
fReal 1,571,928.4 1,575,461.8 1,576,813.6 1,588,045.7 1,592,189.7

f(xSD) 1,571,920.0 1,575,453.0 1,576,807.0 1,588,040.0 1,592,184.0
f(xNear) 1,571,878.0 1,575,405.0 1,576,731.0 1,587,929.0 1,592,123.0

fNS − − − − 1,592,158.0
f(xSlc) 1,571,899.0 1,575,441.0 1,576,784.0 1,588,019.0 1,592,157.0

CPU time for fNS − − − − 111sec
CPU time for xSlc 145sec 11sec 29sec 27sec 16sec
PGC value of xSD 28.5% 42.4% 22.4% 21.4% 17.5%

quality of xSlc exact exact exact exact exact

(c) 3× 1000× 20

Problem Number 26 27 28 29 30
fReal 3,154,705.4 3,169,554.7 3,161,112.3 3,172,623.2 3,176,050.7

f(xSD) 3,154,703.0 3,169,550.0 3,161,109.0 3,172,620.0 3,176,049.0
f(xNear) 3,154,568.0 3,169,429.0 3,161,035.0 3,172,564.0 3,175,910.0

fNS − − − − 3,176,040.0
f(xSlc) 3,154,694.0 3,169,535.0 3,161,104.0 3,172,612.0 3,176,031.0

CPU time for fNS − − − − 119
CPU time for xSlc 28sec 161sec 19sec 179sec 18sec
PGC value of xSD 21.4% 23.9% 39.6% 28.3% 8.8%-16.2%

quality of xSlc exact exact exact exact near optimal

c© Operations Research Society of JapanJORSJ (2003) 46-2

158 Y. Nakagawa

Table 3 Computational results for Group 3 (m× n× ki)
3× 1000× 20

Problem Number 1 2 3 4 5
fReal 98,627.1 98,837.3 98,780.4 98,970.4 99,181.0

f(xSD) 98,627.0 98,837.0 98,780.0 98,970.0 99,180.0
f(xNear) 98,613.0 98,820.0 98,761.0 98,969.0 99,175.0

fNS − − − − −
f(xSlc) 98,627.0 98,837.0 98,780.0 98,970.0 99,180.0

CPU time for fNS − − − − −
CPU time for xSlc 18sec 18sec 30sec 23sec 61sec
PGC value of xSD 100.0% 100.0% 100.0% 100.0% 100.0%

quality of xSlc exact exact exact exact exact

6. Conclusions

We have presented an exact method for solving the multi-dimensional nonlinear knapsack
problem. The method is an attempt to close the duality gaps produced by the surrogate
constraints methods. The computational experiments show that this attempt succeeds well.
The previously unsolved three-constraints nonlinear knapsack problems with 201000 possi-
ble combinations of solutions are solved exactly using this technique. Sometimes existing
algorithms cannot find an exact optimal solution, even in cases of problems without a du-
ality gap, because of there being too many exact optimal solutions. This difficulty has
been overcome by a thinning-out technique. The computational results also show that the
percent gap closure (PGC) proposed by Karwan, Rardin and Sarin [12] may be used as a
standard by which the difficulty of the problem [P] is measured. A hard problem for the
present method SA is not a problem with many variables and is not a problem with many
constraints, but is a problem with a wide surrogate gap.

Further research for solving the multi-dimensional nonlinear knapsack problem should
be devoted to the development of an effective method for hard problems with a large duality
gap. It is also important to develop heuristic algorithms for solving the hard problems.

