
Under consideration for publication in Math. Struct. in Comp. Science

Dynamic Networks of
Heterogeneous Timed Machines
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We present an algebra of discrete timed input/output automata that may execute in the

context of different clock granularities – which we call timed machines; this algebra

includes a refinement operator through which a machine can be extended with new

states and transitions in order to accommodate a finer clock granularity as required to

interoperate with other machines, and an extension of the traditional product of timed

input-output automata to the situation in which the granularities of the two machines

are not the same. Over this algebra, we then define an algebra of networks of timed

machines that includes operations through which networks can be modified at run time,

thus offering a model for systems of interconnected components that can dynamically

bind to other systems and, therefore, cannot be adjusted at design time to ensure that

they operate in a timed homogeneous setting. We investigate important properties of

timed machines such as consistency – in the sense that a machine can be ensured to

generate a non-empty language, and feasibility – in the sense that a machine can be

ensured to generate a non-empty language no matter what inputs it receives, and

propose techniques for checking if timed machines are consistent or are feasible. We

generalise those properties to networks of timed machines, and investigate how

consistency and feasibility of networks can be proved through properties that can be

checked at design time without having to compute, at run time, the product of the

machines that operate on those networks, which would not be practical.

1. Introduction

Many software applications operating in cyberspace need to connect, dynamically, to

other software systems. For example, in the domain of intelligent transportation, systems

for congestion avoidance or coordination of self-driven convoys of cars need to be able to

accommodate interconnections that are established at run time between components in

ways that cannot be pre-determined at design time.
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Applications such as these often have real-time requirements, i.e., their correctness

depends not only on what outputs are returned to given inputs, but also on the time

at which inputs are received and corresponding outputs are produced and communi-

cated. When components of such software applications, usually written in a high-level

programming language and relying on particular time abstractions, are executed in a

given execution platform, their real-time behaviour is additionally restricted by the clock

period of that platform. Components interconnected at run time will be likely to operate

over different clock periods, resulting in a timed heterogeneous system.

Existing formalisms for modelling time-constrained systems focus mainly on mono-

periodic systems, i.e., they assume that all system components will operate over a shared

clock period. These models can still be used for timed heterogeneous systems whose

structure is fixed and known a-priori by modelling the system components in terms

of a global clock that is the least common multiple of all local clocks. In the case of

systems whose structure is dynamic, i.e., modifiable at run time, this is no longer possible

(Broy and Stølen, 2001). Based on this, we proposed in (Fiadeiro and Lopes, 2017) a

trace-based component algebra and an associated logic for such dynamic heterogeneous

timed systems. To the best of our knowledge, no other component algebra has been put

forward for timed heterogeneous systems that does not require a-priori knowledge of

their structure.

In this paper, we investigate another component algebra, which is based on automata

like most other models for timed systems (see Sec. 6 for an overview). This is justi-

fied by the fact that automata-based models are much closer to implementations than

trace-based ones, which therefore allows us to propose modelling abstractions and anal-

yse properties that are more ‘operational’. At the same time, working over automata

raises challenges that are abstracted away when only the traces that they generate are

considered.

More specifically, our model is based on input/output automata and supports run-time

compositionality in the following sense: it is possible to ensure that components can work

together as interconnected over heterogeneous local clocks by relying only on properties

of models of those components, with no need for calculating their composition. This is

important because calculating and reasoning about the composition at run time is simply

not practical, and modifying their time domains at run time to ensure compatibility is

not possible.

We distinguish between building networks of timed machines in the sense of inter-

connecting them so that they interact, and calculating the composition (technically, a

fibred product) of timed machines, which is an operation that returns a timed machine.

More specifically, we define two algebras: an algebra of timed machines, and an algebra

of networks of timed machines; the former is in the tradition of process algebras and

addresses component structure, whereas the latter addresses the structure of modern

systems, which is typically distributed and dynamic. In particular, we show that the

behaviour of a system of interconnected timed machines is not necessarily that of their

composition, and investigate when a timed machine exists that offers a best approxima-

tion of the behaviour of a given network, which is important for validation of properties

and simulation.
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Our starting point is the homogeneous timed approach that we proposed in (Dela-

haye et al., 2013) for services. The extension from a homogenous to a heterogeneous

setting is not trivial (which justifies this paper) because, where the algebraic properties

of composition in a homogenous-time domain generalise those of an un-timed domain,

interconnection in a heterogeneous setting is not even always admissible. For that reason,

the model that we propose in Sec. 3 separates the space of discrete timed input/output

automata (TIOA) (David et al., 2010; Kaynar et al., 2006) from that of their executions

over a given clock: the components of our algebra are pairs of a TIOA and a clock gran-

ularity, what we call timed machines. Two operations are defined over timed machines:

heterogeneous product, which extends the traditional product of TIOA to the situation

in which the granularities of the two machines are not the same, and refinement, which

extends a machine with new states and transitions in order to accommodate a finer clock

granularity as required to interoperate with other machines.

In Sec. 4, we study two important properties of timed machines: consistency, in the

sense that a machine can be ensured to generate a non-empty language, and feasibility,

in the sense that a machine can be ensured to generate a non-empty language no mat-

ter what inputs it receives. We prove two compositionality results, one for consistency

and the other for feasibility. Those results rely on a number of properties that can be

checked, at design time, over given timed machines to ensure that their interconnection

will be consistent or feasible without actually having to calculate the product of the

corresponding automata at run time.

Finally, in Sec. 5, we extend those results to networks of interfaced timed machines,

which provide a model for more complex and dynamic systems. Such networks are finite

undirected (multi)graphs whose nodes are labelled with timed machines endowed with

interfaces (ports for interconnections) and whose edges are labelled with attachments be-

tween ports. Operations for constructing networks are defined, including the binding of

a network to another network to create a more complex system. A relationship between

the timed-machine and the network algebras is investigated in terms of a notion of ‘best

approximation’ through which we can characterise classes of timed machines that can be

used to reason about or simulate networks of timed machines with commensurable clock

granularities. Again, we investigate properties through which the consistency and feasi-

bility of such networks can be proved compositionally, i.e., without having to calculate

explicitly the composition of the underlying automata. Those properties can be proved

at design time and ensure that components that implement the timed machines can work

together across different clock granularities.

This paper is an extended version of (Delahaye et al., 2014), which was consider-

ably restructured to accommodate networks and their dynamic behaviour: in addition

to Sec. 5, which is totally new, Sec. 3 and Sec. 4 have been revised to accommodate

run-time composition. More explanations have also been added throughout the paper,

the comparison with related work has been extended, and the proofs of our main results

have been included in an appendix.
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2. Preliminaries

2.1. Timed traces

Although transition systems are typically used as operational semantics of automata

(including timed transitions systems for timed automata as in (Henzinger et al., 1991)),

we use instead a trace semantics because the topological properties of trace domains allow

us to provide a finer characterisation of properties such as consistency and feasibility

(cf. Sec. 4). For example, existing transition-system semantics such as (David et al.,

2010) offer a weaker notion of consistency for timed automata because it fails to enforce

time progression and, therefore, an automaton that does not accept any non-Zeno timed

sequence can still be consistent.

