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Abstract: In this paper, we address some key research questions concerning the alternative routing policy of hazardous 
materials in real time using stochastic dynamic networks based on real life situations. The scenario that we address in this paper 
involves the use of sophisticated communication tools to provide information on the current condition of the optimal path and 
incorporate them in our optimization model to generate alternative routes for hazmat vehicles. We address the issues of 
designing a framework and requirements for an adaptive routing system. To overcome system instability and information 
overloading, a feeback based routing policy within the framework has been developed. We show the implementation of the 
framework and disucss the potential benefits of our approach with the help of numerical experiments based on a real hazmat 
transportation network.  
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1. Problem Background 
 

1.1  Motivation 
 
Suppose we have a truck carrying hazardous materials from an origin location to a destination and we want to 

determine the best routing policy for the truck with the intent of minimizing the risk of an accident. We assume that we have a 
model that determines an optimal routing policy in the form of the next best destination to visit when the truck arrives at a 
particular location at a certain time of the day (Desai & Lim, 2012). This routing policy is handed to the truck driver in the form 
of instructions and he follows them to reach the destination. This process of generating the optimal routes beforehand is often 
termed as “a priori route planning” where we assume that the information on the routes is up-to-date. A major disadvantage of 
the a priori route planning process is that it does not have the ability to regenerate the routes after they are planned. 

However, it can happen that the conditions on the planned route suddenly become unfavorable to drive while the truck 
is en route. These changes in the optimal route could have occurred due to severe weather conditions, an accident, traffic 
congestion, or construction work. The conditions of the routes may have changed due to several reasons such as severe 
thunderstorm, hailstorm, snowstorm, explosion on route, heavy traffic congestion, on-going road maintenance, conventions, 
concerts or closure of a link due to construction. In such a situation, we should be able to provide the truck driver with the 
renewed set of instructions for reaching the destination. In this paper, we will address the problem of re-routing the trucks based 
on the most recent information available to us. We will also address the components required to establish such a framework and 
discuss their interaction to provide the re-routing instructions in an efficient manner. 

The sudden changes in routes are referred to as Real-Time Events (RTE) (Beroggi & Wallace, 1995). Such events can 
be broadly classified into two categories: temporary delay and permanent delay. A temporary delay on a link may be defined as 
a closure of the link for a duration of a few hours and usually results from bad weather in a city, accident clearance or road 
maintenance. A permanent delay can be defined as a delay that results in closure of a link for more than a day and is usually a 
consequence of construction work or damaged link by some accident or natural calamity. It is quite clear that the occurrence of 
these events will affect the trip in several ways: a delay in shipment, increased chances of an accident (in case of hazmats) and 
poor performance. If a system that provides complete information of all these events at the time of route planning exists, this 
problem would have been re-solved to a large extent. However, the dynamic nature of the problem makes it very difficult to 
capture the occurrence of all such events on a network beforehand. In most routing problems, the driving directions generated 
from models is an open-loop system, i.e., routing policies do not take into account any real-time events. Therefore, we need a 
closed-loop system that incorporates these events into our optimization models and provides feedback as driving instructions to 
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drivers in real-time. We define the process of using real-time information to generate adaptive routing policies as Information 
Based Routing. 

 
 

   
 

Figure  1: An Example of using sophisticated communication devices for hazmat routing 

1.2  Description 
 

We describe the real-time routing problem with the help of  Figure 1 . A truck carrying hazmats is traversing on an 
intermediate link *),( Pji ∈  where *P  is the optimal path determined a priori. The truck driver receives information via 

sophisticated communication devices that further link(s) *),( Pkj ∈  per se is permanently closed or may incur severe hours 

of travel delay. The truck is then forced to choose link *),( Plj ∉ . Note that, we assume that a model from Desai & Lim, 2012 

is able to determine *P  and the delayed or closed links in the network will henceforth be referred to as broken links. Such a 
closure of any link or travel delays can be attributed to several real life situations discussed in earlier section. 

