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Abstract. One limitation of vector-based LDA and its matrix-based extension is
that they cannot deal with heteroscedastic data. In this paper, we present a novel

two-dimensional feature extraction technique for face recognition which is capable
of handling the heteroscedastic data in the dataset. The technique is a general form
of two-dimensional linear discriminant analysis. It generalizes the interclass scatter
matrix of two-dimensional LDA by applying the Chernoff distance as a measure
of separation of every pair of clusters with the same index in different classes. By
employing the new distance, our method can capture the discriminatory information
presented in the difference of covariance matrices of different clusters in the datasets
while preserving the computational simplicity of eigenvalue-based techniques. So
our approach is a proper technique for high-dimensional applications such as face
recognition. Experimental results on CMU-PIE, AR and AT&T face databases
demonstrate the effectiveness of our method in term of classification accuracy.

Keywords: Linear discriminant analysis, heteroscedastic LDA, dimension reduc-
tion, feature extraction, face recognition, subspace learning

1 INTRODUCTION

Recently, feature extraction for face recognition in subspace domain has attracted
growing attention. Principal component analysis (PCA) [1–3] and Linear discrimi-
nant analysis (LDA) [4–6] are two well-known methods which the former maintains
the global Euclidean structure of the data in the original high dimensional space and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics, SAS,...

https://core.ac.uk/display/267941157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


966 M. Safayani, M.T. Manzuri Shalmani

the latter preserves discriminative information between data of different classes. One
limitation of classical LDA is that it implicitly assumes that the intraclass covariance
matrices are identical. In other words, LDA ignores the discriminative information
while the covariance matrices of different classes are not identical. Hence, it cannot
deal with heteroscedastic data.

For solving this problem, different extensions of LDA have been proposed.
Campbell derived a maximum likelihood approach for estimating the parameters
of LDA with assuming that class covariances are identical and class means lie in
a low dimensional subspace [7]. Following of Campbell, Kumar and Andreou pro-
posed an iterative algorithm called Heteroscedastic Discriminant Analysis (HDA)
by dropping the assumption of equal class covariances [8]. Loog and Duin intro-
duced the Chernoff criterion for extending the LDA and employed the eigenvalues
decomposition for computing the optimal projection matrix [9]. Rueda and Herrera
proposed a linear dimension reduction which maximized the Chernoff distance in
the transformed space [10]. Das and Nenadic suggested a criterion based on an ap-
proximation of an information-theoretic measure for handling the heteroscedastic
data [11].

All the aforementioned LDA based methods and their heteroscedastic exten-
sions convert an image matrix into a vector by concatenating its rows or columns.
They do not consider the spatial information existed in the image and assume each
pixel as an independent piece of information. Therefore, these methods involve the
eigenvalue decomposition of huge matrices, which is very time-consuming. Also, the
large number of parameters and the small number of training samples lead to the
small sample size problem. Since the heteroscedastic solution considers individual
covariance matrix for each class, its computational cost is much more than LDA. In
addition, the small sample size problem is intensified in that the number of param-
eters needed to be estimated is increased. As a result, heteroscedastic extensions
of LDA cannot directly be applied in high dimensional applications such as face
recognition.

Another line of research in feature extraction is the matrix-based approaches.
In these methods, the scatter matrices are constructed from the original image ma-
trices. 2DPCA [12] and 2DLDA [13] are two well-known matrix-based algorithms
constructed based on this idea. Some other researchers applied multilinear algebra
and extended this concept to higher-order tensor data [14–17]. In general, these
approaches not only reduce the computational cost by decreasing the number of
projection parameters to be learned, but also preserve some implicit structural or
locally-spatial information among elements of the original images. They also over-
come the singularity problem of scatter matrices resulting from the high dimension-
ality of vectors.

To the best of our knowledge, in spite of particular interest in the matrix-based
approaches but few papers investigate the heteroscedastic problem of them. Re-
cently, some heteroscedastic extensions of 2DLDA have been proposed [18, 19]. In
these works, an objective function that specifies an individual covariance matrix
for each class is defined and then a numerical optimization routine is adapted for
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finding the optimal transformation. However, in Section 3, we show that these ap-
proaches cannot solve this problem completely. On the other hand, Zheng et al. have
investigated the bayes optimality conditions of Unilateral Two-Dimensional LDA
(U2DLDA) and have expressed that heteroscedastic problem exists in U2DLDA [20].
However, they have not proposed any solution for it.