Acknowledgement
The author would like to thank referees and Prof. Shuzo Yajima and Prof. Norman D.
Cook, Kansai University, and Dr. Ross James, University of Canterbury, for their valuable
comments and suggestions.

c© Operations Research Society of JapanJORSJ (2003) 46-2

Improved Surrogate Constraints Method 159

Table 4a Computational results for Group 4 (m× n× ki)
(a) 8× 20× 2

Problem Number 1 2 3 4 5
fReal 2,974.0 3,551.0 3,282.0 2,007.1 3,123.0

f(xSD) 2,934.0 3,269.0 3,104.0 1,946.0 3,062.0
f(xNear) infeasible infeasible infeasible infeasible infeasible

fNS − − − − −
f(xSlc) 2,668.0 2,932.0 3,104.0 1,654.0 3,052.0

CPU time for fNS − − − − −
CPU time for xSlc <1sec <1sec <1sec <1sec <1sec
PGC value of xSD 13.1% 45.6% 100.0% 11.4% 85.9%

quality of xSlc exact exact exact exact exact

(b) 8× 100× 2

Problem Number 6 7 8 9 10
fReal 17,097.0 15,394.0 18,098.8 16,306.0 14,869.9

f(xSD) 17,082.0 14,955.0 18,083.0 15,883.0 14,857.0
f(xNear) infeasible infeasible infeasible infeasible infeasible

fNS − − − − −
f(xSlc) 17,080.0 14,935.0 17,999.0 15,873.0 14,836.0

CPU time for fNS − − − − −
CPU time for xSlc <1sec <1sec <1sec <1sec <1sec
PGC value of xSD 88.2% 95.6% 15.8% 97.7% 38.1%

quality of xSlc exact exact exact exact exact

(c) 8× 500× 2

Problem Number 11 12 13 14 15
fReal 83,331.0 81,535.3 81,287.7 83,415.6 79,409.4

f(xSD) 83,064.0 81,534.0 81,285.0 83,411.0 79,406.0
f(xNear) infeasible infeasible infeasible infeasible infeasible

fNS − − − − −
f(xSlc) 83,056.0 81,511.0 81,265.0 83,381.0 79,388.0

CPU time for fNS − − − − −
CPU time for xSlc 2sec 3sec 3sec 9sec 3sec
PGC value of xSD 97.1% 5.3% 11.9% 13.3% 15.9%

quality of xSlc exact exact exact exact exact

c© Operations Research Society of JapanJORSJ (2003) 46-2

160 Y. Nakagawa

Table 4b Computational results for Group 4 (m× n× ki)
(a) 8× 20× 50

Problem Number 16 17 18 19 20
fReal 246,824.8 246,096.4 245,424.0 246,520.9 247,807.4

f(xSD) 246,606.0 246,057.0 244,973.0 246,476.0 247,747.0
f(xNear) infeasible infeasible infeasible infeasible infeasible

fNS − − − − −
f(xSlc) 246,543.0 246,057.0 244,898.0 246,291.0 247,577.0

CPU time for fNS − − − − −
CPU time for xSlc <1sec <1sec <1sec <1sec <1sec
PGC value of xSD 77.6% 100.0% 85.7% 19.5% 26.2%

quality of xSlc exact exact exact exact exact

(b) 8× 100× 50

Problem Number 21 22 23 24 25
fReal 1,234,050.8 1,236,572.8 1,229,004.2 1,233,810.1 1,237,837.4

f(xSD) 1,234,040.0 1,236,563.0 1,228,801.0 1,233,799.0 1,237,807.0
f(xNear) infeasible infeasible infeasible 1,232,763.0 infeasible

fNS − − − − −
f(xSlc) 1,234,017.0 1,236,520.0 1,228,718.0 1,233,761.0 1,237,676.0

CPU time for fNS − − − − −
CPU time for xSlc 1sec 1sec 4sec 1sec 10sec
PGC value of xSD 32.0% 18.6% 71.0% 22.6% 18.8%

quality of xSlc exact exact exact exact exact

(c) 8× 500× 50

Problem Number 26 27 28 29 30
fReal 6,149,388.0 6,154,322.1 6,145,452.7 6,149,597.9 6,153,333.8

f(xSD) 6,148,683.0 6,154,319.0 6,145,448.0 6,149,595.0 6,153,327.0
f(xNear) 6,134,320.0 infeasible 6,140,273.0 6,141,509.0 infeasible

fNS − − − − −
f(xSlc) 6,148,675.0 6,154,310.0 6,145,417.0 6,149,578.0 6,153,286.0