Currently, the hazmat vehicles (or truck carriers generally) make use of Automatic Vehicle Locators (AVL) to monitor 
the progress of the trip. AVL has the ability to provide the location of a truck, but it does not have the ability to provide 
rerouting instructions (Beroggi & Wallace, 1995). In circumstances where links start operating in a few hours, the truck driver 
will have to wait or choose any other feasible path towards the destination. However, in case there is permanent damage to the 
link, any route towards the destination will be chosen. Any feasible path chosen to complete the journey will lead to the 
selection of a sub-optimal path which can be avoided by generating feedback based routes. Moreover, the AVL in this case 
would only help the carrier company track its progress on the sub-optimal path. Therefore, there exists a need for a feedback 
based routing system that is able to provide instructions on the new routes to approach destinations. In  Section 2 , we propose 
a framework that can be used as a test-bed to solve information based routing problems.  
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1.3  Literature Review 
  
Over three decades, researchers have presented interesting perspectives on the problem of routing hazmat trucks with 

minimum risk. The transport risk associated with hazmats in literature can be categorized as: (1) expected population at risk, (2) 
incident probability, (3) emergency response capabilities of a route, and (4) the travel time. In many articles, the routing of 
hazmat vehicles was viewed as a problem of minimizing the risk with multiple objectives ( (Abkowitz & Cheng, 1988), 
(Glickman, 1991), (Jin & Batta, 1997), and (Kara, Erkut, & Verter, 2003)). The early years of this study maintained a steady 
focus on how to model the transport risk. Risk and cost are often used as the two main objectives in modeling the routing 
problem ( (Batta & Chiu, 1988), (Erkut & Verter, 1998), (Glickman, 1991), (Glickman & Rosenfield, 1984), (Jin, Batta, & 
Karwan, 1996), and (List & Mirchandani, 1991)). Another research work studied specific hazmat routing problems to show that 
the safest routes differ with the type of hazmat being transported (Ashtakala & Eno, 1996). Some of the investigations consider 
minimizing the expected risk of the first incident (Sivakumar, Batta, & Karwan, 1995) and suspension of shipments after a 
threshold number of accidents occur (Jin & Batta, 1997). Further, heuristic approaches were proposed for solving the route 
selection problem with a time dependent population nature ( (List, Mirchandani, Turnquist, & Zografos, 1991) and (Nozick, 
List, & Turnquist, 1997)). A discrete fractional programming model and a branch and bound approach was used to solve the 
hazmat routing problem (HRP) (Sherali, Brizendine, Glickman, & Subramanian, 1997). They focused on minimizing the risk of 
low probability-high consequence incidents given that an accident has occurred. Their investigation did not include the varying 
population at different times of the day. Under the non-order preserving criteria, the problem of transporting hazardous 
materials as a multiple objective (transport cost and risk to population) formulation (Nembhard & White, 1997). A dynamic 
programming approach was used to generate a solution. The heuristic methods were integrated with the geographical 
information systems (GIS) to solve the hazmat routing plan ( (Patel & Horowitz, 1994), (Weigkritch & Fedra, 1995), and 
(Zografos & Androustopoulos, 2004)). The hazmat vehicle routing problem was also considered under special criteria such as 
insurance costs, in presence of weather systems, and social equity concerns ( (Akgun, Parekh, Batta, & Rump, 2007), (Gopalan, 
Kolluri, Batta, & Karwan, 1990), and (Verter & Erkut, 1997)). A Markov Decision Process approach for solving the multiple 
objective hazmat route selection problem (Lim & Desai, 2010). In a more recent study, they compared the effectiveness of 
multi-variate statistical methods to predict the expected consequence of low probability-high consequence hazmat events 
(Desai & Lim, 2010). 