We start by recalling a few concepts related to traces. Given a set A, a trace λ over A

is an element of Aω, i.e., an infinite sequence of elements of A. In our timed model, we

work with timed traces, i.e., traces over a cartesian product 2A × R≥0 where A is a set

of actions. That is, a timed trace consists of an infinite sequence of pairs of an instant

of time and of the set of actions that are observed at that instant of time. Every such

set of actions can be empty so that, on the one hand, we can model components that

stop executing after a certain point in time while still part of a system and, on the other

hand, we can model observations that are triggered by actions performed by components

outside the system.

Definition 2.1 (Timed trace and property). Let A be a set (of actions).

— A time sequence τ is a trace over R≥0 such that:

– τ(0) = 0;

– for every i ∈ N, τ(i) < τ(i+ 1);

– the set {τ(i) : i ∈ N} is unbounded, i.e., time diverges — what is usually called

the ‘non-Zeno’ condition.

— An action sequence σ is a trace over 2A, i.e., an infinite sequence of sets of actions,

such that σ(0) = ∅.
— A timed trace over A is a pair λ = 〈σ, τ〉 of an action and a time sequence. We denote

by Λ(A) the set of timed traces over A and by Π(A) the set of prefixes of Λ(A).

— Given δ∈R>0, the δ-time sequence τδ consists of all multiples of δ — i.e., for every

i∈N, τδ(i) = i · δ. A δ-timed trace over A is a timed trace 〈σ, τδ〉.
— A timed property over A is a set Λ ⊆ Λ(A).

That is, in δ-timed traces, actions occur according to a fixed period (δ). These traces

are useful to capture the behaviour of discrete systems that execute according to a fixed

clock granularity.

In order to address heterogeneity, we need a notion of time refinement:

Definition 2.2 (Time refinement). Let ρ : N → N be a monotonically increasing

function that satisfies ρ(0) = 0.

— Let τ , τ ′ be two time sequences.

– We say that τ ′ refines τ through ρ (τ ′ �ρ τ) iff, for every i ∈ N, τ(i) = τ ′(ρ(i)).
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– We say that τ ′ refines τ (τ ′ � τ) iff τ ′ �ρ τ for some ρ.

— Let λ = 〈σ, τ〉, λ′ = 〈σ′, τ ′〉 be two timed traces. We say that λ′ refines λ through ρ

(λ′ �ρ λ) iff

– τ ′ �ρ τ ,

– σ(i) = σ′(ρ(i)) for every i ∈ N, and

– σ′(j) = ∅ for every ρ(i) < j < ρ(i+ 1).

We also say that λ′ refines λ (λ′ � λ) iff λ′ �ρ λ for some ρ.

— The r-closure of a timed property Λ is Λr = {λ′ : ∃λ∈Λ(λ′ � λ)} — the set of all

timed traces that refine some timed trace of Λ

— We say that Λ is closed under time refinement, or r-closed, iff Λr ⊆ Λ — i.e., Λ

contains all the refinements of its timed traces.

We extend the notion of refinement to prefixes considering that, for a prefix π′ to refine

a prefix π, the two prefixes need to end with same action and time stamp.

We also extend the notion of refinement to timed properties as follows:

— A timed property Λ′ refines a timed property Λ (Λ′ � Λ) iff, for every λ′∈Λ′, there

exists λ∈Λ such that λ′ � λ.

— A timed property Λ′ approximates a timed property Λ (Λ′ w Λ) iff Λ′ � Λ and, for

every λ∈Λ, there exists λ′∈Λ′ such that λ′ � λ.

That is, a time sequence refines another if the former interleaves time observations be-

tween any two time observations of the latter. Refinement extends to traces by requiring

that no actions be observed in the finer trace between two consecutive times of the coarser

(see Fig. 1).
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Fig. 1. Time refinement.

A timed property Λ′ refines Λ if every trace of Λ′ refines some trace of Λ. If, in addition,

every trace of Λ has a refinement in Λ′, then Λ′ approximates Λ.

Proposition 2.1. The following properties of time refinement are useful:

— Given τ ′ �ρ τ and a timed trace λ = 〈σ, τ〉, there is a unique timed trace λ′ = 〈σ′, τ ′〉
such that λ′ �ρ λ — we call λ′ the refinement of λ over τ ′. The trace σ′ coincides

with σ on λ and executes the empty set of actions everywhere else.

— τδ′ � τδ iff δ is a multiple of δ′.

— Given any two timed properties Λ1 and Λ2, if they are r-closed so is their intersection

Λ1 ∩ Λ2.



J. Fiadeiro et al 6

— If Λ is r-closed, Λ′ � Λ iff Λ′ ⊆ Λ.

It is not difficult to prove that the refinement relation makes the space of all time se-

quences a complete meet semi-lattice, the meet of two time sequences τ1 and τ2 being

given by the recursion

τ(i+ 1) = min({τ1(j) > τ(i), j ∈ N} ∪ {τ2(j) > τ(i), j ∈ N})
together with the base τ(0) = 0. However, if one considers the space of all δ-time se-

quences {τδ : δ∈R>0}, it is easy to see that a meet of τδ1 and τδ2 exists iff δ1 and

δ2 are commensurate (have a common divisor), i.e., if there are n,m∈N>0 such that

δ1/n = δ2/m, in which case the meet is τδ where δ is their greatest common divisor

(which always exists and can be calculated using Euclid’s algorithm provided that δ1
and δ2 are commensurate).

Functions between sets of actions (alphabet maps) are useful for defining relationships

between individual machines and the networks in which they operate:

Definition 2.3 (Projection and translation). Let f :A→ B be a function (alphabet

map).

— For every σ∈(2B)ω, we define σ|f∈(2A)ω pointwise as σ|f (i) = f−1(σ(i)) — the

projection of σ over A. If f is an inclusion (A⊆B), then we tend to write |A instead

of |f .

— For every timed trace λ = 〈σ, τ〉 over B, we define its projection over A to be λ|f =

〈σ|f , τ〉, and for every timed property Λ over B, Λ|f = {λ|f : λ ∈ Λ}— the projection

of Λ to A.

— For every timed property Λ over A, we define f(Λ) = {〈σ, τ〉 : 〈σ|f , τ〉 ∈ Λ} — the

translation of Λ to B.

— For every timed property ΛA over A and every timed property ΛB over B we write

ΛB �f ΛA (resp. ΛB wf ΛA) to mean ΛB � f(ΛA) (resp. ΛB w f(ΛA)).

That is, |f projects every trace σ over B to a trace over A by taking the inverse image

of the set of actions at every point of σ. In the case of an inclusion A⊆B, |A forgets the

actions of B that are not in A. Notice that the inverse image of a set of actions in B that

are not in the range of f is the empty set; if f captures the way in which a machine is

part of a network, this means that sets of actions of the network in which the machine

is not involved are projected to the machine as the empty set.

A timed property Λ over A is mapped forwards to a timed property over B by taking

the set of all traces over B that are projected back to a trace of Λ. Notice that this

is different from applying f pointwise to every trace λ of Λ: instead, our construction

maps λ = 〈σ, τ〉 to all traces 〈σ′, τ〉 over B such that, for all i, σ(i) = f−1(σ′(i)), which

means that every σ′(i) may contain any actions of B that are not in the range of f .

In particular, we have that f(Λ(A)) = Λ(B). Again, if f captures the way in which a

machine is part of a network, f(Λ) will open every trace of Λ to actions of the network

in which the machine is not involved.

The following proposition provides a useful property: that projections preserve time

refinement.
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Proposition 2.2 (Preservation). Let f :A→ B be a function (alphabet map).

