20 research outputs found

    Two-Dimensional Heteroscedastic Feature Extraction Technique for Face Recognition

    Get PDF
    One limitation of vector-based LDA and its matrix-based extension is that they cannot deal with heteroscedastic data. In this paper, we present a novel two-dimensional feature extraction technique for face recognition which is capable of handling the heteroscedastic data in the dataset. The technique is a general form of two-dimensional linear discriminant analysis. It generalizes the interclass scatter matrix of two-dimensional LDA by applying the Chernoff distance as a measure of separation of every pair of clusters with the same index in different classes. By employing the new distance, our method can capture the discriminatory information presented in the difference of covariance matrices of different clusters in the datasets while preserving the computational simplicity of eigenvalue-based techniques. So our approach is a proper technique for high-dimensional applications such as face recognition. Experimental results on CMU-PIE, AR and AT & T face databases demonstrate the effectiveness of our method in term of classification accuracy

    Sensor Fusion and Process Monitoring for Ultrasonic Welding of Lithium-ion Batteries.

    Full text link
    Ultrasonic metal welding is used for joining lithium-ion batteries of electric vehicles. The quality of the joints is essential to the performance of the entire battery pack. Hence, the ultrasonic welding process that creates the joints must be equipped with online sensing and real-time process monitoring systems. This would help ensure the process to be operated under the normal condition and quickly address quality-related issues. For this purpose, this dissertation develops methods in process monitoring and fault diagnosis using online sensing signals for ultrasonic metal welding. The first part of this dissertation develops a monitoring algorithm that targets near-zero misdetection by integrating univariate control charts and a multivariate control chart using the Mahalanobis distance. The proposed algorithm is capable of monitoring non-normal multivariate observations with adjustable control limits to achieve a near-zero misdetection rate while keeping a low false alarm rate. The proposed algorithm proves to be effective in achieving near-zero misdetection in process monitoring in ultrasonic welding processes. The second part of the dissertation develops a wavelet-based profile monitoring method that is capable of making decisions within a welding cycle and guiding real-time process adjustments. The proposed within-cycle monitoring technique integrates real-time monitoring and within-cycle control opportunity for defect prevention. The optimal decision point for achieving the most benefit in defect prevention is determined through the formulation of an optimization problem. The effectiveness of the proposed method is validated and demonstrated by simulations and case studies. The third part of this dissertation develops a method for effective monitoring and diagnosis of multi-sensor heterogeneous profile data based on multilinear discriminant analysis. The proposed method operates directly on the multi-stream profiles and then extracts uncorrelated discriminative features through tensor-to-vector projection, and thus preserving the interrelationship of different sensors. The extracted features are then fed into classifiers to detect faulty operations and recognize fault types. The research presented in this dissertation can be applied to general discrete cyclic manufacturing processes that have online sensing and control capabilities. The results of this dissertation are also applicable or expandable to mission-critical applications when improving product quality and preventing defects are of high interests.PhDIndustrial and Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113405/1/graceguo_1.pd

    Prediction of crystal packing and biological protein-protein interactions with Linear Dimensionality Reduction-SVD

    Get PDF
    Prediction and discrimination of Crystal Packing interactions and Biological interactions is a particular problem that has drawn the attention of the research community in recent years. In this thesis, we have studied the prediction problem of these two types of interactions as well as obligate and nonobligate interactions. We are proposing new features such as Number Based Amino Acid Composition and Area Based Amino Acid Composition to predict different types of interactions more efficiently. We have measured our newly proposed features\u27 contribution to the classification by comparing them with already proposed model. Along with we are also proposing an efficient multi-stage classification strategy to successfully predict crystal packing, non-obligate and obligate interactions. In this thesis we are also proposing a modified singularity problem free linear dimensionality reduction\u27s linear transformation matrix maximization criterion. We have also applied our proposed LDR-Singular Value Decompositions modified (LDR-SVD) to other protein-protein interaction problems

    Discriminant feature pursuit: from statistical learning to informative learning.