In relation to the a priori path planning, the vehicle routing problem was solved considering a stochastic 
non-stationary network with terminal costs (Bander & White, 2002). They show that the performance of their algorithm AO* 
with lower bounds is significantly improved when compared with the dynamic programming approach. Various methods were 
proposed for reducing the state space of a non-stationary stochastic shortest path problems with real-time traffic information 
(Kim, Lewis, & White, 2005). The problem of routing hazmats in a stochastic dynamic environment was solved using 
stochastic dynamic prorgramming (Desai & Lim, 2012). This work used three conditioning techniques (a mixed use of 
pre-processing and bounds) to the stochastic dynamic programming to gain a significant computational advantage over 
stochastic dynamic programming. 

Overall, the problem of routing hazardous materials has been studied extensively by taking into account various 
realistic perspectives. Most research articles we encountered have addressed the problem in the perspective of a priori path 
planning. In this paper, we offer a realistic view of information based routing the hazmat vehicles in stochastic dynamic 
networks and discuss the components and their interaction to establishing a framework that provides a re-routing policy to the 
drivers in the fastest possible manner. We also observe and address some key design issues that revolve around the computation 
time and reducing the burden on the framework. 

 
 

2. Framework for Information Based Routing 
  
Several components are required in order to design a routing system that adapts the optimal routes based on route 

conditions. A system that generates routes in real-time requires synergy of several sub-systems. Figure 2 shows the flow of 
information for such an information based routing framework. The very first step is to gather and store the current driving 
condition information on all the links in the current network on a remote server. In the next step, we have a mechanism to decide 
whether the current driving conditions will have a significant impact on travel time due to traffic, accident, local event, or 
construction. If the changes are not significantly affecting our current routing policy, we maintain our current optimal route. We 
trigger our next mechanism when the changes are significant. This mechanism determines whether the current changes affect 
our optimal routing policy for the driver. If the current changes affect the policy, the most recent information on expected 
delays on links are shared with the optimization engine. In the last step, we consider the recent information on links and the 
current position of the truck to trigger the optimizer to re-generate a dynamic optimal routing policy. 
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Figure 2: Flowchart showing logic of Information Based Routing 
 

  
Based on our logical flowchart in Figure 2 , we propose three sub-systems to design a required framework. The 

proposed framework for real-time routing system is shown in Figure 3. The first sub-system is a web server that is able to 
capture real-time information on the route conditions throughout the road network under consideration. A salient characteristic 
of this web server is that it updates and maintains the most recent information on links in the network at a desired periodic 
interval. The web server has two major databases and include current conditions of the network and driving instructions for the 
truck. This web server is also referred to as a remote server. The second sub-system of the framework involves 
filtering/webposting information. This filtering/webposting system retrieves updated information on links from the web server 
via the internet. 
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Figure  3: Framework for Information Based Routing using Web Server 
   
 

The information update would be a list of arcs where driving conditions are unfavorable. The information would also 
include the expected delay on affected links. This filtering system determines whether the current changes in the links affect our 
planned optimal path. If there are any changes in the system, this filtering system would send updated information on expected 
delays on links to the third sub-system. However, if there are no changes on our planned path, the third component is not 
triggered. The third sub-system is the re-optimization toolbox usually triggered by the filtering component. The 
re-optimization toolbox will consider the most recent information on links and generate a new set of instructions for the driver. 
The new instructions are sent to the filtering/webposting component. The new instructions are sent to the web server where the 
driving instructions database is updated. A major advantage of a real-time web server is that it can be accessed by several 
interested parties at the same time. 

 
2.1 Model Re-optimization Tool-box 
 

The model we intend to use in the re-optimization toolbox is used by Desai & Lim (2012) for routing vehicles in a 
stochastic dynamic network. We also utilize their pre-processing technique to expedite the solution process for re-optimizing 
the vehicle routes. Consider a directed network ),(= AND  where N  is the set of all nodes and A  is the set of all arcs in 
the network. Let O  be the origin location of hazardous materials and Γ  be the set of destination nodes such that N∈Γ,O  
and ∅Γ∩ =O . We define the network as a set of successors, j  for each node i  such that there exists an arc A∈),( ji . 
The directed network that we investigate in this problem has a time-dependent nature with several probabilities associated with 
it. We will refer to this network as a stochastic dynamic network. For our problem, travel time has a time dependent 
consequence denoted by ),,,( ji tjtic . It is defined as the travel time required to travel from node i  at time it  to reach node 