— Let λ and λ′ be two timed traces over B such that λ′ �ρ λ. Then, λ′|f �ρ λ|f .

— Let Λ be a timed property over B. If Λ is r-closed, so is Λ|f .

— Let Λ be a timed property over A. If Λ is r-closed, so is f(Λ).

We are particularly interested in translations defined by prefixing every element of a set

with a given symbol. Such translations are useful for identifying in a network the machine

to which an action belongs — because they can bind to other machines at run time, not

design time, it would not be realistic to assume that machines have mutually disjoint

alphabets. More precisely, given a set A and a symbol p, we denote by (p. ) the function

that prefixes the elements of A with ‘p.’. Note that prefixing defines a bijection between

A and its image p.A.

2.2. Timed input/output automata

In order to model machines, we use timed I/O automata as in (David et al., 2010) except

that (1) transitions perform sets of actions instead of single actions and (2) the initial

values of clocks are given (in addition to the initial location). Working with sets of actions

simplifies the treatment of interconnections through the use of synchronisation sets and

gives us for free the empty set as an abstraction of actions performed by the environment

that an automaton can observe without being directly involved; transitions performed

by the empty set of actions are not required to keep the automaton in the same location

because machines can be forced to change state due to clock constraints. Considering that

the initial values of clocks are part of the TIOA definition is a generalisation that is useful

for modelling the behaviour of a machine from a point in time that is not necessarily

that in which the machine started executing.

A timed automaton is defined in terms of a finite set C of clocks. A condition over C is

a finite conjunction of expressions of the form c ./ n where c ∈ C, ./∈{≤,≥} and n∈N.

We denote by B(C) the set of conditions over C. A clock valuation over C is a mapping

v: C→ R≥0.

Definition 2.4 (TIOA). A timed I/O automaton A (TIOA) is a tuple

A = 〈Loc, l?,C, v?, E,Act, Inv〉

where:

— Loc is a finite set of locations;

— l?∈Loc is the initial location;

— C is a finite set of clocks;

— v? is the initial clock valuation;

— E ⊆ Loc× 2Act × B(C)× 2C × Loc is a finite set of edges;

— Act = ActI ∪ActO ∪Actτ is a finite set of actions partitioned into input, output and

internal actions, respectively;

— Inv: Loc→ B(C) is a mapping that associates an invariant with every location.

In addition, we impose that every TIOA is open in the following sense: for all l∈Loc,
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there is an edge (l, ∅, φ, ∅, l′)∈E for some tautology φ and for some location l′ such that

Inv(l′) is implied by Inv(l).

Given an edge (l, S, C,R, l′), l is the source location, l′ is the target location, S is the set

of actions executed during the transition, C is the guard (a condition that determines

if the transition can be performed), and R is the set of clocks that are reset by the

transition. We say that the transition is enabled iff C holds.

The requirement that every location is the source of a transition labelled by ∅ that is

always enabled — its guard is a tautology — means that the behaviour of A is always

open to the execution of actions in which it is not involved, i.e., A does not interfere with

the ability of the environment to make progress.

Let v be a clock valuation over a set C of clocks. Given d ∈ R≥0 and a valuation

v, we denote by v+d the valuation defined by, for any clock c∈C, (v+d)(c) = v(c)+d.

Given R ⊆ C and a clock valuation v, we denote by vR the valuation where the clocks

belonging to R are reset, i.e., such that vR(c)=0 if c∈R and vR(c)=v(c) otherwise. Given

a condition C in B(C), we use v � C to express that C holds for the clock valuation v.

Definition 2.5 (Execution). Let A = 〈Loc, q0,C, E,Act, Inv〉 be a TIOA. An execu-

tion of A starting in location l0 and valuation v0 is an infinite sequence

(l0, v0, d0)
S0,R0−→ (l1, v1, d1)

S1,R1−→ . . .

where, for all i:

(1) li∈Loc, vi is a clock valuation over C and di∈R>0;

(2) Si⊆Act and Ri⊆C;

(3) for all 0 ≤ t ≤ di, vi + t � Inv(li);

(4) vi+1=(vi + di)
Ri ;

(5) there is (li, Si, Ci, Ri, li+1)∈E such that vi + di � Ci.

A partial execution is of the form

(l0, v0, d0)
S0,R0−→ · · · Sn−1,Rn−1−→ (ln, vn, dn)

where (1) and (3) hold for all i∈[0..n], and (2), (4) and (5) for all i∈[0..n− 1].

That is, each triple (li, vi, di) consists of a location li, the value vi of the clocks when li
is reached at that point of the execution, and the duration di for which the automaton

remains at li before the next transition (which can leave the automaton in the same

location, i.e., li can be equal to li+1). During the time that the automaton remains at li,

the invariant Inv(li) holds. Notice that, because every di is positive, it is not possible to

enter and leave a location instantaneously. The requirement that di is positive ensures

that different transitions do not occur at the same time; because transitions are labeled

with sets of actions, we already have a way of expressing that certain actions occur

simultaneously.

A transition out of (li, vi, di) happens at the end of di units of time and is made by an

edge (li, Si, Ci, Ri, li+1) whose guard Ci holds at that time. As a result of the transition,

the clocks are updated to (vi+di)
Ri and the location to li+1. The updated clocks satisfy

the invariant of li+1.
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Fig. 2. Two TIOAs: Ax (left) and Ay(right). Their initial clock valuations are omitted

because are implicitly taken to be 0.

A pair (l, v) where l is a location and v is a clock valuation is said to be reachable at

time T ∈ R≥0 if either

(a) (l, v) = (l?, v?), T = 0 and, there exists d0>0 such that t � Inv(l?) for all

0 ≤ t ≤ d0; or

(b) there exists a partial execution that starts at (l?, v?) and ends at (ln, vn) = (l, v),

and T =
∑
i∈[0..n−1] di.

Condition (a), which requires that the initial state be reachable at time 0, is justified by

the fact that, according to the definition of execution (Def. 2.5), an automaton has to

remain in a state for a positive duration before make a transition to another state. In

particular, it needs to be able to remain in the initial state for a positive duration.

Example 2.1. Consider the TIOAs Ax and Ay in Fig. 2, where ActIx = {a}, ActOx = {b},
ActIy = {b}, and ActOy = {a}— for clarity, inputs are decorated with ? and outputs with

!. The initial valuation of the clocks is not represented in the figure since it is the default

one (every clock starts at 0).

— Ax waits for receiving a, after which it sends b (possibly receiving a at the same time)

within six time units but not before two times units have passed (all a’s received in

the meanwhile being ignored); then, Ax waits for receiving a again.

— Ay leaves the initial state by sending a (possibly receiving b at the same time) within

six time units but not before three units have passed; it then waits for receiving b to

start again and send a. More b’s can be received meanwhile, but they are all ignored.

An example of a partial execution of Ax is

(A, 0, 2)
{a},{x}−→ (B, 0, 3)

{b},∅−→ (A, 3, 5)
{a},{x}−→ (B, 0, 2)

which shows that (B, 0) is reachable at time 2 (after the first transition) and at time

10 (= 2 + 3 + 5) (after three transitions).

We now recall the classical definition of composition of compatible TIOAs, which captures

partial synchronisation.