In this paper, we introduce a new discriminant feature extraction technique
called Two-Dimensional Heteroscedastic Discriminant Analysis (2DHDA) which can
handle the heteroscedastic data.

In each iteration of 2DHDA, one projection direction is fixed and the samples
are projected to this projection matrix and then each column vector of the projected
image matrices are considered as a new object and the cluster-based discriminant
analysis is applied by clustering these samples according to their column indices.
Interclass scatter matrix of our approach can capture the discriminatory information
that is present in the difference of covariance matrices of different clusters in the
dataset by using the Chernoff criterion. We also express that our proposed method
is a general form of 2DLDA and reduces to it by assuming the identical covariance
matrix for each cluster in the dataset.

Experimental results on three face databases denote that our proposed method
is superior to the traditional vector-based and matrix-based approaches and their
heteroscedastic extensions in term of classification accuracy.

The remaining part of the paper is organized as follows: Heteroscedastic prob-
lem is described in Section 2. Section 3 introduces our algorithm. We report the
experimental results on the classification accuracy in Section 4. Finally, conclusions
are brought in Section 5.

2 HETEROSCEDASTIC PROBLEM

Some of the important notations used in the rest of this paper are listed in Table 1.
LDA estimates the within class covariance matrix by averaging the individual

class covariances as:

Gw =
1

N

C
∑

i=1

pcGw,i, (1)

where pi is the priori probability of ith class, N and C are the total number of
samples and classes, respectively. Gw,i, the covariance matrix of ith class, is defined
as

Gw,i =
1

ni

ni
∑

j=1

(xj − x̄i)(xj − x̄i)
T , (2)

where ni denotes the total number of samples in the ith class, xj is the jth sample
vector from the ith class and x̄i is the average vector of the samples belonging to
class i [21]. It is known that LDA is bayes optimal when the classes have normal
distribution with identical covariance matrices. Heteroscedastic extension of LDA
removes this assumption with assuming unequal covariance matrix for each class [8].
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Notation Description

N number of images in the dataset

C number of classes in the dataset

ni number of images in the ith class

l1 reduced dimensionality corresponding to the rows

l2 reduced dimensionality corresponding to the columns

pi priori probability of ith class

πi pi/(pi + pj), relative prior

t iteration number

α regularization parameter

xi ith image in vectorized representation

Xi ith image in matrix representation

r number of rows in Xi

c number of columns in Xi

L transformation matrix (left) by 2DLDA

R transformation matrix (right) by 2DLDA

Y R
i ith matrix image projected onto R transformation matrix

Y L
i ith matrix image projected onto L transformation matrix

tr(B) trace of B

yR,j
i jth column of matrix Y R

i

Gw within-class scatter matrix

Gb between-class scatter matrix

Gw,i the covariance matrix of ith class

GR
w within-class scatter matrix of right-projected image matrices

GR
b between-class scatter matrix of right-projected image matrices

GR
w,c sample covariance of right-projected image matrices of cth class

GR,j
w,c sample covariance of jth column of right-projected image of cth class

Table 1. The notations of variables in the paper.

Recently, it has been shown that one important condition for Bayes optimality
of 2DLDA is that the covariance matrices of the columns with the same index of
image matrices within each class be identical [20]. Therefore, 2DLDA cannot handle
the discriminant information that is present in the difference of covariances. In the
other word this method cannot deal with heteroscedastic data.

The objective function of 2DLDA is

(R∗, L∗) = argmax
R,L

∑C
i=1 pi‖L

T X̄iR− LT X̄R‖2
∑N

j=1 ‖L
TXjR− LT X̄cjR‖2

, (3)

where Xj ∈ ℜ(r×c) is the jth sample image matrix of resolution r× c in the dataset.
X̄i is the average matrix of the samples belonging to class i, X̄ is the average
matrix over all the training samples, and the class label of Xj is cj. There is not
a closed-form solution for Equation (3), so an iterative algorithm for finding the local
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optimal projections was proposed [13]. In each iteration, one projection direction
like R ∈ ℜ(c×l2) is assumed known, and the image samples are projected onto this
projection matrix as follows:

Y R
i = XiR, (4)

so the optimization problem in Equation (3) can be reformulated as a following
discriminant analysis:

L∗ = argmax
L

tr
(

LTGR
b L

)

tr (LTGR
wL)