CPU time for fNS − − − − −
CPU time for xSlc 25sec 25sec 26sec 25sec 28sec
PGC value of xSD 98.9% 25.6% 13.2% 14.6% 14.2%

quality of xSlc exact exact exact exact exact

c© Operations Research Society of JapanJORSJ (2003) 46-2

Improved Surrogate Constraints Method 161

References

[1] R. D. Armstrong, D. S. Kung, P. Sinha and A. A. Zoltners: A computational study of
a multiple-choice knapsack algorithm. ACM Transactions on Mathematical Software, 9
(1983) 184-198.

[2] K. M. Bretthauer and B. Shetty: The nonlinear resource allocation problem. Operations
Research, 43 (1995) 670-683.

[3] P. C. Chu and J. E. Beasley: A genetic algorithm for the multidimensional knapsack
problem. Journal of Heuristics, 6 (1998) 63-86.

[4] M. W. Cooper: A survey of methods for pure nonlinear integer programming. Manage-
ment Science, 27 (1981) 353-361.

[5] M. E. Dyer: Calculating surrogate constraints. Mathematical Programming, 19 (1980)
255-278.

[6] M. E. Dyer, N. Kayal and J. Walker: A branch and bound algorithm for solving the
multiple-choice knapsack problem. Journal of Computational and Applied Mathematics,
11 (1984) 231-249.

[7] F. Glover: Surrogate constraints. Operations Research, 16 (1968) 741-749.

[8] Ibaraki, T: Enumerative approaches to combinatorial optimization. Annals of Opera-
tions Research, 10 (1987) 1-602.

[9] T. Ibaraki and N. Katoh: Resource allocation problems (MIT Press, Cambridge, Mass,
1988).

[10] R. J.W. James and Y. Nakagawa: Enumeration methods for repeatedly solving mul-
tidimensional knapsack sub-problems. submitted for publication in ACM Transactions
on Mathematical Software.

[11] M. H. Karwan and R. L. Radin: Surrogate dual multiplier search procedures in integer
programming. Operations Research, 32 (1984) 52-69.

[12] M. H. Karwan, R. L. Rardin, and S. Sarin: A new surrogate dual multiplier search
procedure. Naval Research Logistics, 34 (1987) 431-450.

[13] D. G. Luenberger: Quasi-convex programming. SIAM Journal Applied Mathematics,
16 (1968) 1090-1095.

[14] K. Marse and S. D. Roberts: Implementing a portable FORTRAN uniform (0,1) gen-
erator. Simulation, 41 (1983) 135-139.

[15] R. E. Marsten and T. L. Morin: A hybrid approach to discrete mathematical program-
ming. Mathematical Programming, 14 (1977) 21-40.

[16] I. Miyaji, Y. Nakagawa and K. Ohno: Decision support system for the composition of
the examination problem. European Journal of Operational Research, 80 (1995) 139-
138.

[17] T. L. Morin and R. E. Marsten: Branch-and-bound strategies for dynamic program-
ming. Operations Research, 24 (1976) 611-627.

[18] Y. Nakagawa and K. Nakashima: A heuristic method for determining optimal reliability
allocation. IEEE Transactions on Reliability, R-26 (1977) 156-161.

[19] Y. Nakagawa and Y. Hattori: Reliability optimization with multiple properties and
integer variables. IEEE Transactions on Reliability, R-28 (1979) 73-78.

[20] Y. Nakagawa and S. Miyazaki: Surrogate constraints algorithm for reliability optimiza-
tion problems with two constraints. IEEE Transactions on Reliability, R-30 (1981)
175-180.

c© Operations Research Society of JapanJORSJ (2003) 46-2

162 Y. Nakagawa

[21] Y. Nakagawa, M. Hikita and H. Kamada: Surrogate constraints algorithm for reliability
optimization problems with multiple constraints. IEEE Transactions on Reliability, R-
33 (1984) 301-305.