Definition 2.6 (Compatibility). Two TIOAs Ai=〈Loci, l?i ,Ci, v?i , Ei, Acti, Invi〉 are

compatible iff C1∩C2=ActI1∩ActI2=ActO1 ∩ActO2 =Actτ1∩Act2=Actτ2∩Act1= ∅.

Definition 2.7 (Composition). The composition of two compatible TIOAs A1 and A2
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where Ai = 〈Loci, l?i ,Ci, v?i , Ei, Acti, Invi〉 is

A1 ‖ A2 = 〈Loc, l?,C, v?, E,Act, Inv〉

where:

— Loc = Loc1 × Loc2,

— l? = (l?1, l
?
2),

— C = C1 ∪ C2,

— v? = v?1 ∪ v?2 , i.e., the clock valuation for C induced by v?1 and v?2 ,

— ActI = (ActI1\ActO2 ) ∪ (ActI2\ActO1 ),

— ActO = (ActO1 \ActI2) ∪ (ActO2 \ActI1),

— Actτ = Actτ1 ∪Actτ2 ∪ (ActI1∩ActO2 ) ∪ (ActO1 ∩ActI2), and

— for all (l1, l2)∈Loc:
– Inv((l1, l2))=Inv1(l1) ∧ Inv2(l2);

– ((l1, l2), S, C,R, (l′1, l
′
2))∈E if and only if C = C1 ∧ C2, Si = S ∩ Acti (i = 1, 2),

(l1, S1, C1, R1, l
′
1)∈E1, (l2, S2, C2, R2, l

′
2)∈E2, and R = R1 ∪R2.

Notice that, because the guards of transitions are conjoined, in order for the TIOA that

results from the composition to be open (cf. Def. 2.4) we need to require the existence of

a transition labeled with ∅ and a tautological guard, instead of simply a guard with true.

Notice also that, by construction, whenever S ∩ Act1 6= ∅ and S ∩ Act2 6= ∅, all actions

on which A1 and A2 synchronise (those in S ∩ Act1 ∩ Act2) are necessarily inputs on

one side and outputs on the other; the composition makes those actions internal. Finally,

transitions such that S ∩ Acti = ∅, which are usually considered as non-synchronising,

are in our case handled as synchronising transitions where Ai performs the empty set of

actions (which corresponds to an open semantics).

3. An algebra of timed machines

In order to model systems where applications execute over specific platforms, which

implies that they are subject to the clock granularity of the platform, we extend TIOAs

to what we call timed machines.

3.1. Timed machines

A timed machine is a TIOA that executes in the context of a clock granularity δ, i.e., its

actions are always executed at time instants that are multiples of δ.

Definition 3.1 (DTIOM). A discrete timed I/O machine (DTIOM) is a pair

M = 〈δM,AM〉

where δM∈R>0 and AM = 〈Loc, l?,C, v?, E,Act, Inv〉 is a TIOA such that v? assigns a

multiple of δM to every clock in C.

Definition 3.2 (Execution and behaviour). The executions and partial executions
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of a DTIOMM = 〈δM,AM〉 are those of AM restricted to transitions at every δM, i.e.,

(l0, v0, d0)
S0,R0−→ (l1, v1, d1)

S1,R1−→ . . .

such that all the durations di are δM. Therefore, we represent executions of DTIOMs as

sequences

(l0, v0)
S0,R0−→ (l1, v1)

S1,R1−→ . . .

and call each pair (li, vi) an execution state.

The behaviour JMK ofM is the set of executions that start at the initial state (l?, v?),

i.e., those that start in the initial location with each clock c set to v?(c).

Notice that a timed machine is not only required to execute its actions at time instants

that are multiples of δ but also to make a transition at every multiple of δ. Because

TIOAs are open, this does not constitute a limitation: when an automaton reaches a

location and, according to the invariant, can remain there for a multiple of δ time units,

although it has to make a transition after δ time units, this transition might be the

one labelled with ∅, which is ensured to exist by the openness condition (this condition

ensures that there is an edge labelled by the empty set of actions from that location to

the same or another location where the automaton can stay for at least δ time units).

Given a machine M that executes in the context of a clock granularity δ, we require

that the machine be able to stay in the initial state during the first δ time units (i.e.,

v? + t � Inv(l?) for all 0 ≤ t ≤ δ) in order to consider that the initial state is reachable

at time 0. If this is not the case, then the machine has no reachable states. Notice also

that, for every reachable state (l, v) in M, v necessarily assigns a multiple of δ to every

clock in C.

Proposition and Definition 3.1 (Language). An execution of a DTIOM M

(l?, v?)
S0,R0−→ (l1, v1)

S1,R1−→ . . .

that starts at the initial state defines the δM-timed trace λ=〈σ, τδM〉 over Act where

σ(0)=∅ and, for all i ≥ 0, σ(i + 1) = Si. We denote by ΛM the r-closure of the set of

timed traces defined by JMK, which we call its language and by ΠM the set of prefixes

of traces in ΛM.

The fact that the language of a DTIOM is r-closed means that it contains all possible

interleavings of empty observations, thus capturing the behaviour of the DTIOM in

any possible environment. This notion of closure can be related to mechanisms, such as

stuttering (Abadi and Lamport, 1991), that ensure that components do not constrain

their environment.

Example 3.1. Consider the DTIOM Mx = 〈δx,Ax〉 with δx = 2 and Ax as in Ex. 2.1.

The partial execution of Ax given in Ex. 2.1 is not a partial execution of Mx as it does

not respect the granularity δx = 2. An example of a partial execution of Mx is

(A, 0)
{a},{x}−→ (B, 0)

∅,∅−→ (B, 2)
{b},∅−→ (A, 4)
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Note that this means that a was executed at time 2 —Mx remaining in the initial state

for δx = 2 units of time, nothing was executed at time 4, and b was executed at time 6.

3.2. Composition and refinement of timed machines

Having in mind the ability to model systems that can be interconnected at run time,

not design time, we are interested in a notion of composition of DTIOMs that allows

us to compose two machines M1 and M2 that may have started executing before the

time they are composed, the result being a machine that models their joint behaviour

henceforth. This means that, when the machines are composed, each is at a reachable

state that is not necessarily its initial state. Therefore, we define a composition operator

that is parametric on a pair of composition conditions, identifying the state (li, vi) in

which each machine is, and the time ti at which this state was reached.

We start by addressing the simplest case in which the two machines have the same

clock granularity. This notion of composition of DTIOMs can be defined in terms of the

composition of the corresponding DTIOAs as follows:

Definition 3.3 (Composition). Given two DTIOMs Mi = 〈δ,Ai〉 – i = 1, 2 – such

that A1 and A2 are compatible, and triples (li, vi, ti) such that (li, vi) is a state of Mi

reachable at time ti, we define

(li,vi,ti)n

i=1,2

Mi

as the DTIOM 〈δ,A〉 where A is the TIOA we obtain by replacing the initial location

and clock valuation of A1 ‖ A2 with (l1, l2) and v1 ∪ v2, respectively.

The composition of two machines that execute in the context of the same clock granular-

ity results in a new machine that models their joint behaviour henceforth: the resulting

machine starts its execution at the locations and with the clock valuations of the indi-

vidual machines at composition time.

As remarked before, the fact that each (li, vi) is a reachable state of Mi ensures that

both v1 and v2 assign a multiple of δ to every clock and, hence, 〈δ,A〉 is indeed a DTIOM.