, (5)

where GR
b and GR

w are the right interclass and intraclass scatter matrix, respectively
and are defined as:

GR
b =

C
∑

c=1

l2
∑

j=1

pc
(

ȳR,j
c − ȳR,j

) (

ȳR,j
c − ȳR,j

)T
, (6)

GR
w =

N
∑

i=1

l2
∑

j=1

pi

(

yR,j
i − ȳR,j

ci

)(

yR,j
i − ȳR,j

ci

)T

, (7)

where yR,j
i represents the jth column vector of the Y R

i which is the right projected
matrix from the sample matrix Xi. ȳR,j

c is defined in the same way as yR,j
i with

respect to the matrix X̄R
c , and l2 denotes the number of column vectors of matrix yRi .

It is known that, the optimization problem in Equation (5) is a special cluster-
based discriminant analysis where the column vectors of the Y R

i are considered as
the new objects with the same class label as the original sample matrix and are
clustered according to their column indices [22]. The optimal L is obtained by
solving the following generalized eigenvalue problem: GR

b L = GR
wLΛL. Similarly,

with the computed L, the GL
w and GL

w,c are computed and the optimal R is obtained
by solving another optimization problem GL

b R = GL
wRΛR.

For showing the heteroscedastic problem of 2DLDA, we reformulate Equation (7)
as follows:

GR
w =

C
∑

c=1

pcG
R
w,c, (8)

where GR
w,c, the right covariance matrix of cth class, is defined as

GR
w,c =

l2
∑

j=1

GR,j
w,c, (9)

where GR,j
w,c, the right covariance matrix of jth cluster in the cth class, is defined as

GR,j
w,c =

1

nc

nc
∑

i=1

(

yR,j
c,i − ȳR,j

c

)(

yR,j
c,i − ȳR,j

c

)T

. (10)
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As can be seen from the Equations (8) and (9), there are two plug-in estimates
for computing the GR

w . First, GR
w,c, the cth class covariance matrix, is estimated

by the average of within-cluster covariance matrices, i.e., GR,j
w,c ’s, then the intraclass

covariance is estimated using the individual class covariances.
If the clusters within each class are heteroscedastic, i.e. GR,i

w,c 6= GR,j
w,c for i 6=

j, the first estimate becomes improper. Since, in face datasets, the distribution
of clusters, i.e. columns of image with different indices, is substantially different,
so heteroscedastic problem should be addressed. The other estimation is similar
to that performing in classic LDA in term of Equation (1), i.e., estimating the
intraclass covariance matrix from the individual class sample-covariances, which
may fail due to the unequal class covariance matrices. This problem also can be
shown in computing of left covariance matrices GL

w. Therefore, we can conclude
that 2DLDA suffers from heteroscedastic problem and this problem is more serious
than vector-based LDA.
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Fig. 1. A toy example of two-class pattern classification problem

Figure 1 illustrates the heteroscedastic problem of 2DLDA with synthetic data.
The data in two dimensions, belonging to two classes shown with cross and circle, is
to be projected onto a single dimension. The cross class is generated from a Gaussian
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distribution with µ1 = (0, 0) and Σ1 =

(

1 0
0 1

)

while circle class comes from

a Gaussian with µ2 = (0, 0) and Σ2 =

(

30 0
0 1

)

. From this toy example, it can

be observed that 2DLDA cannot get the proper direction when two classes have
the same mean and different covariance matrices. Therefore, 2DLDA cannot handle
heteroscedasticity in the data, and it chooses the direction which leads to strong
class overlap. This figure also shows that our proposed method, 2DHDA, takes
account of the discriminant information in the difference of covariance matrices and
leads to a projection which gives much better class separation.
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Fig. 2. Data distributions of different columns of the images belonging to a specific person
in CMU-PIE database. Each subplot corresponds to one column index. The column
index of the left top plot is 2 and index increases in order of left top to right down

with step 2.

To get a better understanding of the heteroscedasticity in the face database, we
run a test with real dataset. Data of the test comes from the PIE face database
described in Section 4.1. We consider 65 persons each having 13 images with the
resolution of 32× 32 pixels. The columns of the images are projected onto the two
leading eigenvectors generated using 2DPCA [12] algorithm, therefore each image
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has 32 two-dimensional column vectors. Figure 2 presents that the column vectors of
the images belonging to a specific person have different distributions. Each subplot
in this figure depicts the column vectors correspond to one column index of the
images ranging from 2 to 32 with step two.

