352 research outputs found

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    Variable-Angle Phase-Shifted PWM for Multilevel Three-Cell Cascaded H-bridge Converters

    Get PDF
    Multilevel cascaded H-bridge converters have become a mature technology for applications where high-power medium ac voltages are required. Normal operation of multilevel cascaded H-bridge converters assumes that all power cells have the same dc voltage, and each power cell generates the same voltage averaged over a sampling period using a conventional phase-shifted pulse width modulation (PWM) technique. However, this modulation method does not achieve good results under unbalanced operation per H-bridge in the power converter, which may happen in grid-connected applications such as photovoltaic or battery energy storage systems. In the paper, a simplified mathematical analysis of the phase-shifted PWM technique is presented. In addition, a modification of this conventional modulation method using variable shift angles between the power cells is introduced. This modification leads to the elimination of harmonic distortion of low-order harmonics due to the switching (triangular carrier frequency and its multiples) even under unbalanced operational conditions. The analysis is particularized for a three-cell cascaded H-bridge converter, and experimental results are presented to demonstrate the good performance of the proposed modulation method

    Direct control of D-STATCOM based on 23-level cascaded multilevel inverter using harmonics elimination pulse width modulation

    Get PDF
    The distribution static synchronous compensator (D-STATCOM) is primarily used for solving power quality problems. Normally, the phase-shifted pulse width modulation (PS-PWM) switching is employed in conjunction with the direct control of the D-STATCOM. However, the PS-PWM exhibits high switching losses. To alleviate this problem, a direct control scheme for D-STATCOM based on the harmonic elimination PWM (HEPWM) switching is developed. Due to the difficulty in solving the equations for the HEPWM angles, no work is reported on the direct control for a multilevel voltage source inverter (MVSI) D-STATCOM with more than 15-levels. Thus, the main contribution of the work is the application of HEPWM for 23-level cascaded MVSI using a wide modulation index (MI) range (i.e. 5.40 – 8.15 p.u). The main motivation to utilize the high number of level is to allow for the output voltage of the D-STATCOM to be sufficiently high, thus avoiding the use of step-up transformer. Furthermore, the achieved MI keeps the total harmonic distortion of the MVSI output voltage below the IEEE 519 Standard (5%) over the entire operating range. The eleven HEPWM switching angles were computed using an optimization technique, known as the differential evolution. Since the angles were computed offline, they were retrieved from a look-up table whenever the output voltage of the MVSI was to be constructed. The HEPWM-based direct control was benchmarked against the popular PS-PWM using ± 6.5MVAr/11kV D-STATCOM modelled in MATLAB-Simulink and PLECS software. For the same switching frequency, the proposed HEPWM switching exhibited superior harmonic spectra, hence had lower losses. Furthermore, the size of the series coupling inductor can be reduced to at least half. Dynamically, the steady state value of the reactive current was reached in less than one mains cycle when a transition from the full inductive to full capacitive modes was imposed. In addition, the proposed D-STATCOM controller mitigated the swell and sag problems in less than one cycle

    Modulated model based predictive control with switcher of redundant states for a three-phase cascade H-bridge multilevel STATCOM

    Get PDF
    Due to problems caused by variable switching frequency a modulated model based predictive control was proposed for different topologies and their applications. However, for cascade H-bridge multilevel converters, there is another problem, the imbalance in the dc-link voltages. This paper proposes extend the modulated model based predictive control to a cascade H-bridge 7-level STATCOM, further including a switcher of redundant states to solve the imbalance voltage issue. Simulation results show improvements in terms of mean squared error, total harmonic distortion and balance voltages in the dc-links.CONACYT – Consejo Nacional de Ciencia y Tecnologí

    Model predictive control of a microgrid with energy-stored quasi-Z-source cascaded H-bridge multilevel inverter and PV systems

    Get PDF
    This paper presents a new energy management system (EMS) based on model predictive control (MPC) for a microgrid with solar photovoltaic (PV) power plants and a quasi-Z-source cascaded H-bridge multilevel inverter that integrates an energy storage system (ES-qZS-CHBMLI). The system comprises three modules, each with a PV power plant, quasi-impedance network, battery energy storage system (BESS), and voltage source inverter (VSI). Traditional EMS methods focus on distributing the power among the BESSs to balance their state of charge (SOC), operating in charging or discharging mode. The proposed MPC-EMS carries out a multi-objective control for an ES-qZS-CHBMLI topology, which allows an optimized BESS power distribution while meeting the system operator requirements. It prioritizes the charge of the BESS with the lowest SOC and the discharge of the BESS with the highest SOC. Thus, both modes can coexist simultaneously, while ensuring decoupled power control. The MPC-EMS proposed herein is compared with a proportional sharing algorithm based on SOC (SOC-EMS) that pursues the same objectives. The simulation results show an improvement in the control of the power delivered to the grid. The Integral Time Absolute Error, ITAE, achieved with the MPC-EMS for the active and reactive power is 20 % and 4 %, respectively, lower than that obtained with the SOC-EMS. A 1,3 % higher charge for the BESS with the lowest SOC is also registered. Furthermore, an experimental setup based on an OPAL RT-4510 unit and a dSPACE MicroLabBox prototyping unit is implemented to validate the simulation result

    Contrôle avancé des convertisseurs de puissance multi-niveaux pour applications sur réseaux faibles

