96 research outputs found

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    OPTIMIZATION OF RAILWAY TRANSPORTATION HAZMATS AND REGULAR COMMODITIES

    Get PDF
    Transportation of dangerous goods has been receiving more attention in the realm of academic and scientific research during the last few decades as countries have been increasingly becoming industrialized throughout the world, thereby making Hazmats an integral part of our life style. However, the number of scholarly articles in this field is not as many as those of other areas in SCM. Considering the low-probability-and-high-consequence (LPHC) essence of transportation of Hazmats, on the one hand, and immense volume of shipments accounting for more than hundred tons in North America and Europe, on the other, we can safely state that the number of scholarly articles and dissertations have not been proportional to the significance of the subject of interest. On this ground, we conducted our research to contribute towards further developing the domain of Hazmats transportation, and sustainable supply chain management (SSCM), in general terms. Transportation of Hazmats, from logistical standpoint, may include all modes of transport via air, marine, road and rail, as well as intermodal transportation systems. Although road shipment is predominant in most of the literature, railway transportation of Hazmats has proven to be a potentially significant means of transporting dangerous goods with respect to both economies of scale and risk of transportation; these factors, have not just given rise to more thoroughly investigation of intermodal transportation of Hazmats using road and rail networks, but has encouraged the competition between rail and road companies which may indeed have some inherent advantages compared to the other medium due to their infrastructural and technological backgrounds. Truck shipment has ostensibly proven to be providing more flexibility; trains, per contra, provide more reliability in terms of transport risk for conveying Hazmats in bulks. In this thesis, in consonance with the aforementioned motivation, we provide an introduction into the hazardous commodities shipment through rail network in the first chapter of the thesis. Providing relevant statistics on the volume of Hazmat goods, number of accidents, rate of incidents, and rate of fatalities and injuries due to the incidents involving Hazmats, will shed light onto the significance of the topic under study. As well, we review the most pertinent articles while putting more emphasis on the state-of-the-art papers, in chapter two. Following the discussion in chapter 3 and looking at the problem from carrier company’s perspective, a mixed integer quadratically constraint problem (MIQCP) is developed which seeks for the minimization of transportation cost under a set of constraints including those associating with Hazmats. Due to the complexity of the problem, the risk function has been piecewise linearized using a set of auxiliary variables, thereby resulting in an MIP problem. Further, considering the interests of both carrier companies and regulatory agencies, which are minimization of cost and risk, respectively, a multiobjective MINLP model is developed, which has been reduced to an MILP through piecewise linearization of the risk term in the objective function. For both single-objective and multiobjective formulations, model variants with bifurcated and nonbifurcated flows have been presented. Then, in chapter 4, we carry out experiments considering two main cases where the first case presents smaller instances of the problem and the second case focuses on a larger instance of the problem. Eventually, in chapter five, we conclude the dissertation with a summary of the overall discussion as well as presenting some comments on avenues of future work