Considering now the situation of two DTIOMs 〈δ1,A1〉 and 〈δ2,A2〉 that have different

clock granularities, if δ1 and δ2 admit a common multiple, i.e., δ1 · n = δ2 ·m for given

n,m ∈ N>0, then they will be able to synchronise from time to time (more precisely, at

the common multiples). We investigate now how a composition operator can be defined

that captures that sort of synchronisation.

The idea is to refine both timed machines to a common clock granularity and then

compose the refinements as in Def. 3.3. Intuitively, given a timed machineM = 〈δ,A〉, we

define its k-refinement Mk = 〈δ/k,Ak〉 by dividing every location of A in k copies such

that the original transitions are performed in the last ‘tick’, all previous ‘ticks’ performing

no actions and, therefore, being open for synchronisation with a machine that ticks with

a granularity δ/k.



Dynamic Networks of Heterogeneous Timed Machines 13

true

∅

true

∅

a?
x := 0

b!
x ≥ 2

x ≥ 2
b!, a?

∅

x ≤ 6

∅a?

x ≤ 6

A, 1 B, 0

B, 1A, 0

Fig. 3. The refinement Ax
2 of Ax

Definition 3.4 (Refinement). Given a TIOA A = 〈Loc, l?,C, v?, E,Act, Inv〉 and

k ∈ N>0, its k-refinement is the TIOA Ak = 〈Lock, l?k,C, v?, Ek, Act, Invk〉 where:

— Lock = Loc× [0..k − 1];

— l?k = (l?, 0);

— Invk(l, i) = Inv(l);

— for every (l, S, C,R, l′) of E, Ek comprises of the edge ((l, k − 1), S, C,R, (l′, 0)) and

all edges of the form ((l, i), ∅, true, ∅, (l, i+ 1)), i ∈ [0..k − 2].

Given a timed machine M = 〈δ,A〉, its k-refinement is Mk = 〈δ/k,Ak〉.

Notice that Ak is indeed a TIOA: it contains all the required empty transitions, and the

initial clock valuation of Ak, being that of A, assigns multiples of δ to every clock (which

are necessarily multiples of δ/k).

Machines and their refinements are related through what we call an approximation:

Proposition and Definition 3.2 (Approximation). Given a timed machine M =

〈δ,A〉 and k ∈ N>0:

— Every execution ofM defines a unique execution ofMk, which we call its refinement.

— Because ΛM is r-closed, ΛMk
⊆ ΛM and, hence, ΛMk

� ΛM.

— For every λ ∈ ΛM there is λ′ ∈ ΛMk
such that λ′ � λ and, hence, ΛMk

w ΛM. We

say that Mk approximates M and write Mk wM.

More generally, for arbitrary DTIOM M and M′ that have a common alphabet (i.e.,

ActM′ = ActM), we define M′ � M to mean that δM is a multiple of δM′ and ΛM′ �
ΛM; and we define M′ w M to mean that δM is a multiple of δM′ and ΛM′ w ΛM.

We extend this to the case in which there is an injection ξ : ActM → ActM′ and define

M′ wξM as in Def. 2.3.

That is, the language ofMk refines and is an approximation of the language ofM, which

we take to mean that Mk refines and is an approximation of M.

Example 3.2. Consider the TIOA Ax in Fig. 2 and the corresponding DTIOM Mx

defined in Ex. 3.1, which has granularity 2. Its refinement to a DTIOM with granularity

1 is Mx
2 = 〈1,Ax2〉, with Ax2 given in Fig. 3. The refinement of the partial execution of

Mx given in Ex. 3.1 is:

((A, 0), 0)
∅,∅−→ ((A, 1), 1)

{a},{x}−→ ((B, 0), 0)
∅,∅−→ ((B, 1), 1)

∅,∅−→ ((B, 0), 2)
∅,∅−→ ((B, 1), 3)

{b},∅−→ ((A, 0), 4)
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We can now extend the composition of two timed machines to the case where their

clock granularities are commensurable (have a common divisor):

Definition 3.5 (Heterogeneous compatibility). Two DTIOMs Mi = 〈δi,Ai〉 – i =

1, 2 – are said to be δ-compatible (where δ ∈ R>0) if (a) A1 and A2 are compatible,

and (b) δ is a common divisor of δ1 and δ2. They are said to be compatible if they are δ-

compatible for some δ, i.e., if A1 and A2 are compatible and δ1 and δ2 are commensurate.

Definition 3.6 (Heterogeneous composition). The δ-composition of two δ-compatible

DTIOMs M1 and M2 at (li, vi, ti) – i = 1, 2 – such that each (li, vi) is a state of Mi

reachable at time ti is defined as follows:

δ

n(li,vi,ti)

i=1,2
Mi ,

((li,0),vi,ti)n

i=1,2

Mi(δi/δ)

If δ is the greatest common divisor of δ1 and δ2, we use the notation
f(li,vi,ti)
i=1,2 Mi and

simply refer to the composition of M1 and M2 at (li, vi).

Notice that if A1 and A2 are compatible, so are A1(δ1/δ) and A2(δ2/δ). The executions of

Mi(δi/δ) that refine each execution of Mi ensure that the fact that (li, vi) is reachable

at time ti in Mi implies that ((li, 0), vi) is reachable at time ti in Mi(δi/δ).

Example 3.3. Consider Mx as defined in Ex. 3.1, i.e., Mx = 〈δx,Ax〉 with δx = 2,

and My = 〈δy,Ay〉 with δy = 1 and Ay as in Ex. 2.1. Consider also the initial states

(A, 0) and (1, 0) of these machines, which are reachable at time 0. Because Ax and

Ay are compatible and δx and δy have a common divisor (δ = 1), we can compute

their composition at (A, 0, 0) and (1, 0, 0). The first step consists in refining Ax into Ax2
(Fig. 3). We have that

Mx

(A,0,0),(1,0,0)n
My = 〈1,Ax,y〉

where Ax,y = Ax2‖Ay is given in Fig. 4. Notice that actions a and b are synchronised and,

hence, made internal in the composition, which we denote by aτ and bτ , respectively.

Notice also that, since the composition is made at the time the machines start their

execution, the replacement of the initial location and clock valuation of Ax2‖Ay by those

defined by the composition conditions do not change the TIOA.

Consider now the composition of Mx and My with Mx in the state (A, 4) reached

at time 6 (for example, after the partial execution presented in Ex. 3.1) and My in its

initial state, reached at time 0, as before. This composition is

Mx

(A,4,6),(1,0,0)n
My = 〈1,A′x,y〉

where A′x,y is the TIOA that results from replacing the initial clock valuation of Ax,y
with {x 7→ 4, y 7→ 0}.
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Fig. 4. The TIOA Ax,y of Mx f(A,0,0),(1,0,0) My

3.3. Büchi representation of timed machines

In order to check structural properties of DTIOMs, namely properties formulated in terms

of reachable states, it is useful to be able to construct Büchi-automata “equivalents” of

DTIOMs.

Let A = 〈Loc, l?,C, v?, E,Act, Inv〉 be a TIOA. Given a clock c ∈ C, we use MaxA(c)

to denote the maximal constant to which c is compared in the guards and invariants of

A. Formally,

MaxA(c) = max{n ∈ N | (c ./ n) ∈ Inv(l) for some l ∈ Loc, or

(c ./ n) ∈ C for some (l, S, C,R, l′) ∈ E}.
LetM = 〈δ,A〉 be a DTIOM. We first propose an equivalence class on clock valuations,

which we define as follows: v ∼ v′ iff, for all c ∈ C, either v(c) = v′(c) or v(c) > MaxA(c)

and v′(c) > MaxA(c).