[22] Y. Nakagawa: A new method for discrete optimization problems. Electronics and Com-
munications in Japan, Part 3, 73 (1990) 99-106. Translated from Transactions of the
Institute of Electronics, Information and Communication Engineers, 73-A (1990) 550-
556.

[23] Y. Nakagawa: Easy C programming (Asakura Shoten, Tokyo, 1996) (in Japanese).

[24] Y. Nakagawa and A. Iwasaki: Modular approach for solving nonlinear knapsack prob-
lems. IEICE Transactions on Fundamentals, E82-A (1999) 1860-1864.

[25] Y. Nakagawa: A reinforced surrogate constraints method for separable nonlinear integer
programming. RIMS 1068, Kyoto University(1998) 194-202.

[26] R. M Nauss: The 0-1 knapsack problem with multiple choice constraints. European
Journal of Operational Research, 2 (1978) 125-131.

[27] H. Ohtagaki, Y. Nakagawa, A. Iwasaki, and H. Narihisa: Smart greedy procedure for
solving a nonlinear knapsack class of reliability optimization problems. Mathematical
and Computer Modeling, 22 (1995) 261-272.

[28] C. C. Petersen: Computational experience with variants of the Balas algorithm applied
to the selection of R&D projects. Management Science, 13 (1967) 736-750.

[29] J. B. Rosen and S. Suzuki: Construction of nonlinear programming test problems.
Communications of ACM, 27 (1965) 113.

[30] P. Sinha and A. Zoltners: The multiple-choice knapsack problem. Operations Research,
27 (1978) 125-131.

c© Operations Research Society of JapanJORSJ (2003) 46-2

Improved Surrogate Constraints Method 163

Appendix

Table 5 The Petersen problem
i ci a1i a2i a3i a4i a5i

1 560 40 16 38 8 38
2 1125 91 92 39 71 52
3 300 10 41 32 30 30
4 620 30 16 71 60 42
5 2100 160 150 80 200 170
6 431 20 23 26 18 9
7 68 3 4 5 6 7
8 328 12 18 40 30 20
9 47 3 6 8 4 0
10 122 18 0 12 8 3
11 322 9 12 30 31 21
12 196 25 8 15 6 4
13 41 1 2 0 3 1
14 25 1 1 1 0 2
15 425 10 0 23 18 14
16 4260 280 200 100 60 310
17 416 10 20 0 21 8
18 115 8 6 20 4 4
19 82 1 2 3 0 6
20 22 1 1 0 2 1
21 631 49 70 40 32 18
22 132 8 9 6 15 15
23 420 21 22 8 31 38
24 86 6 4 0 2 10
25 42 1 1 6 2 4

i ci a1i a2i a3i a4i a5i

26 103 5 5 4 7 8
27 215 10 10 22 8 6
28 81 8 6 4 2 0
29 91 2 4 6 8 0
30 26 1 0 1 0 3
31 49 0 4 5 2 0
32 420 10 12 14 8 10
33 316 42 8 8 6 6
34 72 6 4 2 7 1
35 71 4 3 8 1 3
36 49 8 0 0 0 0
37 108 0 10 20 0 3
38 116 10 0 0 20 5
39 90 1 6 0 8 4
40 738 40 28 6 14 0
41 1811 86 93 12 20 30
42 430 11 9 6 2 12
43 3060 120 30 80 40 16
44 215 8 22 13 6 18
45 58 3 0 6 1 3
46 296 32 36 22 14 16
47 620 28 45 14 20 22
48 418 13 13 0 12 30
49 47 2 2 1 0 4
50 81 4 2 2 1 0

Yuji Nakagawa
Faculty of Informatics
Kansai University
2-1-1 Ryouzenji-Cho, Takatsuki-City
Osaka 569-1095 Japan
E-mail: nakagawa@res.kutc.kansai-u.ac.jp

c© Operations Research Society of JapanJORSJ (2003) 46-2