    An Analysis of Some Algorithms and Heuristics for Multiobjective Graph Search

    Get PDF
    Muchos problemas reales requieren examinar un número exponencial de alternativas para encontrar la elección óptima. A este tipo de problemas se les llama de optimización combinatoria. Además, en problemas reales normalmente se evalúan múltiples magnitudes que presentan conflicto entre ellas. Cuando se optimizan múltiples obje-tivos simultáneamente, generalmente no existe un valor óptimo que satisfaga al mismo tiempo los requisitos para todos los criterios. Solucionar estos problemas combinatorios multiobjetivo deriva comúnmente en un gran conjunto de soluciones Pareto-óptimas, que definen los balances óptimos entre los objetivos considerados. En esta tesis se considera uno de los problemas multiobjetivo más recurrentes: la búsqueda de caminos más cortos en un grafo, teniendo en cuenta múltiples objetivos al mismo tiempo. Se pueden señalar muchas aplicaciones prácticas de la búsqueda multiobjetivo en diferentes dominios: enrutamiento en redes multimedia (Clímaco et al., 2003), programación de satélites (Gabrel & Vanderpooten, 2002), problemas de transporte (Pallottino & Scutellà, 1998), enrutamiento en redes de ferrocarril (Müller-Hannemann & Weihe, 2006), planificación de rutas en redes de carreteras (Jozefowiez et al., 2008), vigilancia con robots (delle Fave et al., 2009) o planificación independiente del dominio (Refanidis & Vlahavas, 2003). La planificación de rutas multiobjetivo sobre mapas de carretera realistas ha sido considerada como un escenario de aplicación potencial para los algoritmos y heurísticos multiobjetivo considerados en esta tesis. El transporte de materias peligrosas (Erkut et al., 2007), otro problema de enrutamiento multiobjetivo relacionado, ha sido también considerado como un escenario de aplicación potencial interesante. Los métodos de optimización de un solo criterio son bien conocidos y han sido ampliamente estudiados. La Búsqueda Heurística permite la reducción de los requisitos de espacio y tiempo de estos métodos, explotando el uso de estimaciones de la distancia real al objetivo. Los problemas multiobjetivo son bastante más complejos que sus equivalentes de un solo objetivo y requieren métodos específicos. Éstos, van desde técnicas de solución exactas a otras aproximadas, que incluyen los métodos metaheurísticos aproximados comúnmente encontrados en la literatura. Esta tesis se ocupa de algoritmos exactos primero-el-mejor y, en particular, del uso de información heurística para mejorar su rendimiento. Esta tesis contribuye análisis tanto formales como empíricos de algoritmos y heurísticos para búsqueda multiobjetivo. La caracterización formal de estos algoritmos es importante para el campo. Sin embargo, la evaluación empírica es también de gran importancia para la aplicación real de estos métodos. Se han utilizado diversas clases de problemas bien conocidos para probar su rendimiento, incluyendo escenarios realistas como los descritos más arriba. Los resultados de esta tesis proporcionan una mejor comprensión de qué métodos de los disponibles sonmejores en situaciones prácticas. Se presentan explicaciones formales y empíricas acerca de su comportamiento. Se muestra que la búsqueda heurística reduce considerablemente los requisitos de espacio y tiempo en la mayoría de las ocasiones. En particular, se presentan los primeros resultados sistemáticos mostrando las ventajas de la aplicación de heurísticos multiobjetivo precalculados. Esta tesis también aporta un método mejorado para el precálculo de los heurísticos, y explora la conveniencia de heurísticos precalculados más informados.Many real problems require the examination of an exponential number of alternatives in order to find the best choice. They are the so-called combinatorial optimization problems. Besides, real problems usually involve the consideration of several conflicting magnitudes. When multiple objectives must be simultaneously optimized, there is generally not an optimal value satisfying the requirements for all the criteria at the same time. Solving these multiobjective combinatorial problems commonly results in a large set of Pareto-optimal solutions, which define the optimal tradeoffs between the objectives under consideration. One of most recurrent multiobjective problems is considered in this thesis: the search for shortest paths in a graph, taking into account several objectives at the same time. Many practical applications of multiobjective search in different domains can be pointed out: routing in multimedia networks (Clímaco et al., 2003), satellite scheduling (Gabrel & Vanderpooten, 2002), transportation problems (Pallottino & Scutellà, 1998), routing in railway networks (Müller-Hannemann & Weihe, 2006), route planning in road maps (Jozefowiez et al., 2008), robot surveillance (delle Fave et al., 2009) or domain independent planning (Refanidis & Vlahavas, 2003). Multiobjective route planning over realistic road maps has been considered as a potential application scenario for the multiobjective algorithms and heuristics considered in this thesis. Hazardous material transportation (Erkut et al., 2007), another related multiobjective routing problem, has also been considered as an interesting potential application scenario. Single criterion shortest path methods are well known and have been widely studied. Heuristic Search allows the reduction of the space and time requirements of these methods, exploiting estimates of the actual distance to the goal. Multiobjective problems are much more complex than their single-objective counterparts, and require specific methods. These range from exact solution techniques to approximate ones, including the metaheuristic approximate methods usually found in the literature. This thesis is concerned with exact best-first algorithms, and particularly, with the use of heuristic information to improve their performance. This thesis contributes both formal and empirical analysis of algorithms and heuristics for multiobjective search. The formal characterization of algorithms is important for the field. However, empirical evaluation is also of great importance for the real application of these methods. Several well known classes of problems have been used to test their performance, including some realistic scenarios as described above. The results of this thesis provide a better understanding of which of the available methods are better in practical situations. Formal and empirical explanations of their behaviour are presented. Heuristic search is shown to reduce considerably space and time requirements in most situations. In particular, the first systematic results showing the advantages of the application of precalculated multiobjective heuristics are presented. The thesis also contributes an improved method for heuristic precalculation, and explores the convenience of more informed precalculated heuristics.This work is partially funded by / Este trabajo está financiado por: Consejería de Economía, Innovación, Ciencia y Empresa. Junta de Andalucía (España) Referencia: P07-TIC-0301

    An Information Based Routing Model for Hazardous Material Route Selection Problem

    Get PDF
    oai:iser.sisengr.org:article/2In this paper, we address some key research questions concerning the alternative routing policy of hazardous materials in real time using stochastic dynamic networks based on real life situations. The scenario that we address in this paper involves the use of sophisticated communication tools to provide information on the current condition of the optimal path and incorporate them in our optimization model to generate alternative routes for hazmat vehicles. We address the issues of designing a framework and requirements for an adaptive routing system. To overcome system instability and information overloading, a feeback based routing policy within the framework has been developed. We show the implementation of the framework and disucss the potential benefits of our approach with the help of numerical experiments based on a real hazmat transportation network

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    Hazardous Materials Transportation: a Literature Review and an Annotated Bibliography

    Get PDF
    The hazardous materials transportation poses risks to life, health, property, and the environment due to the possibility of an unintentional release. We present a bibliographic survey on this argument paying particular attention to the road transportation. We attempt to encompass both theoretical and application oriented works. Research on this topic is spread over the broad spectrum of computer science and the literature has an operations research and quantitative risk assessment focus. The models present in the literature vary from simple risk equations to set of differential equations. In discussing the literature, we present and compare the underlying assumptions, the model specifications and the derived results. We use the previous perspectives to critically cluster the papers in the literature into a classification scheme
    • …
    corecore