It can be observed that distinction between distributions of the data in differ-
ent subplots is very large. In other words, the distribution of various columns of
face images in a class is significantly different. In this case, the heteroscedastic
problem has to be addressed, and “plug-in” estimate in term of Equation (9) is
improper.
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Fig. 3. Each plot illustrates data samples drawn from the one of the classes of PIE face
database

For showing the heteroscedasticity in the different classes in the dataset, we
select 25 out of 65 persons in the database. Then, for each class we only consider
the column vectors with specific column index. Each subplot in Figure 3 illustrates
the data samples corresponding to one of the classes in the dataset. This figure
demonstrates that the distribution of the data with same column index in different
classes are completely different and implicitly declares that estimating the within-
class covariance matrix by averaging the within-class covariance matrix of individual
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classes is inappropriate because the large difference of covariance matrix of different
classes.

In general, these examples express that heteroscedastic problem exists in the face
dataset, and also the estimates of within-class covariance matrix in two-dimensional
LDA are not proper and degrades the performance of this method.

3 TWO-DIMENSIONAL HETEROSCEDASTIC DISCRIMINANT
ANALYSIS (2DHDA)

LDA discards the discriminative information in the difference of covariance matri-
ces, so it does not take into account the discriminative information contained in the
covariances of different classes. For solving this problem, in [23], a criterion was
defined containing the average of interclass divergences. This method considered
the variations in the covariance matrices of different classes by maximizing this cri-
terion. In [24], a dimensionality reduction for multimodal Gaussian classes with dif-
ferent covariances called Multimodal Oriented Discriminant Analysis (MODA) was
derived. In [7], a relationship between LDA and estimated parameters of a Gaus-
sian model using maximum likelihood is established. Heteroscedastic Discriminant
Analysis (HDA) was proposed in [8] by dropping the identical class covariances as-
sumption. In [9], directed distance metric was introduced and an extension of LDA
based on the Chernoff criteria was developed. In [25], a method called General
Averaged Divergence Analysis (GADA) based on the generalized Kullback-Leibler
divergence between different classes was proposed. In [10], a linear dimension re-
duction technique was presented which aims to maximize the Chernoff distance in
the transformed space, and thus increases the class separability in such a space.
In [11], a method was proposed that maximizes a criterion that belongs to the class
of probability dependence measures, and is naturally defined for multiple classes.
The criterion is based on an approximation of an information-theoretic measure and
is capable of handling heteroscedastic data.

In the previous section, it has been shown that 2DLDA has heteroscedastic
problem and this problem is different from that of LDA. The existing reported
matrix-based heteroscedastic LDA’s add 2D constraint on the traditional vector-
based Heteroscedastic LDA (HLDA) by constructing the covariance matrices using
the original image matrices [18, 19]. Similar to HLDA, they remove the restriction
that all the within-class covariance matrices are the same. Therefore, they only con-
sider the estimate in terms of Equation (8) and cannot deal with heteroscedasticity
in the columns of the image matrices which can degrade the recognition performance.
Also, they adopt only one subspace, and the disadvantage arising in this way is that
more coefficients are needed to represent an image in these methods than in HLDA.

In our approach, the column vectors of the sample matrices are clustered accord-
ing to their column indices, and the individual covariance matrix for each cluster is
specified. Then, the distance between every pair of clusters with the same index of
column in the different classes is maximized by using the Chernoff distance measure.
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Chernoff distance can be used as a measure of separability of two distributions.
the distance for normal distributions is defined as follows [26]:

Dc =
s(1− s)

2
(µ2−µ1)

T [sΣ1+(1− s)Σ2]
−1(µ2−µ1)+

1

2
ln

|sΣ1 + (1− s)Σ2|

|Σ1|s|Σ2|(1−s)
(11)

where µi and Σi are the mean vector and covariance matrix of the ith class, respec-
tively and s is a constant in the range [0, 1]. As can be observed from Equation (11),
this distance can capture differences in within-class covariance matrices and the dis-
criminatory information therein, so it can make better use of the information in
heteroscedastic data.

We start with 2DLDA objective function in two-class case and then generalized
it so that it can capture the difference in the covariances.