j  at time jt , where ji tt < . The time-dependent consequences are assumed to be non-negative. There are two types of 
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probabilities associated with the network. First, the probability of safe arrival, ),|( jijps . It is defined as the probability of 
safely arriving at node j  given that the current location is node i  and the driver chooses node j  as the next destination. 
The second probability, ),,|( jtitp ij , is defined as the probability of arrival at node j  at time jt  given that the current 

time at which the truck departs node i  is it , ji tt < . The probability ),,|( jtitp ij  equals 0 if ij tt ≤  or Ttt ij +>  for 

a finite T . This means that the truck cannot reach the next destination backward in time. We define the expected consequence 
of traversing from node i  at time it  to node j  as ),,( jtic i . The expected cost of safely arriving at a node is obtained by 

),,,(),,|(),|(=),,( jiij
jtsi tjticjtitpjijpjtic ∑ .  

We introduce a term ),( itiπ known as the routing policy for node i  at time it ,∀ i N∈ , and ∀ t T∈ . A policy 

),( itiπ is a means to instruct the driver about the next best node to be visited once the vehicle arrives at any location at a 

specified time. It is also termed as Deterministic Markov Policy. Every policy ),( itiπ  is usually evaluated by its expected 

value denoted by ),( itiV π . For a specified origin O  and a departure time ot , the total expected cost of any policy π is 

),( otOvπ .It can be mathematically expressed as )}()),(,,({=),( 1

0=,0 kikik
k

kiti tctiticEtOV +∑ − πππ , where π

itiE , is an 

expectation operator that depends on the use of policy π  given the initial state tStO ∈),( 0 , )( ktc  could be the cost 

incurred at the end of the trip (depends on time kt , refered as terminal cost (Bander & White, 2002)) and k  is the number of 

edges that construct a route from O  to Γ . 
 

2.2 Elements of Stochastic Dynamming Programming Model   
 

The problem makes a decision (to choose the next best node) at every time-expanded node ),( iti  N∈∀i  and 

Tt∈∀ . This stage is often known as decision epoch. The overall state (search) space of the problem is denoted as tS . The 

state space for the problem considered is }},,,{{ 10 Ttt ×N  and T  is the time window. The action space for the problem 

is to find the next best node j  given a current state of the problem which is ),( iti . The rewards incurred for the actions we 

take in each decision epoch at a given state are )}.,(),,|(),|(),,({=),( jij
jtsii tjVjtitpjijpjtictiV ∑+  Transition 

probabilities involved in the model are ),,|( jtitp ij  and probability of the safe arrival of the vehicle, ),|( jijps . 

The objective is to find a set of actions that result in a routing policy, ),(*
itiπ , such that 

)},(),,|(),|(),,({=),( **
jij

jtsii tjVjtitpjijpjticargminti ∑+π , where ),(*
itiV  is the value of optimal policy 

),(*
itiπ  that is determined by Equation (1) .  

 
)}.,(),,|(),|(),,({=),( **

jij

jt
sii tjVjtitpjijpjticmintiV ∑+  (1) 

 
 This equation is known as the optimality equation that is an important component for solving the problem using stochastic 
dynamic programming. Furthermore, we define ),(* tV Γ  = 0 as the boundary condition. In other words, the trip terminates at 
the destination Γ  at any time t  and the truck does not accrue any further consequences. Further, we claim that there exists a 
unique optimal routing policy for this stochastic dynamic programming formulation due to finite search space of the problem 
(Puterman, 1994). The optimal routing policy implies that the optimality equation is satisfied by every node i  at any given 
time it . 
Proposition 2.1 shows the benefit of using this framework over an open-loop driving policy. 
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Proposition 2.1  In a stochastic dynamic network, the original values of the optimal policy for a re-rerouting point will always 
be less than or equal to the revised values of an optimal policy. We claim that ),(*

ioriginal tiV  + Expected  Delay  

),(*
irevised tiV≥ .  