    Get PDF
    139 p.El advenimiento progresivo de las microrredes que incorporan fuentes de energía renovable está dando lugar a un nuevo paradigma de distribución de la electricidad. Este nuevo planteamiento sirve de interfaz entre consumidores no controlados y fuentes intermitentes, implicando desafíos adicionales en materia de conversión, almacenamiento y gestión de la energía.Los convertidores de potencia se adaptan en consecuencia, en particular con el desarrollo de los convertidores multinivel, que integrando los mismos componentes que sus predecesores y un control más complejo, soportan potencias más altas y aseguran una mejor calidad de la energía.Debido al carácter híbrido de los convertidores de potencia, su control se divide comúnmente en dos partes: por un lado, el control de los objetivos continuos vinculados a la función principal de los convertidores de servir de interfaz, y, por otro, el control discreto de los interruptores de potencia, conocido con el nombre de modulación.En este contexto, las exigencias crecientes en términos de eficiencia, fiabilidad, versatilidad y rendimiento hacen necesaria una mejora de la inteligencia de la estructura de control. Para cumplir conestos requisitos, se propone tratar mediante un solo controlador ambas problemáticas, la vinculada a la función de interfaz de los convertidores y la relacionada con su naturaleza discreta. Esta decisión implica incorporar la no-linealidad de los convertidores de potencia en el controlador, lo que equivale a suprimir el bloque de modulación, que constituye la solución tradicional para linealizar el comportamiento interno de los convertidores. Se adopta un planteamiento de Control Predictivo basado en Modelos (MPC) para abordar la no-linealidad y la gran diversidad de objetivos de control que acompañan a los convertidores de potencia.El algoritmo desarrollado combina teoría de grafos ¿con algoritmos de Dijkstra, A* y otros¿ con un modelo de estado especial para sistemas conmutados al objeto de proporcionar una herramienta potente y universal, capaz de manipular simultáneamente el carácter cuantificado de los interruptores de potencia y el continuo de las entidades interconectadas por el convertidor. Se han obtenido resultados sobre la estabilidad y la controlabilidad de los modelos de estado conmutados aplicados al caso particular de los convertidores de potencia.El controlador así desarrollado y descrito se ha examinado en simulación frente a varios casos y aplicaciones: inversor aislado o conectado a la red, rectificador y convertidor bidireccional. Se ha empleado la misma estructura de control para tres topologías de convertidor multinivel: Neutral-Point Clamped, Flying Capacitor y Cascaded H-Bridge. Al objeto de adaptarse a los cambios citados, lo único que varía en el controlador es el modelo del convertidor adoptado para la predicción, así como la función de coste, que traduce los requisitos de control en un problema de optimización a solucionar por el algoritmo. Un cambio de topología resulta en una modificación del modelo interno, sin impacto sobre la función de coste, mientras que variaciones de esta función son suficientes para adaptarse a la aplicación.Los resultados muestran que el controlador logra actuar directamente sobre los interruptores de potencia en función de diversos requisitos. Los desempeños de la estructura de control propuesta son similares a los de las numerosas estructuras dedicadas a cada uno de los casos estudiados, excepto en el caso de operación en modo rectificador, en el que la versatilidad y rapidez de control obtenidos son particularmente interesantes.En definitiva, el controlador planteado puede emplearse para diferentes aplicaciones, topologías, objetivos y limitaciones. Si bien las estructuras de control lineal tradicionales han de modificarse, a menudo en profundidad, para afrontar diferentes modos de operación o requisitos de control, dichas alteraciones no tienen ningún impacto sobre la arquitectura del controlador MPC obtenido, lo que pone de manifiesto su versatilidad, así como su universalidad, también demostrada por su capacidad para adaptarse a diferentes convertidores de potencia sin modificaciones importantes. Finalmente, la solución propuesta elude por completo la complejidad de la modulación, ofreciendo simplicidad y flexibilidad al diseño del control

    Optimization of switching losses and capacitor voltage ripple using model predictive control of a cascaded H-bridge multi-level StatCom

    Get PDF
    This paper further develops a Model Predictive Control (MPC) scheme which is able to exploit the large number of redundant switching states available in a multi-level H-bridge StatCom (H-StatCom). The new sections of the scheme provide optimised methods to trade off the harmonic performance with converter switching losses and capacitor voltage ripple. Varying the pulse placement within the modulation scheme and modifying the heuristic model of the voltage balancing characteristics allows the MPC scheme to achieve superior performance to that of the industry standard phase shifted carrier modulation technique. The effects of capacitor voltage ripple on the lifetime of the capacitors is also investigated. It is shown that the MPC scheme can reduce capacitor voltage ripple and increase capacitor lifetime. Simulation and experimental results are presented that confirm the correct operation of the control and modulation strategies

    Model Predictive Control for Power Converters and Drives: Advances and Trends

    Get PDF
    Model predictive control (MPC) is a very attractive solution for controlling power electronic converters. The aim of this paper is to present and discuss the latest developments in MPC for power converters and drives, describing the current state of this control strategy and analyzing the new trends and challenges it presents when applied to power electronic systems. The paper revisits the operating principle of MPC and identifies three key elements in the MPC strategies, namely the prediction model, the cost function, and the optimization algorithm. This paper summarizes the most recent research concerning these elements, providing details about the different solutions proposed by the academic and industrial communitiesMinisterio de Economia y Competitividad TEC2016-78430-RConsejeria de Innovacion, Ciencia y Empresa (Junta de Andalucia) P11-TIC-707
    corecore