3.1 Two-Class Case and R ∈ ℜ(c×1)

We assume that R ∈ ℜ(c×1), the right projection matrix, contains only one eigen-
vector corresponding to the leading eigenvalue, and we also assume that GR

w = I ,
where I is the identity matrix. Therefore, in this case, regarding to Equations (4)
and (5), we have

L∗ = argmax
L

tr
(

LTGR
EL

)

tr (LTL)
, (12)

where GR
E =

(

ȳR1 − ȳR2
) (

ȳR1 − ȳR2
)T

. This criterion is maximized by the eigenvalue
decomposition of GR

E which only has one none zero eigenvalue equal to the trace
of GR

E . This eigenvalue expresses the square Euclidean distance between the mean
of the two classes. For handling heteroscedasticity of the data and keeping more dis-
criminatory information, we replace GR

E by GR
C whose trace is equal to the Chernoff

distance [26] between two class distributions.

GR
C =

(

GR
w

)

−1/2
GR

E

(

GR
w

)

−1/2
+

1

p1p2

(

logGR
w − p1 logG

R
w,1 − p2 logG

R
w,2

)

, (13)

where log(A) is defined as R(log(V ))R−1, and RV R−1 is the eigenvalue decomposi-
tion of A where A is a symmetric positive definite matrix.

If GR
w 6= I , the data are sphered using

(

GR
w

)

−1/2
transformation. In the trans-

formed domain, Ȳ R
j , GR

w,i and GR
w become

(

GR
w

)

−1/2
Ȳ R
j ,

(

GR
w

)

−1/2
GR

w,i

(

GR
w

)

−1/2
,

and I , respectively. Then, GR
C is computed, and the inverse transform

(

GR
w

)1/2
is

applied to get the matrix
...
G

R
C =

(

GR
w

)1/2
GR

C

(

GR
w

)1/2
, which can be rewritten as:

...
G

R
C = GR

E +
1

p1p2

(

GR
w

)1/2 (
logGR

w − p1 logG
R
w,1 − p2 logG

R
w,2

) (

GR
w

)1/2
. (14)
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3.2 Two-Class Case and R ∈ ℜc×l2

In this case, GR
B, the interclass scatter matrix of 2DLDA, can be rewritten as follows:

GR
B =

l2
∑

s=1

p1p2

(

ȳR,s
1 − ȳR,s

2

)(

ȳR,s
1 − ȳR,s

2

)T

=

l2
∑

s=1

p1p2G
R,s
E , (15)

where GR,s
E =

(

ȳR,s
1 − ȳR,s

2

)(

ȳR,s
1 − ȳR,s

2

)T

is the scatter matrix which captures the

difference between the mean vectors of the sth cluster of two classes. We generalize
interclass scatter matrix by replacing GR,s

E with Chernoff scatter matrix
...
G

R,s
C .

...
G

R,s
C = GR,s

E +
1

p1p2

(

GR
w

)1/2
(

logGR,s
w − p1 logG

R,s
w,1 − p2 logG

R,s
w,2

)

(

GR
w

)1/2
. (16)

3.3 Multi-Class Case and R ∈ ℜc×l2

In Sections 3.1 and 3.2, we express the formulation for two-class case. In this section,
we generalize it to multi-class case. The interclass scatter matrix can be decomposed
to:

GR
B =

C−1
∑

i=1

C
∑

j=i+1

l2
∑

s=1

pipj

(

ȳR,s
i − ȳR,s

j

)(

ȳR,s
i − ȳR,s

j

)T

=

C−1
∑

i=1

C
∑

j=i+1

l2
∑

s=1

pipjG
R,s
E,i,j .

(17)
This formula can be generalized by replacing GR,s

E,i,j by Gk,s
C,i,j which is the scatter

matrix which captures the Chernoff distance between the sth cluster of class i and j.

...
G

R,s
C,i,j = GR,s

E,i,j +
1

πiπj

(

GR,s
w,i,j

)1/2 (

logGR,s
w,i,j − πi logG

R,s
w,i − πj logG

R,s
w,j

)(

GR,s
w,i,j

)1/2

,

(18)

where πi = pi/(pi + pj) , πj = pj/(pi + pj) are relative priors, and GR,s
w,i,j = πiG

R,s
W,i +

πjG
R,s
W,j . Therefore,

...
G

R
C obtains as follows:

...
G

R
C =

C
∑

i=1

C−1
∑

j=i+1

l2
∑

s=1

pipj
...
G

R,s
C,i,j , (19)

then, the new optimization formula becomes:

L∗ = argmax
L

tr
(

LT
...
G

R
CL

)

tr (LTGR
wL)

. (20)

This objective function can be solved by the generalized eigenvalue decomposi-
tion method as follows: ...