    Get PDF
    Lin Dahua.Thesis (M.Phil.)--Chinese University of Hong Kong, 2006.Includes bibliographical references (leaves 233-250).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.iiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- The Problem We are Facing --- p.1Chapter 1.2 --- Generative vs. Discriminative Models --- p.2Chapter 1.3 --- Statistical Feature Extraction: Success and Challenge --- p.3Chapter 1.4 --- Overview of Our Works --- p.5Chapter 1.4.1 --- New Linear Discriminant Methods: Generalized LDA Formulation and Performance-Driven Sub space Learning --- p.5Chapter 1.4.2 --- Coupled Learning Models: Coupled Space Learning and Inter Modality Recognition --- p.6Chapter 1.4.3 --- Informative Learning Approaches: Conditional Infomax Learning and Information Chan- nel Model --- p.6Chapter 1.5 --- Organization of the Thesis --- p.8Chapter I --- History and Background --- p.10Chapter 2 --- Statistical Pattern Recognition --- p.11Chapter 2.1 --- Patterns and Classifiers --- p.11Chapter 2.2 --- Bayes Theory --- p.12Chapter 2.3 --- Statistical Modeling --- p.14Chapter 2.3.1 --- Maximum Likelihood Estimation --- p.14Chapter 2.3.2 --- Gaussian Model --- p.15Chapter 2.3.3 --- Expectation-Maximization --- p.17Chapter 2.3.4 --- Finite Mixture Model --- p.18Chapter 2.3.5 --- A Nonparametric Technique: Parzen Windows --- p.21Chapter 3 --- Statistical Learning Theory --- p.24Chapter 3.1 --- Formulation of Learning Model --- p.24Chapter 3.1.1 --- Learning: Functional Estimation Model --- p.24Chapter 3.1.2 --- Representative Learning Problems --- p.25Chapter 3.1.3 --- Empirical Risk Minimization --- p.26Chapter 3.2 --- Consistency and Convergence of Learning --- p.27Chapter 3.2.1 --- Concept of Consistency --- p.27Chapter 3.2.2 --- The Key Theorem of Learning Theory --- p.28Chapter 3.2.3 --- VC Entropy --- p.29Chapter 3.2.4 --- Bounds on Convergence --- p.30Chapter 3.2.5 --- VC Dimension --- p.35Chapter 4 --- History of Statistical Feature Extraction --- p.38Chapter 4.1 --- Linear Feature Extraction --- p.38Chapter 4.1.1 --- Principal Component Analysis (PCA) --- p.38Chapter 4.1.2 --- Linear Discriminant Analysis (LDA) --- p.41Chapter 4.1.3 --- Other Linear Feature Extraction Methods --- p.46Chapter 4.1.4 --- Comparison of Different Methods --- p.48Chapter 4.2 --- Enhanced Models --- p.49Chapter 4.2.1 --- Stochastic Discrimination and Random Subspace --- p.49Chapter 4.2.2 --- Hierarchical Feature Extraction --- p.51Chapter 4.2.3 --- Multilinear Analysis and Tensor-based Representation --- p.52Chapter 4.3 --- Nonlinear Feature Extraction --- p.54Chapter 4.3.1 --- Kernelization --- p.54Chapter 4.3.2 --- Dimension reduction by Manifold Embedding --- p.56Chapter 5 --- Related Works in Feature Extraction --- p.59Chapter 5.1 --- Dimension Reduction --- p.59Chapter 5.1.1 --- Feature Selection --- p.60Chapter 5.1.2 --- Feature Extraction --- p.60Chapter 5.2 --- Kernel Learning --- p.61Chapter 5.2.1 --- Basic Concepts of Kernel --- p.61Chapter 5.2.2 --- The Reproducing Kernel Map --- p.62Chapter 5.2.3 --- The Mercer Kernel Map --- p.64Chapter 5.2.4 --- The Empirical Kernel Map --- p.65Chapter 5.2.5 --- Kernel Trick and Kernelized Feature Extraction --- p.66Chapter 5.3 --- Subspace Analysis --- p.68Chapter 5.3.1 --- Basis and Subspace --- p.68Chapter 5.3.2 --- Orthogonal Projection --- p.69Chapter 5.3.3 --- Orthonormal Basis --- p.70Chapter 5.3.4 --- Subspace Decomposition --- p.70Chapter 5.4 --- Principal Component Analysis --- p.73Chapter 5.4.1 --- PCA Formulation --- p.73Chapter 5.4.2 --- Solution to PCA --- p.75Chapter 5.4.3 --- Energy Structure of PCA --- p.76Chapter 5.4.4 --- Probabilistic Principal Component Analysis --- p.78Chapter 5.4.5 --- Kernel Principal Component Analysis --- p.81Chapter 5.5 --- Independent Component Analysis --- p.83Chapter 5.5.1 --- ICA Formulation --- p.83Chapter 5.5.2 --- Measurement of Statistical Independence --- p.84Chapter 5.6 --- Linear Discriminant Analysis --- p.85Chapter 5.6.1 --- Fisher's Linear Discriminant Analysis --- p.85Chapter 5.6.2 --- Improved Algorithms for Small Sample Size Problem . --- p.89Chapter 5.6.3 --- Kernel Discriminant Analysis --- p.92Chapter II --- Improvement in Linear Discriminant Analysis --- p.100Chapter 6 --- Generalized LDA --- p.101Chapter 6.1 --- Regularized LDA --- p.101Chapter 6.1.1 --- Generalized LDA Implementation Procedure --- p.101Chapter 6.1.2 --- Optimal Nonsingular Approximation --- p.103Chapter 6.1.3 --- Regularized LDA algorithm --- p.104Chapter 6.2 --- A Statistical View: When is LDA optimal? --- p.105Chapter 6.2.1 --- Two-class Gaussian Case --- p.106Chapter 6.2.2 --- Multi-class Cases --- p.107Chapter 6.3 --- Generalized LDA Formulation --- p.108Chapter 6.3.1 --- Mathematical Preparation --- p.108Chapter 6.3.2 --- Generalized Formulation --- p.110Chapter 7 --- Dynamic Feedback Generalized LDA --- p.112Chapter 7.1 --- Basic Principle --- p.112Chapter 7.2 --- Dynamic Feedback Framework --- p.113Chapter 7.2.1 --- Initialization: K-Nearest Construction --- p.113Chapter 7.2.2 --- Dynamic Procedure --- p.115Chapter 7.3 --- Experiments --- p.115Chapter 7.3.1 --- Performance in Training Stage --- p.116Chapter 7.3.2 --- Performance on Testing set --- p.118Chapter 8 --- Performance-Driven Subspace Learning --- p.119Chapter 8.1 --- Motivation and Principle --- p.119Chapter 8.2 --- Performance-Based Criteria --- p.121Chapter 8.2.1 --- The Verification Problem and Generalized Average Margin --- p.122Chapter 8.2.2 --- Performance Driven Criteria based on Generalized Average Margin --- p.123Chapter 8.3 --- Optimal Subspace Pursuit --- p.125Chapter 8.3.1 --- Optimal threshold --- p.125Chapter 8.3.2 --- Optimal projection matrix --- p.125Chapter 8.3.3 --- Overall procedure --- p.129Chapter 8.3.4 --- Discussion of the Algorithm --- p.129Chapter 8.4 --- Optimal Classifier Fusion --- p.130Chapter 8.5 --- Experiments --- p.131Chapter 8.5.1 --- Performance Measurement --- p.131Chapter 8.5.2 --- Experiment Setting --- p.131Chapter 8.5.3 --- Experiment Results --- p.133Chapter 8.5.4 --- Discussion --- p.139Chapter III --- Coupled Learning of Feature Transforms --- p.140Chapter 9 --- Coupled Space Learning --- p.141Chapter 9.1 --- Introduction --- p.142Chapter 9.1.1 --- What is Image Style Transform --- p.142Chapter 9.1.2 --- Overview of our Framework --- p.143Chapter 9.2 --- Coupled Space Learning --- p.143Chapter 9.2.1 --- Framework of Coupled Modelling --- p.143Chapter 9.2.2 --- Correlative Component Analysis --- p.145Chapter 9.2.3 --- Coupled Bidirectional Transform --- p.148Chapter 9.2.4 --- Procedure of Coupled Space Learning --- p.151Chapter 9.3 --- Generalization to Mixture Model --- p.152Chapter 9.3.1 --- Coupled Gaussian Mixture Model --- p.152Chapter 9.3.2 --- Optimization by EM Algorithm --- p.152Chapter 9.4 --- Integrated Framework for Image Style Transform --- p.154Chapter 9.5 --- Experiments --- p.156Chapter 9.5.1 --- Face Super-resolution --- p.156Chapter 9.5.2 --- Portrait Style Transforms --- p.157Chapter 10 --- Inter-Modality Recognition --- p.162Chapter 10.1 --- Introduction to the Inter-Modality Recognition Problem . . . --- p.163Chapter 10.1.1 --- What is Inter-Modality Recognition --- p.163Chapter 10.1.2 --- Overview of Our Feature Extraction Framework . . . . --- p.163Chapter 10.2 --- Common Discriminant Feature Extraction --- p.165Chapter 10.2.1 --- Formulation of the Learning Problem --- p.165Chapter 10.2.2 --- Matrix-Form of the Objective --- p.168Chapter 10.2.3 --- Solving the Linear Transforms --- p.169Chapter 10.3 --- Kernelized Common Discriminant Feature Extraction --- p.170Chapter 10.4 --- Multi-Mode Framework --- p.172Chapter 10.4.1 --- Multi-Mode Formulation --- p.172Chapter 10.4.2 --- Optimization Scheme --- p.174Chapter 10.5 --- Experiments --- p.176Chapter 10.5.1 --- Experiment Settings --- p.176Chapter 10.5.2 --- Experiment Results --- p.177Chapter IV --- A New Perspective: Informative Learning --- p.180Chapter 11 --- Toward Information Theory --- p.181Chapter 11.1 --- Entropy and Mutual Information --- p.181Chapter 11.1.1 --- Entropy --- p.182Chapter 11.1.2 --- Relative Entropy (Kullback Leibler Divergence) --- p.184Chapter 11.2 --- Mutual Information --- p.184Chapter 11.2.1 --- Definition of Mutual Information --- p.184Chapter 11.2.2 --- Chain rules --- p.186Chapter 11.2.3 --- Information in Data Processing --- p.188Chapter 11.3 --- Differential Entropy --- p.189Chapter 11.3.1 --- Differential Entropy of Continuous Random Variable . --- p.189Chapter 11.3.2 --- Mutual Information of Continuous Random Variable . --- p.190Chapter 12 --- Conditional Infomax Learning --- p.191Chapter 12.1 --- An Overview --- p.192Chapter 12.2 --- Conditional Informative Feature Extraction --- p.193Chapter 12.2.1 --- Problem Formulation and Features --- p.193Chapter 12.2.2 --- The Information Maximization Principle --- p.194Chapter 12.2.3 --- The Information Decomposition and the Conditional Objective --- p.195Chapter 12.3 --- The Efficient Optimization --- p.197Chapter 12.3.1 --- Discrete Approximation Based on AEP --- p.197Chapter 12.3.2 --- Analysis of Terms and Their Derivatives --- p.198Chapter 12.3.3 --- Local Active Region Method --- p.200Chapter 12.4 --- Bayesian Feature Fusion with Sparse Prior --- p.201Chapter 12.5 --- The Integrated Framework for Feature Learning --- p.202Chapter 12.6 --- Experiments --- p.203Chapter 12.6.1 --- A Toy Problem --- p.203Chapter 12.6.2 --- Face Recognition --- p.204Chapter 13 --- Channel-based Maximum Effective Information --- p.209Chapter 13.1 --- Motivation and Overview --- p.209Chapter 13.2 --- Maximizing Effective Information --- p.211Chapter 13.2.1 --- Relation between Mutual Information and Classification --- p.211Chapter 13.2.2 --- Linear Projection and Metric --- p.212Chapter 13.2.3 --- Channel Model and Effective Information --- p.213Chapter 13.2.4 --- Parzen Window Approximation --- p.216Chapter 13.3 --- Parameter Optimization on Grassmann Manifold --- p.217Chapter 13.3.1 --- Grassmann Manifold --- p.217Chapter 13.3.2 --- Conjugate Gradient Optimization on Grassmann Manifold --- p.219Chapter 13.3.3 --- Computation of Gradient --- p.221Chapter 13.4 --- Experiments --- p.222Chapter 13.4.1 --- A Toy Problem --- p.222Chapter 13.4.2 --- Face Recognition --- p.223Chapter 14 --- Conclusion --- p.23

