6 research outputs found

    Heterogeneous Timed Machines

    Get PDF
    International audienceWe present an algebra of discrete timed input/output au- tomata that execute in the context of different clock granularities -- timed machines -- as models of systems that can be dynamically inter- connected at run time in a heterogeneous context. We show how timed machines can be refined to a lower granularity of time and how timed machines with different clock granularities can be composed. We propose techniques for checking whether timed machines are consistent or feasi- ble. Finally, we investigate how consistency and feasibility of composition can be proved at run-time without computing products of automata

    Dynamic networks of heterogeneous timed machines

    Get PDF
    International audienceWe present an algebra of discrete timed input/output automata that may execute in the context of different clock granularities – which we call timed machines; this algebra includes a refinement operator through which a machine can be extended with new states and transitions in order to accommodate a finer clock granularity as required to interoperate with other machines, and an extension of the traditional product of timed input–output automata to the situation in which the granularities of the two machines are not the same. Over this algebra, we then define an algebra of networks of timed machines that includes operations through which networks can be modified at run time, thus offering a model for systems of interconnected components that can dynamically bind to other systems and, therefore, cannot be adjusted at design time to ensure that they operate in a timed homogeneous setting. We investigate important properties of timed machines such as consistency – in the sense that a machine can be ensured to generate a non-empty language, and feasibility – in the sense that a machine can be ensured to generate a non-empty language no matter what inputs it receives, and propose techniques for checking if timed machines are consistent or are feasible. We generalise those properties to networks of timed machines, and investigate how consistency and feasibility of networks can be proved through properties that can be checked at design time without having to compute, at run time, the product of the machines that operate on those networks, which would not be practical

    Injecting continuous time execution into service-oriented computing

    Get PDF
    Service-Oriented Computing is a computing paradigm that utilizes services as fundamental elements to support rapid, low-cost development of distributed applications in heterogeneous environments. In Service-Oriented Computing, a service is defined as an independent and autonomous piece of functionality which can be described, published, discovered and used in a uniform way. SENSORIA Reference Modeling Language is developed in the IST-FET integrated project. It provides a formal abstraction for services at the business level. Hybrid systems arise in embedded control when components that perform discrete changes are coupled with components that perform continuous processes. Normally, the discrete changes can be modeled by finite-state machines and the continuous processes can be modeled by differential equations. In an abstract point of view, hybrid systems are mixtures of continuous dynamics and discrete events. Hybrid systems are studied in different research areas. In the computer science area, a hybrid system is modeled as a discrete computer program interacting with an analog environment. In this thesis, we inject continuous time execution into Service-Oriented Computing by giving a formal abstraction for hybrid systems at the business level in a Service-Oriented point of view, and develop a method for formal verifications. In order to achieve the first part of this goal, we make a hybrid extension of Service-Oriented Doubly Labeled Transition Systems, named with Service-Oriented Hybrid Doubly Labeled Transition Systems, make an extension of the SENSORIA Reference Modeling Language and interpret it over Service-Oriented Hybrid Doubly Labeled Transition Systems. To achieve the second part of this goal, we adopt Temporal Dynamic Logic formulas and a set of sequent calculus rules for verifying the formulas, and develop a method for transforming the SENSORIA Reference Modeling Language specification of a certain service module into the respective Temporal Dynamic Logic formulas that could be verified. Moreover, we provide a case study of a simplified small part of the European Train Control System which is specified and verified with the approach introduced above. We also provide an approach of implementing the case study model with the IBM Websphere Process Server, which is a comprehensive Service-Oriented Architecture integration platform and provides support for the Service Component Architecture programming model. In order to realize this approach, we also provide functions that map models specified with the SENSORIA Reference Modeling Language to Websphere Process Server applications

    Injecting continuous time execution into service-oriented computing

    Get PDF
    Service-Oriented Computing is a computing paradigm that utilizes services as fundamental elements to support rapid, low-cost development of distributed applications in heterogeneous environments. In Service-Oriented Computing, a service is defined as an independent and autonomous piece of functionality which can be described, published, discovered and used in a uniform way. SENSORIA Reference Modeling Language is developed in the IST-FET integrated project. It provides a formal abstraction for services at the business level. Hybrid systems arise in embedded control when components that perform discrete changes are coupled with components that perform continuous processes. Normally, the discrete changes can be modeled by finite-state machines and the continuous processes can be modeled by differential equations. In an abstract point of view, hybrid systems are mixtures of continuous dynamics and discrete events. Hybrid systems are studied in different research areas. In the computer science area, a hybrid system is modeled as a discrete computer program interacting with an analog environment. In this thesis, we inject continuous time execution into Service-Oriented Computing by giving a formal abstraction for hybrid systems at the business level in a Service-Oriented point of view, and develop a method for formal verifications. In order to achieve the first part of this goal, we make a hybrid extension of Service-Oriented Doubly Labeled Transition Systems, named with Service-Oriented Hybrid Doubly Labeled Transition Systems, make an extension of the SENSORIA Reference Modeling Language and interpret it over Service-Oriented Hybrid Doubly Labeled Transition Systems. To achieve the second part of this goal, we adopt Temporal Dynamic Logic formulas and a set of sequent calculus rules for verifying the formulas, and develop a method for transforming the SENSORIA Reference Modeling Language specification of a certain service module into the respective Temporal Dynamic Logic formulas that could be verified. Moreover, we provide a case study of a simplified small part of the European Train Control System which is specified and verified with the approach introduced above. We also provide an approach of implementing the case study model with the IBM Websphere Process Server, which is a comprehensive Service-Oriented Architecture integration platform and provides support for the Service Component Architecture programming model. In order to realize this approach, we also provide functions that map models specified with the SENSORIA Reference Modeling Language to Websphere Process Server applications
    corecore