G
R
CL = GR

WLΛL, (21)
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where ΛL is diagonal matrix whose entities are eigenvalues of (GR
w)

−1
...
G

R
C , sorted in

the descending order, and L is a matrix whose columns are the corresponding eigen-
vectors. Similarly, with computed L, the optimal projection matrix R is computed
using the following general eigenvalue decomposition

...
G

L
CR = GL

WRΛR, (22)

where GL
w and

...
G

L
C are defined as follows:

GL
w =

C
∑

c=1

pcG
L
w,c, (23)

...
G

L
C =

C
∑

i=1

C−1
∑

j=i+1

l1
∑

s=1

pipj
...
G

L,s
C,i,j . (24)

Summarize procedure of 2DHDA is given in Figure 4.

1 Input: the sample set, Xi ∈ ℜr×c, i = 1, . . . , N ,
class label ci ∈ {1, 2, . . . , C}, and
the final lower dimensions l1 × l2

2 Output: Find L ∈ ℜr×l1, R ∈ ℜc×l2

3 Initialize: R0 = Ic×c

4 for t = 1, . . . , Tmax

5 Y R
j = XjR

t−1, j = 1, . . . , N
6 Compute GR

w from Equation (8)
7 Y R

j = (GR
W )−1/2Y R

j

8 Compute
...
G

R
C from Equation (19)

9 Lt
...
G

R
C = GR

wL
tΛL, L

t ∈ ℜr×l1

10 Y L
j = (Lt)TXj , j = 1, . . . , N

11 Compute GL
w from Equation (23)

12 Y L
j = (GL

W )−1/2Y L
j

13 Compute
...
G

L
C from Equation (24)

14 Rt
...
G

L
C = GL

wR
tΛR, R

t ∈ ℜc×l2

15 end.

Fig. 4. 2DHDA procedure

3.4 Connection to 2DLDA

Theorem 1. If all the covariance matrices are the same, (i.e. GR,s
i = ΣR∀i, s) then

2DHDA objective function is equal to that of 2DLDA.
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Proof. Without loss of generality we prove the equivalence for right projection
matrix. If GR,s

i = ΣR ∀i, s then GR,s
w,i,j = ΣR and in term of Equation (18) we have

...
G

R,s
C,i,j = GR,s

E,i,j +
1

πiπj
(ΣR)

1/2 ((1− (πi + πj)) logΣR) (ΣR)
1/2, (25)

where (πi + πj) = 1, therefore
...
G

R,s
C,i,j = GR,s

E,i,j and consequently according to Equa-

tions (17) and (19),
...
G

R
C is equal to GR

B. �

3.5 Regularization

Our approach can be enhanced by smoothing the covariance matrices by adding
different kind of regularization techniques [21]. Here, for avoiding the singular ma-
trices, we add small regularization term of α to the within class covariance when it
is necessary.

ĜR,s
w,i,j =

...
G

R,s
w,i,j + αIr, (26)

where Ir is the identity matrix of size r × r.

4 EXPERIMENTS

In this section, we investigate performance of our proposed subspace learning ap-
proach for face recognition. The recognition has three steps: first, face subspace
is computed using the training set. Then, test images are projected onto the low
dimensional subspaces. Finally the test images are identified using nearest neigh-
bor classifier. In all experiments each image is manually cropped and resized to
32 × 32 pixels, with 256 gray levels per pixel. The pixel values of each image is
normalized to [0, 1], and the resulting image is preprocessed using a histogram-
equalization.

We randomly select two images per subject for training and the rest for testing.
The experiments are repeated 20 times with different groups of training images, and
the mean as well as standard deviation of the results are reported.