    EEG-Based Brain-Computer Interfacing via Motor-Imagery: Practical Implementation and Feature Analysis

    Get PDF
    The human brain is the most intriguing and complex signal processing unit ever known to us. A unique characteristic of our brain is its plasticity property, i.e., the ability of neurons to modify their behavior (structure and functionality) in response to environmental diversity. The plasticity property of brain has motivated design of brain-computer interfaces (BCI) to develop an alternative form of communication channel between brain signals and the external world. The BCI systems have several therapeutic applications of significant importance including but not limited to rehabilitation/ assistive systems, rehabilitation robotics, and neuro-prosthesis control. Despite recent advancements in BCIs, such systems are still far from being reliably incorporated within humanmachine inference networks. In this regard, the thesis focuses on Motor Imagery (MI)-based BCI systems with the objective of tackling some key challenges observed in existing solutions. The MI is defined as a cognitive process in which a person imagines performing a movement without peripheral (muscle) activation. At one hand, the thesis focuses on feature extraction, which is one of the most crucial steps for the development of an effective BCI system. In this regard, the thesis proposes a subject-specific filtering framework, referred to as the regularized double-band Bayesian (R-B2B) spectral filtering. The proposed R-B2B framework couples three main feature extraction categories, namely filter-bank solutions, regularized techniques, and optimized Bayesian mechanisms to enhance the overall classification accuracy of the BCI. To further evaluate the effects of deploying optimized subject-specific spectra-spatial filters, it is vital to examine and investigate different aspects of data collection and in particular, effects of the stimuli provided to subjects to trigger MI tasks. The second main initiative of the thesis is to propose an element of experimental design dealing with MI-based BCI systems. In this regard, we have implemented an EEG-based BCI system and constructed a benchmark dataset associated with 10 healthy subjects performing actual movement and MI tasks. To investigate effects of stimulus on the overall achievable performance, four different protocols are designed and implemented via introduction of visual and voice stimuli. Finally, the work investigates effects of adaptive trimming of EEG epochs resulting in an adaptive and subject-specific solution