Lemma 3.1. For all locations l and clock valuations v and v′ such that v ∼ v′, the states

(l, v) and (l, v′) ofM have equivalent outgoing transitions, i.e., whenever state (l, v) can

take a transition (l, S, C,R, l′) ∈ E and end up in (l′, v′′), state (l, v′) can take the same

transition and end up in (l′, v′′′) with v′′ ∼ v′′′, and vice versa.

Definition 3.7 (Büchi equivalent). The Büchi-equivalent of a DTIOM M = 〈δ,A〉
where A = 〈Loc, l?,C, v?, E,Act, Inv〉, is the Büchi automaton BM = 〈Q, q0, 2Act,→, Q〉
defined as follows:

— The state-space of BM is Q = Loc×∏
c∈C[0 .. bMaxA(c)

δ c+ 1]. A state in BM is thus

a pair (l,ν) where l is a location and ν a clock valuation that takes its values in the

interval [0 .. bMaxA(c)
δ c+ 1]. The idea is to build clock regions of size δ that represent

the number of δ-“ticks” elapsed since the last reset for each clock — ν identifies such

a region.

— The initial state of BM is q0 = (l?,ν) where ν(c)= v?(c)
δ if v?(c) ≤ MaxA(c) and

ν(c)=bMaxA(c)
δ c+ 1 otherwise; i.e., it is the initial location of M associated with the

clock region defined by the initial clock valuation of M.

— Because we are interested in all infinite words, all states of BM are made accepting.

— Finally, (l,ν)
S→ (l′,ν′) iff there exists a transition (l, S, C,R, l′) ∈ E such that

(i) for all 0 ≤ t ≤ δ, ν · δ + t |= Inv(l),

(ii) ν · δ + δ |= C,
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Fig. 5. The Büchi automaton BMx corresponding to the DTIOM Mx from Ex. 3.1

(unreachable states have been removed)

(iii) for all c ∈ C, ν′(c) =


0 if c ∈ R
ν(c) if c /∈ R and ν(c) = bMaxA(c)

δ c+ 1

ν(c) + 1 otherwise


(iv) ν′ · δ |= Inv(l′).

The size of BM, which we denote by |BM|, is inO(|Loc|·(bMax
δ c+2)|C|), where |Loc| and |C|

are the size of Loc and the number of clocks, respectively, and Max = max{MaxA(c) | c ∈
C} is the maximal constant considered in all constraints and invariants of A.

The Büchi automaton BM is equivalent to M in the following sense:

Theorem 3.1. For all action sequences σ over Act, 〈σ, τδM〉 is a timed trace defined by

an execution in JMK iff the infinite sequence σ(1)σ(2) . . . is in the language of BM.

Example 3.4. Consider the DTIOMMx from Ex. 3.1. The maximal constant to which

clock x is compared is MaxA
x

(x) = 6. Since δx = 2, the corresponding Büchi automa-

ton BMx has 10 states (its state space is {A,B} × {0, . . . , 4}). BMx is given in Fig. 5.

Unreachable states have been removed.

4. Consistency and feasibility of timed machines

In this section, we investigate two important properties of DTIOMs as models of systems:

consistency (in the sense that they generate a non-empty language) and feasibility (in the

sense that they generate a non-empty language no matter what inputs they receive). We

are especially interested in conditions under which consistency/feasibility are preserved

by composition. This is because, in order to model run-time interconnections of systems,

one should be able to guarantee that a composition of DTIOMs is consistent/feasible

without having to actually calculate their composition and analyse it.

4.1. Consistency

Definition 4.1 (Consistency). A DTIOM M is said to be consistent if ΛM 6=∅.
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Notice that consistency is preserved by refinement:

Proposition 4.1. Let k ∈ N>0. A DTIOM M is consistent iff its k-refinement Mk is

consistent. More generally, for arbitrary DTIOM M and M′,
— if M′ �M and M′ is consistent, then so is M, and

— if M′ wM, then M′ is consistent iff M is consistent.

We now investigate sufficient conditions for a DTIOM to be consistent.

Definition 4.2 (Initializable). A DTIOM M is said to be initializable if, for every

0 ≤ t ≤ δM, (l?, v? + t) � Inv(l?).

That is, a DTIOM is initializable if it can stay in the initial state until the first tick of

the clock.

Another important property is that a DTIOM can make independent progress (which

we adapt from (David et al., 2010)) in the sense that it is able to make a transition from

any reachable state without forcing the environment to provide any input:

Definition 4.3 (Independent progress). A DTIOM M is said to make independent

progress if, for every reachable state (l, v), there is an edge (l, A, C,R, l′) such that:

(a) A ⊆ ActOM ∪ActτM
(b) v + δM � C
(c) for all 0 ≤ t ≤ δM, (v + δM)R + t � Inv(l′)

As an example, bothMx andMy given in Ex. 3.1 are initializable and make independent

progress.

Proposition 4.2. Any initializable DTIOM that makes independent progress is consis-

tent.

Notice that checking that a timed machine makes independent progress requires only the

analysis of properties of its reachable states. In practice, this can be done using a syntactic

check on the Büchi automaton as constructed in Sec. 3.3: a given DTIOM M makes

independent progress iff all reachable states (l,ν) of the equivalent Büchi automaton BM
have at least one outgoing transition (l,ν)

A→ (l′,ν′) with A ⊆ ActOM∪ActτM. Because BM
has only finitely many states, denoted by |BM|, and finitely many transitions, denoted

by |EM|, making independent progress can be checked in time O(|BM| · |EM|).

4.2. Compositional consistency checking

In order to investigate conditions that can guarantee compositionality of consistency

checking, we start by remarking that the fact that two DTIOMsM1 andM2 are such that

δ1 and δ2 are commensurate simply means that we can find a clock granularity in which

we can accommodate the transitions that the two DTIOMs perform: by itself, this does

not ensure that the two DTIOMs can jointly execute their input/output synchronisation

pairs. For example, if δ1 = 2 and δ2 = 3 and M2 only performs non-empty actions at

odd multiples of 3, the two machines will not be able to agree on their input/output
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Fig. 6. The TIOA A′.

synchronisation pairs. For the DTIOMs to actually be able to interact with each other it

is necessary that their input/output synchronisation pairs can be performed on a common

multiple of δ1 and δ2.

Definition 4.4 (Cooperative). A DTIOM M is said to be cooperative in relation to

Q⊆ActM and a multiple δ of δM if the following holds for every (l, v) reachable at a time

T such that (T + δM) is not a multiple of δ:

for every edge (l, A, C,R, l′) ∈ EM such that v+δM � C and (v+δM)R+t � InvM(l′)

for all 0 ≤ t ≤ δM — i.e., the machine makes a transition at a time that is not a

multiple of δ — there exists an edge (l, A\Q,C ′, R′, l′′) such that v + δM � C ′ and,

for all 0 ≤ t ≤ δM, (v + δM)R
′

+ t � InvM(l′′) — i.e., the machine can make an

alternative transition that executes all the actions of the original transition except

those in Q.