4.1 Datasets

The CMU PIE face database contains 68 subjects with 41,368 face images as
a whole [27]. The face images were captured by 13 synchronized cameras and 21
flashes, under varying pose, illumination and expression. The subset “CMU-PIE”
is established by selecting images under natural illumination for all persons from
the frontal view,1/4 left/right profile and below/above in frontal view (C05, C07,
C09, C27, C29). For each view, there are three different expressions, namely natural
expression, smiling and blinking. Hence there are 15 face images for each subject.
Figure 5 shows 15 image samples of one person.
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Fig. 5. 15 sample images of one person from CMU-PIE database

The AR face database contains over 3,200 frontal face images of 126 different
individuals (70 men and 56 women) [28]. Most individuals have 26 different images
taken in two different sessions separated by two weeks intervals and each session
consists of 13 faces with different facial expressions, illumination conditions and
occlusions. In our experiments, we use a subset of the AR face database which
contains 650 face images corresponding to 50 persons (25 men and 25 women),
where each person has 13 different images from the first section. Some examples
from this database are illustrated in Figure 6.

Fig. 6. 13 different images of one person from AR database

AT&T face database is the third database used in our experiments [29]. This
database contains images of 40 individuals, each providing 10 different images. The
pose, expression, and facial details variations are also included. The images are
taken with a tolerance for some tilting and rotation of the face of up to 20 degrees.
Moreover, there are also some variations in the scale of up to about 10 percent. Ten
sample images of one person from the AT&T database are shown in Figure 7.

Fig. 7. Ten sample images of one subject in the AT&T face database
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4.2 Compared Algorithms

We compare our method with five different subspace algorithms which belong to
three different families, i.e., PCA family, LDA family and Heteroscedastic LDA
family. In PCA family, we have vector-based PCA (Eigenface) [3] and its matrix
extension, i.e., general low rank approximation of matrix (GLRAM) [30]. In LDA
family, vector-based version of LDA, Fisherface [4] and its matrix-based version
2DLDA [13] have been investigated. In Heteroscedastic LDA family, Heteroscedas-
tic Discriminant Analysis with Two-dimensional Constraints (HDA/2D) [19] has
been compared. For HDA/2D, the objective function was optimized using the qusi-
Newton numerical optimization of MATLAB toolbox. Projected features in the
vector-based methods are expressed by a d-dimension vector and in the matrix-based
approaches are shown by a d1 × d2 dimensional matrix. For Fisherface maximum
number of discriminant features is C − 1, where C is the total number of subjects
while that for eigenface is N − 1 where N is the total number of subjects in the
dataset. The number of features indicated for 2DLDA, HDA/2D, GLRAM and
2DHDA is the product of d1 and d2 dimension where for HDA/2D d2 is 32.

4.3 Face Recognition Results

The top recognition accuracy of different algorithms on CMU-PIE, AR and AT&T
databases are reported in Table 2. Specifically, each entry in the table shows the
mean and standard deviation of recognition rate over 20 random splits. Also, the
corresponding dimensions are listed in the parentheses on the right. For each dataset,
the average recognition rate of an algorithm with respect to different numbers of
discriminant features is computed. Based on these results we then express the best
average recognition rates of the algorithm in the table.

Method CMU-PIE AR AT&T

Eigenface 39.25± 5.49 (105) 44.36± 12.86 (95) 66.98± 3.94 (55)

GLRAM 54.79± 7.04 (11× 11) 69.62± 7.81 (12× 12) 79.36± 2.76 (10× 10)

Fisherface 47.10± 7.17 (67) 63.62± 5.81 (49) 70.30± 3.95 (35)

2DLDA 46.99± 9.79 (6× 6) 73.20± 4.80 (12× 12) 78.50± 2.58 (8× 8)

HDA/2D 52.66± 10.13 (10× 32) 64.81± 6.33 (10× 32) 77.72± 4.11 (10× 32)

2DHDA 55.74± 7.84 (5× 5) 76.25± 6.00 (12× 12) 82.28± 2.92 (5× 5)

Table 2. Face recognition accuracy of different subspace algorithms on CMU-PIE, AR and
AT&T datasets [mean ± std % (dimension) ]

Figure 8 illustrates the average recognition rate of each methods over different
databases. It could be observed that 2DHDA outperforms all other methods on
these datasets.

For further exploration, Figure 9 plots the face recognition rate with respect to
the different number of features over CMU-PIE face database. As we can clearly
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Fig. 8. Average recognition accuracy of different methods

observe, 2DLDA do not perform well on this database, possibly due to the hetero-
scedastic problem. 2DHDA achieves a recognition rate of 55.74% with 25 features
while followed by 2DLDA with a recognition rate of 46.99% with 36 features. It is
also observed that HDA/2D did not perform as well as 2DHDA method. GLRAM
also has good performance. However, 2DHDA is the best method.