 
Proof. It is important in a real time situation for the framwork to be able to decide whether the truck needs to re-route or not. We 
can define the value of the optimal policy for every node ),( iti  as ),(),(*

iioriginal tiVtiV π≤  for any other routing policy 

π . In the worst case scenario, we can say that ),(=),(*
iioriginal tiVtiV π . If we substitute this in our equation of claim we can 

easily say that ),(),(*
iirevised tiVtiV π≤ . Also, in the worst case the value of expected delay will be 0. Hence, our claim is true 

for any case. 
 

Although, this conceptual framework seems very robust we are more likely to encounter several real-time issues 
regarding its stability. We will discuss these concerns in detail in the next section and try to overcome them to some extent. 

 
 

3. Stability Concerns 
 

From the system flowchart it is easy to see that for the duration of the trip this system will continuously perform two 
tasks. Its first task is constant exchange information and interaction of several sub-systems. The second task is re-computing the 
new routes in case of significant changes on the optimal path. Due to the simultaneous occurrence of these tasks, the system will 
be overloaded with constant data flow between components, continuous re-computation of the routes and will eventually 
become unstable. This phenomenon is commonly observed in Enterprise Resource Planning (ERP) systems where customer or 
supplier orders are constantly updated in the system databases. For example, suppose the ERP system has a re-ordering point 
set such that it places orders to suppliers if its inventory falls below a point. If there are several orders that are received in a day 
such that this re-ordering point is hit several times, it will constantly re-order the material. This automatic updating of orders 
will generate several orders in a day which may lead to higher ordering costs and system instability. The strategy that is chosen 
to re-order the materials is the selection of a desired time frame to accumulate orders and re-order them at a fixed time period.  

In our case, a heavy exchange of information will take place if it is decided that the database updates information every 
x  minutes. Therefore, we choose a similar strategy of accumulating desired information until the moment we start 

re-computing routing strategies. Let us assume that the weather condition in a particular city is very unfavorable and the 
inbound and outbound links are experiencing delays. The database will send/receive information every x  minutes. This 
means significant changes will be detected every x  minutes. These changes will trigger our re-optimization toolbox every x  
minutes and generate a re-optimization policy. According to our current system, the newly generated policy will be sent to the 
driver every x  minutes. There are two issues that may arise. First, depending on the current location of the truck, network size 
and time interval chosen, the time required to re-optimize will vary. And due to the stochastic dynamic nature of the problem it 
may take longer than x  minutes to generate an optimal policy ( (Bander & White, 2002) and (Desai & Lim, 2012)). This will 
result in a lag and will put a heavy burden on computational resources of the optimization toolbox. Second, the driver will find 
this constantly changing information very confusing and irrelevant. The only instant a truck driver will be waiting for 
instructions is when he arrives at a node and he has to make a decision among available alternatives. Therefore, we need to 
accumulate the best information on links until a particular time and then execute re-optimization such that its instructions reach 
the driver only when he reaches a node or just before he arrives at the node. 

 
3.1 Approach for Overcoming System Instability 
 
We need a very effective procedure that not only helps overcome this drawback by reducing the burden on system resources but 
also provides instructions of the new policy with minimum possible wait at re-routing nodes. We demonstrate a step wise 
procedure that can be used to overcome this defect (See Figure 4 ). 
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Figure  4: Illustration for Unstable Information based system 

   
  