Essentially, being cooperative in relation to Q and δ means that the machine will not force

transitions that perform actions in Q at times that are not multiples of δ. In practice, this

can be verified using a syntactic check on the states of the equivalent Büchi automaton

that can be reached with a number of transitions n such that n + 1 is not a multiple

of δ/δM. This check can be done in time O( δ
δM
· |BM| · |EM|2), where BM is the Büchi

automaton defined in Sec. 3.3.

Example 4.1. My from Ex. 3.1 is cooperative in relation to {a, b} and δ = 2. In contrast,

the machine M′ with δ′ = 1 and the TIOA A′ presented in Fig. 6 is not cooperative in

relation to {a, b} and δ = 2. Indeed, the fact that the state corresponding to the location

1 is reached at time 4 enables the transition (1, {a}, y ≥ 5, ∅, 2), which cannot be replaced

by (1, ∅, true, ∅, 1) because the last condition — for all 0 ≤ t ≤ 1 = δy, 5 + t ≤ 5 — is

violated. Because the machineM′ forces the output of a at time 5, it is easy to conclude

that its composition with the machine Mx from Ex. 3.1 (which has a clock granularity

δx = 2) at the time the machines start their execution results in an inconsistent DTIOM.

In relation to the composition of two DTIOMsM1 andM2, the idea is to require that a

common multiple of δ1 and δ2 exists such that both DTIOMs are cooperative in relation

to ActM1∩ActM2 . However, this is not enough to guarantee that the two DTIOMs can

actually work together: we need to ensure that if, say, M1 wants to output an action,

M2 can accept it.
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Definition 4.5 (DP-enabled). A DTIOM M is said to be DP-enabled in relation to

J⊆ActIM and δ multiple of δM if the following property holds for every B⊆J and state

(l, v) reachable at a time T such that (T+δM) is a multiple of δ:

for every edge (l, A, C,R, l′) ∈ EM such that v + δM � C and, for all 0 ≤ t ≤ δM,

(v + δM)R + t � InvM(l′) — i.e., the machine can make a transition — there exists

an edge (l, B ∪ (A\J), C ′, R′, l′′) such that v + δM � C ′ and, for all 0 ≤ t ≤ δM,

(v + δM)R
′

+ t � InvM(l′′) — i.e., the machine can make an alternative transition

that accepts instead B as inputs and still performs the same outputs (and inputs

outside J).

That is, a DTIOM is DP-enabled in relation to a set of inputs J and a multiple δ of its

clock granularity if, whenever it leaves a reachable state at a multiple of δ, it can do so

by accepting any subset of J , and if its outputs are independent of the inputs in J that

it receives. BothMx andMy from Ex. 3.1 are DP-enabled in relation to the set of input

actions ({a} and {b}, respectively) and δx = 2.

Notice that being DP-enabled is not the same as being input-enabled (Kaynar et al.,

2006) in that we work with sets of actions (synchronisation sets), not just individual

actions as labels of edges. Because, in our case, inputs and outputs can occur together,

we need to ensure that there is no dependency between those that are included in the

same synchronisation set. This notion was introduced in (Delahaye et al., 2013) where

we used a communication model based on delivery and publication of messages, hence

the acronym DP .

Being DP-enabled can be verified using a syntactic check on states of the equivalent

Büchi automaton that can be reached in a number of steps n such that n+1 is a multiple

of δ/δM. This can be done in O( δ
δM
·|BM|·|EM|2 ·2|Act

I
M|), with |BM| as given in Sec. 3.3.

We now investigate how the composition of two DTIOMs can be shown to be consistent.

We start by analysing how properties behave under refinement and composition.

Lemma 4.1. If a DTIOM M is initializable (makes independent progress, is DP-

enabled / cooperative in relation to J and δ′), then so is Mk for all k ∈ N>0.

That is, refinement preserves initializability, independent progress, being DP-enabled and

being cooperative.

Lemma 4.2. Let Mi = 〈δi,Ai〉, for i = 1, 2, be two δ-compatible DTIOMs. Let M =

δ

n(li,vi,ti)

i=1,2
Mi where, for i = 1, 2, (li, vi) is a state of Mi reachable at time ti. Let δ′1 be

a multiple of δ1 such that t1 is a multiple of δ′1.

(a)M is initializable.

(b) IfM1 is DP-enabled in relation to J ⊆ ActI1 and δ′1, thenM is DP-enabled in relation

to J \ActO2 and δ′1.

(c) If M1 is cooperative in relation to Q ⊆ ActO1 \ ActI2 and δ′1, then M is cooperative

in relation to Q and δ′1.

Notice that for the preservation of being DP-enabled we need to remove from J all

actions that were used for synchronising withM2, which are necessarily in ActO2 . This is
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because they become internal to the composition and, therefore, are no longer available

for synchronisation. The preservation of being cooperative is relative to a set of actions

that are not used for synchronisation. Both results, stated for a specific δ′1 multiple of

δ1, only hold if M1 is in a state reached at a time multiple of δ′1.

Theorem 4.1 (Compositionality). Let M1 and M2 be δ-compatible DTIOMs that

can make independent progress. Let M =
δ

n(li,vi,ti)

i=1,2
Mi where, for i = 1, 2, (li, vi) is a

state of Mi reachable at time ti.

If, for some δ′ multiple of δ1 and δ2 such that t1 and t2 are multiples of δ′,M1 is DP-

enabled in relation to ActI1 ∩ActO2 and δ′, M2 is DP-enabled in relation to ActI2 ∩ActO1
and δ′, and both M1 and M2 are δ′-cooperative in relation to Act1 ∩ Act2, then M is

initializable and makes independent progress (and, hence, by Prop. 4.2, is consistent).

This result allows us to conclude that the machines Mx and My presented in Ex. 3.1

can work together if, at composition time, both machines are in states reached at a time

multiple of 2. This is because, as noted before, Mx and My are DP-enabled in relation

to δ′ = 2 and {a} and {b}, respectively, and are cooperative in relation to {a, b} and

δ′ = 2. In particular, this means that both compositions we considered in Ex. 3.3 are

both consistent.

The results stated in this section can also be used to ensure, in a compositional way,

that the composition of three or more machines is consistent. Let

M =
δ

n(li,vi,ti)

i=1,2
Mi

and let δ′i be a multiple of δi such that ti is a multiple of δ′i. From Lem. 4.2, if Mi is

DP-enabled in relation to J ⊆ ActIi and δ′i, M is DP-enabled in relation to J\ActO
i

and

δ′i, with 1=2 and 2=1. Moreover, if Mi is cooperative in relation to Q ⊆ ActOi \ ActIi
and δ′i, M is cooperative in relation to Q and δ′i. This implies that, in order to ensure

that the composition of M with a third machine M3 (which can itself be the result of

a composition) is consistent, we can verify the required properties (being DP-enabled

and cooperative) over the component machines: we do not need to make checks over the

machines resulting from the compositions, i.e., our method is compositional.

4.3. Feasibility

The property of being DP-enabled is related to a stronger notion of consistency called

‘feasibility’: whereas consistency guarantees the existence of an execution, feasibility re-

quires that, no matter what inputs the machine receives from its environment, it can

produce an execution.