From Figure 9, it could be observed that the 2DLDA and 2DHDA achieve their
best performances when the number of discriminant features is retained appropri-
ately small while the performances of them would sometimes degrade if more features
are used.

This may occur as a result of using simple sum of Euclidean as the distance
metric for the score of the match between two feature matrices obtained by two-
dimensional methods. In our experiments, each column of the corresponding feature
matrices is adopted with uniform weight, while more emphasis should be placed on
the feature vectors corresponding to the larger eigenvalues.

In Figure 10, we present the recognition rate of different methods versus the num-
ber of discriminatory features over AR face database. Again, 2DHDA outperforms
all other methods, which achieves a recognition rate of 76.25% with 144 features.
Despite the results of the previous experiment, in this experiment 2DLDA method
performs better than GLRAM and other vector-based algorithms on AR dataset.

The recognition rate versus feature numbers of different methods is plotted once
again over AT&T database in Figure 11. The recognition accuracy of our pro-
posed method is 82.28% with 25 features, which is better than all other methods.
The 2DLDA method significantly outperforms other vector-based method while its
performance is inferior to the GLRAM method.

Figure 12 shows the convergence characteristics of our algorithm. The horizon-
tal axis indicates the number of iterations, and the vertical axis is the similarity of
two successively estimated projection matrices, i.e. tr(abs(U t)T ∗ abs(U t−1)) where
U could be left (L) or right (R) projection matrix and t denotes the iteration num-
ber. It is clearly observed that the 2DHDA method has no convergence problem.
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Fig. 10. Average recognition accuracy versus different number of discriminant features on

AR dataset

Moreover, the similarity of the projection matrices of second and first iteration is
about 90%. Figure 13 illustrates the average recognition rate versus different num-
ber of iterations; it is clear that recognition rate is stable with respect to the number
of iterations. The experiments also show that after one iteration the recognition ac-
curacies are satisfying. Therefore, in our experiments, similar to [13], we employ
our algorithm with only one iteration, which is less costly, ensures good recognition
results, and frees us from determining the number of iterations.
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4.4 Discussion

The recognition rate of eigenface are quit low specially on CMU-PIE and AR, which
indicates the difficulty of the databases. GLRAM which is a matrix-based method
improves the recognition performance of vector-based eigenface. 2DLDA does not al-
ways yield higher accuracy than the vector-based LDA method. It outperforms Fish-
erface on AT&T and AR databases, while its performance descends on CMU-PIE
dataset. HDA/2D has higher recognition rate than 2DLDA on CMU-PIE database,
while its performance degrades on AR and AT&T database. It shows that defining
the individual class covariances without regarding to the distribution of the clusters
cannot necessarily improve the recognition performance of matrix-based approaches.
2DHDA always significantly outperform 2DLDA in different databases. The reason
lies in relaxing the constraint of equality of the covariance matrices of different
clusters.

Computational Cost: For ease of understanding, let us assume that the sample
matrices has uniform numbers of rows and columns, i.e., r = c = m, and we set l1
and l2 to a common value d. Therefore, the complexity of 2DHDA is O((N+C2)dm3)
for each iteration.

5 CONCLUSION

In this paper a new approach called Two-Dimensional Heteroscedastic Discriminant
Analysis (2DHDA) for solving the heteroscedastic problem of 2DLDA method was
proposed. Our approach keeps the computational simplicity of eigenvalue-based
techniques and benefits from the spatial redundancies in the image matrix, so it can
be applied in high-dimensional application such as face recognition, where applying
of vector-based heteroscedastic solutions is not feasible due to high computational
cost.

We expressed that 2DLDA has two plug-in estimates and if the data of the
columns with different indexes were heteroscedastic, then those estimations would be
improper. It was shown that Euclidean distance between class means that 2DLDA
cannot take into account difference in the intraclass covariance matrices and the
discriminatory information within them.

For solving this problem the Chernoff distance was applied in computing of in-
terclass covariance matrices. 2DHDA is also a general framework which can reduce
to 2DLDA when all the intracluster covariance matrices are the same. Experiments
on a number of datasets including CMU-PIE, AR and AT&T face databases demon-
strate that 2DHDA consistently performs better across all the three datasets than
2DLDA and the other ordinary subspace learning algorithm.
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