At the starting point, the driver will have an initial optimal routing policy about the next best nodes to visit. The time 

required to obtain this policy is recorded. Let us assume that it took 30 minutes to obtain the optimal policy and the database has 
the capability to update information every 15 minutes. The model shows that 1-2-4-6-8 is the optimal path to reach destination 
node 8. Suppose we start the truck at t  = 0 hours from node 1. At time t  = 2, we receive information that link (6,8) is having 
an expected delay of 5 hours. Based on available information, the earliest time the truck can reach node 2 is t  = 3. According 
to our current framework, if the time taken to optimize the routes was 0.5 hours, we run re-optimization when we receive 
updates. In this case, the optimization will keep generating same policy every 30 minutes. The current system would encounter 
exchanging information and triggering optimization two times before the truck could reach the next node. Suppose the route 
generation takes 15 minutes, then the driver would receive the same information four times in a period of one hour. However, in 
order to avoid repetitive calculations, the best strategy to run a re-optimization can be at t  = 3.0 - 0.5 = 2.5 hours so that the 
model will receive the most recent updated information and will be able to provide the best policy in real-time when it is most 
desired. Given that the truck is en route, re-optimizing the routes should take the optimization model run time into 
consideration. Therefore, a sub-routine is developed in our framework that considers optimization run model time to generate 
an update route before the truck reaches the next node in the travel path. The steps of this sub-routine for determining the 
appropriate time to run re-optimization are formalized below: 

    
1. Run Optimization Model to generate initial policy.  
2. Record POLICY and time required to optimize optt . 

3. Run optimization model at time, runt  = )( jtearliest  - optt  - SS  where )( jtearliest  is the earliest time when the 

truck can reach node j  given the starting point was node i .  
4. Update optt  and POLICY and send it to driver.  

5. Verify whether there are any changes in links involving recent policy at time jt  = jt  - runt  where jt  is the time a 

truck reaches node j .  
a. If yes, re-run optimization model and ask driver to wait till optj tt +  and,  

b. wait for the new POLICY and update optt . 
c. If no, send the best POLICY to driver.  

 
In the above sub-routine, we are considering a worst case available time to re-optimize by using the earliest arrival time to reach 
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next node and optreopt tt ≤ . Thus, in most cases we will be able to provide real-time instructions with least possible wait. We 
will not only reduce major computation burden on system resources but also improve system stability and performance. Our 
current focus will be developing framework to address real time routing. The next section will provide details on experiment 
set-up for the problem and provide results on performance of the system. 

 
 

4. Results 
 

Our main objective of this paper is to provide a framework for information based routing and demonstrate its 
usefulness. The supplementary objective of our paper is to develop a prototype model that can be used as a test-bed to develop 
a real-time system. The script for accessing the data on a remote web server is developed using JAVA. The other components of 
the framework such as the filtering system is developed using MATLAB 7.0. This component verifies whether the changes in 
link conditions are affecting our planned path. We use the pre-processing approach for time bounded models explained in Desai 
& Lim, 2012 as a re-optimization toolbox. A MATLAB program provides the re-optimized routing policy in the form of a 
database file. The web-posting module is developed using an interface of JAVA and MATLAB. The web-posting module 
(JAVA code) retrieves new driving instructions from MATLAB and updates the data on a remote web server. This updated 
instructions are sent to the truck driver through sophisticated communication devices as Global Positioning System, GPS. In the 
next subsection, we provide details on the experiment set-up and our ideas on measuring the overall performance. 
 
4.1 Experiment Setup 
 

In order to demonstrate the effectiveness of our framework we define and include several parameters for our 
experiments. We use the 47-node state of Texas major roadways network as a test network for our framework. As mentioned 
earlier, a delay on a link are categorized broadly into two categories: (1) temporary and (2) permanent delays. In our 
experiments, we further classify temporary delays into two categories, mild and severe delays. A mild delay can be correlated to 
a scenario of an accident or severe thunderstorms on links that may last from few minutes to 12 hours. This parameter for 
experiment is obtained by generating a random number between zero and 12. A link may face severe delays due to construction 
and maintenance of highways. The expected delay on these links is generated by random number between 12 - 120 hours. For 
any permanent damages to links a very high penalty is imposed on the link. This penalty will lead the model to choose any other 
link among available alternatives. Moreover, to generate a scenario of an accident we need to supply few parameters to the 
model. We generate a random number on how many links are damaged at a time. We assume that 2 - 10% of links are damaged 
for each run. The next question is which links are damaged at the start of a run. A random number between 0 and    | A | (| A |= 
number of arcs in the network) is generated and assigned to the arc number in the arc list. Further, if the links are damaged we 
assume that 70% of the times the expected delay is mild; whereas for about 25% of the time expected delay can be severe. Only 
5% of the time the links can experience permanent damage. The details obtained from the random number generators are 
supplied to the filtering component which determines whether optimization toolbox is to be triggered or not. 