    Glosarium Matematika

    Get PDF

    Glosarium Matematika

    Get PDF
    273 p.; 24 cm

    Multivariate Analysis in Management, Engineering and the Sciences

    Get PDF
    Recently statistical knowledge has become an important requirement and occupies a prominent position in the exercise of various professions. In the real world, the processes have a large volume of data and are naturally multivariate and as such, require a proper treatment. For these conditions it is difficult or practically impossible to use methods of univariate statistics. The wide application of multivariate techniques and the need to spread them more fully in the academic and the business justify the creation of this book. The objective is to demonstrate interdisciplinary applications to identify patterns, trends, association sand dependencies, in the areas of Management, Engineering and Sciences. The book is addressed to both practicing professionals and researchers in the field

    Sparse machine learning models in bioinformatics

    Get PDF
    The meaning of parsimony is twofold in machine learning: either the structure or (and) the parameter of a model can be sparse. Sparse models have many strengths. First, sparsity is an important regularization principle to reduce model complexity and therefore avoid overfitting. Second, in many fields, for example bioinformatics, many high-dimensional data may be generated by a very few number of hidden factors, thus it is more reasonable to use a proper sparse model than a dense model. Third, a sparse model is often easy to interpret. In this dissertation, we investigate the sparse machine learning models and their applications in high-dimensional biological data analysis. We focus our research on five types of sparse models as follows. First, sparse representation is a parsimonious principle that a sample can be approximated by a sparse linear combination of basis vectors. We explore existing sparse representation models and propose our own sparse representation methods for high dimensional biological data analysis. We derive different sparse representation models from a Bayesian perspective. Two generic dictionary learning frameworks are proposed. Also, kernel and supervised dictionary learning approaches are devised. Furthermore, we propose fast active-set and decomposition methods for the optimization of sparse coding models. Second, gene-sample-time data are promising in clinical study, but challenging in computation. We propose sparse tensor decomposition methods and kernel methods for the dimensionality reduction and classification of such data. As the extensions of matrix factorization, tensor decomposition techniques can reduce the dimensionality of the gene-sample-time data dramatically, and the kernel methods can run very efficiently on such data. Third, we explore two sparse regularized linear models for multi-class problems in bioinformatics. Our first method is called the nearest-border classification technique for data with many classes. Our second method is a hierarchical model. It can simultaneously select features and classify samples. Our experiment, on breast tumor subtyping, shows that this model outperforms the one-versus-all strategy in some cases. Fourth, we propose to use spectral clustering approaches for clustering microarray time-series data. The approaches are based on two transformations that have been recently introduced, especially for gene expression time-series data, namely, alignment-based and variation-based transformations. Both transformations have been devised in order to take into account temporal relationships in the data, and have been shown to increase the ability of a clustering method in detecting co-expressed genes. We investigate the performances of these transformations methods, when combined with spectral clustering on two microarray time-series datasets, and discuss their strengths and weaknesses. Our experiments on two well known real-life datasets show the superiority of the alignment-based over the variation-based transformation for finding meaningful groups of co-expressed genes. Fifth, we propose the max-min high-order dynamic Bayesian network (MMHO-DBN) learning algorithm, in order to reconstruct time-delayed gene regulatory networks. Due to the small sample size of the training data and the power-low nature of gene regulatory networks, the structure of the network is restricted by sparsity. We also apply the qualitative probabilistic networks (QPNs) to interpret the interactions learned. Our experiments on both synthetic and real gene expression time-series data show that, MMHO-DBN can obtain better precision than some existing methods, and perform very fast. The QPN analysis can accurately predict types of influences and synergies. Additionally, since many high dimensional biological data are subject to missing values, we survey various strategies for learning models from incomplete data. We extend the existing imputation methods, originally for two-way data, to methods for gene-sample-time data. We also propose a pair-wise weighting method for computing kernel matrices from incomplete data. Computational evaluations show that both approaches work very robustly

    Dynamic Thermal Imaging for Intraoperative Monitoring of Neuronal Activity and Cortical Perfusion

    Get PDF
    Neurosurgery is a demanding medical discipline that requires a complex interplay of several neuroimaging techniques. This allows structural as well as functional information to be recovered and then visualized to the surgeon. In the case of tumor resections this approach allows more fine-grained differentiation of healthy and pathological tissue which positively influences the postoperative outcome as well as the patient's quality of life. In this work, we will discuss several approaches to establish thermal imaging as a novel neuroimaging technique to primarily visualize neural activity and perfusion state in case of ischaemic stroke. Both applications require novel methods for data-preprocessing, visualization, pattern recognition as well as regression analysis of intraoperative thermal imaging. Online multimodal integration of preoperative and intraoperative data is accomplished by a 2D-3D image registration and image fusion framework with an average accuracy of 2.46 mm. In navigated surgeries, the proposed framework generally provides all necessary tools to project intraoperative 2D imaging data onto preoperative 3D volumetric datasets like 3D MR or CT imaging. Additionally, a fast machine learning framework for the recognition of cortical NaCl rinsings will be discussed throughout this thesis. Hereby, the standardized quantification of tissue perfusion by means of an approximated heating model can be achieved. Classifying the parameters of these models yields a map of connected areas, for which we have shown that these areas correlate with the demarcation caused by an ischaemic stroke segmented in postoperative CT datasets. Finally, a semiparametric regression model has been developed for intraoperative neural activity monitoring of the somatosensory cortex by somatosensory evoked potentials. These results were correlated with neural activity of optical imaging. We found that thermal imaging yields comparable results, yet doesn't share the limitations of optical imaging. In this thesis we would like to emphasize that thermal imaging depicts a novel and valid tool for both intraoperative functional and structural neuroimaging
    corecore