 
4.2 Numerical Experiments 

 
We run test experiments and for every run there are some induced damaged links to simulate the real-time scenario. 

We record the numerical experiments when there is a significant change in the optimal path and run optimization models to 
generate the new policies along with the time taken to re-optimize. We measure the effectiveness of this real-time system by 
presenting a comparison of expected delays (hour) in presence and absence of the real-time routing system. As a supplementary 
exercise we keep a track of time required to re-optimize (second) in case a significant change on an optimal path is detected by 
the filtering component. The setup chosen for running experiments is HML scenario as described in Desai & Lim (2012) with 

the day divided into 1 - hour intervals. We record the values of revised and original optimal values of ),(*
itiV  where ),( iti  

is the closest re-rerouting point. Note that ),(*
itiV  in this case indicates the expected travel time (minute). We ran several 

experiments by keeping the re-routing points first closer to the origin location and gradually shift the re-routing points closer to 
the destination. The results are tabulated in Table 1. 
 
  

http://iser.sisengr.org/�


Industrial and Systems Engineering Review, 1(1), 2013 ISSN (Online): XXXX-XXXX 
desai & lim 

ISER © 2013 10 

 http://iser.sisengr.org 

Table 1: Effectiveness of Information Based Routing Problems 
  

 No. of Links 
*P∈    ),(*

ioriginal tiV    ),(*
irevised tiV    reoptt    Expected Delay 

2  739.34   1133.2   20.203   79  
3  488.68   97.925   9.625   69 
2  875.45   882.94   21.391   9 
4  488.68   638.3   8.781   58 
1  488.68   746.55   10.359   7 
1  488.68   490.66   9.438   4 
1  520.99   522.86   3.5   10  
2  160.95   164.07   3.187   15 
2  177.69   181.01   3.656   8  
1  177.76   375.02   3.234   2 
1  115.7   120.06   2.485   175 
2  115.7   1088.7   2.343   12 
1  498.83   509.59   1.891   12  
2  545.03   823.76   1.609   18 
1  65.2   125.94   1.172   9 
2  355.33   756.09   1.672   4 

 
 

 The first inference from  Table 1 is that the 
),(*

ioriginal tiV
 is always less than ),(*

itiV . This result is consistent with  

Theorem 2.1 . It shows that the optimal values for the nodes ),( iti  under consideration have changed. The changes in optimal 
path have triggered the optimization toolbox to re-generate the values of new policy. The second inference from the results is 

that the 
),(),( **

irevisedioriginal tiVlayExpectedDetiV ≥+
. From this result, it re-confirms the fact that the presence of a 

closed loop routing policy is always beneficial over an open-loop routing policy. A third observation is regarding the time to 
re-optimize. As the truck moves closer to the destination or farther away from the source node, the time required to re-optimize 
reduces gradually. 

 
 

5.  Discussion 
 

In this paper we identifiedDealing with a real time routing problemconcern for hazmats, . Wwe discussed at 
length the difference between a open-loop policy and feedback based system along with its advantages and 
disadvantages. We proposed aA three component framework was proposed to address the problem of real-time 
routing. We discussed the functionality of each component and its interaction with other sub-systems to provide the 
result. We identified a real time concern for the system stability and information overloading. To overcome this 
issue, we incorporate a sub-routine was developed and incorporated into the framework that supports system 
stability. In our experiments, we show how the presence of a feedback based routing is beneficial over an 
open-policy. These systems will benefit a hazmat carrier and expedite the delivery of products, will improve 
on-time delivery performance. As a result, , will reduce the driver fatigue can be reduced, which wil , and will result 
in improved safety for hazmats. 
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