Definition 4.6 (Feasible). A DTIOMM is said to be feasible in relation to J ⊆ ActIM
and a multiple δ of δM if it is initializable and, for every δ-timed trace λ over J and state

(l, v) reachable at a time T such that (T + δM) is a multiple of δ, there is an execution

starting at (l, v) that generates a δM-timed trace λ′ such that λ′|J � λ, where λ′|J is the

timed trace obtained from λ′ by forgetting the elements in ActM \J from the underlying
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action sequence. A DTIOM M is said to be feasible if it is feasible in relation to ActIM
and δM.

This notion of feasibility is similar to the one used, for example, in (Kaynar et al., 2006),

which we have relativised to given sets of input actions in order to account for structured

interactions with the environment.

Proposition 4.3. A DTIOMM is feasible in relation to J ⊆ ActIM and a multiple δ of

δM if it is initializable, makes independent progress and is DP-enabled in relation to J

and δ.

In relation to the compositionality of feasibility, we can prove:

Theorem 4.2. Let M1 and M2 be δ-compatible DTIOMs that can make independent

progress. LetM =
δ

n(li,vi,ti)

i=1,2
Mi where, for i = 1, 2, (li, vi) is a state ofMi reachable at

time ti.

Let δ′1 be a multiple of δ1 such that t1 is a multiple of δ′1 and J ⊆ ActI1. If

1)M1 is DP-enabled in relation to J and δ′1, and

2) for some δ′ multiple of δ1 and δ2 such that t1 and t2 are multiples of δ′,

(a)M1 is DP-enabled in relation to ActI1 ∩ActO2 and δ′

(b)M2 is DP-enabled in relation to ActI2 ∩ActO1 and δ′

(c) both M1 and M2 are δ′-cooperative in relation to Act1 ∩Act2
then M is feasible in relation to J \ActO2 and δ′1.

5. Networks of timed machines

The systems that are now operating in cyberspace are best modelled as networks of

machines, where each machine performs local computations and interacts with other

machines to achieve some goal. A further aspect of those networks is that they are

dynamic, i.e., they are not assembled at design time by a software engineer, but result

from interconnections between existing networks established at run time, while they

are executing, possibly performed by middleware components (e.g., in the context of

service-oriented architectures (Papazoglou et al., 2007)). This ensures that systems can

procure resources or services only when they are required and according to constraints

that depend on current needs of those systems.

In this section, we provide a mathematical model for such dynamic networks of timed

machines abstracting away from the way in which services or resources are procured (see

(Fiadeiro et al., 2011) for a formalisation of service discovery, selection and binding). Our

model is based on graphs whose nodes are labelled with localised and interfaced timed

machines and whose edges are labelled with relations that establish how timed machines

interact with each other.
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5.1. Localised timed machines

In order to model the dynamic aspects of networks, we need to know the execution history

of a given timed machine when it joins a network — the traditional, design-time (static)

way of constructing systems takes components at their initial state. This motivates the

following definition:

Definition 5.1 (Localised timed machine). A localised timed machine is a pair

〈M, η〉 — denoted M@η — where M is a consistent DTIOM (in the sense of Def. 4.1)

and η (the history ofM) is either a sequence consisting of the initial state ofM— which

we denote by ηM — or one of its partial executions starting at the initial state of M.

We use the following composition operation on partial sequences: given a partial execution

η and another partial execution η′ whose first state is the last state of η, we denote by

η; η′ the partial execution that follows from η by executing η′. If η′ consists of only one

state (the last state of η) then η; η′ = η.

We denote by (lη, vη) the state ofM reached at the end of η, and by tη the (local) time

at which that state was reached (0 in the case of ηM). We ask that M be consistent so

that, as a system, it can generate at least one trace (which could consist of the sequence

of the empty set of actions, i.e., the machine might remain idle).

We are now interested in the behaviour of the timed machine from the designated

reachable state; therefore, we adapt the notions of execution, behaviour and language

given in Defs. 3.2 and 3.1 for DTIOMs:

Definition 5.2 (Execution, behaviour and language). The executions and partial

executions ofM@η are those ofM that start at (lη, vη). The behaviour JM@ηK ofM@η

is the set of its executions and its language ΛM@η is the r-closure of the set of timed

traces defined by JM@ηK.

Notice that M and M@〈l?, v?〉, where l?, v? are the initial location and clock valuation

of AM, respectively, are essentially the “same” (even if, formally, they are different

structures: the former is a machine and the latter is a localised machine).

The following is a trivial (but useful) property of executions of localised timed ma-

chines:

Proposition and Definition 5.1. Every trace λ=〈σ, τδM〉∈ΛM@η defines the trace

η;λ=〈ση;σ1, τδM〉∈ΛM where ση is the sequence consisting of ∅ followed by the sequence

of sets of actions defined by η, and σ1 is the suffix of σ starting at position 1.

Notice that we use the suffix σ1 in the concatenation because, by Def. 2.1, every timed

trace starts with the empty set of actions at time 0, which needs to be removed.

Corollary 5.1. Every trace λ = 〈σ, τ〉 ∈ ΛM@η defines η;λ = 〈ση;σ1, τη; τ ′〉 ∈ ΛM
where ση is as above, τη = 〈0, . . . , tη〉, and τ ′(i) = τ(i+ 1) + tη.
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5.2. Limitations of the algebra of timed machines

The traditional approach to system modelling based on a component algebra uses the

composition operator of that algebra to model the behaviour of a composite system.

For example, in typical process algebras, the (parallel) composition of two processes

is taken to provide a model of the joint execution of those processes according to a

given protocol (for example, synchronisation of inputs with outputs). One of the major

differences between the approach to systems that we are proposing in this paper and the

traditional ones becomes apparent when we analyse parallel composition of machines in

more detail, which we do in this section.

The composition of two TIOA as defined in Sec. 2.2 and, by extension, the homogeneous

composition of two DTIOMs as defined in Sec. 3.2, can be taken as a model of a system

of two components synchronising on their shared input/output pairs. This is because

the language that results from the composition coincides with the intersection of the

languages of the components, which is what is usually taken to be the joint behaviour of

the system of the two components in a trace-based semantic domain.

More precisely, it is not difficult to prove that, if two machines M1@η1 and M2@η2

have the same granularity δ, the language ΛM of the composition M =
f(lηi ,vηi ,tηi )
i=1,2 Mi

is the intersection ι1(ΛM1@η1) ∩ ι2(ΛM2@η2) where

— ιi is the inclusion of Acti in Act1∪Act2
— ιi(ΛMi@ηi) = {〈σ, τ〉 : 〈σ|ιi , τ〉 ∈ ΛMi@ηi} where, for every k, σ|ιi(k) = σ(k) ∩ Acti

(see Def. 2.3)

That is, the language of the parallel composition consists of the timed traces that project

to timed traces of the languages of the machines.

If M1@η1 and M2@η2 have different clock granularities δ1 and δ2, respectively, we

can still calculate ι1(ΛM1@η1) ∩ ι2(ΛM2@η2), which is the joint behaviour of the two

machines synchronising on shared inputs and outputs at times that are multiple of both

δ1 and δ2. If no such multiples exist, the two machines cannot synchronise and, therefore,

either they do not have liveness requirements (in the sense that they are not required to

eventually do something, i.e., their languages include timed traces that only execute the

empty set of actions) or they cannot agree on any timed trace — their interconnection

is inconsistent.

If δ1 and δ2 are commensurate, i.e., admit a common divisor δ, we saw in Sec. 3.2

how, through the notion of refinement, we can define the heterogeneous composition of

two compatible DTIOMs. However, the language of a heterogeneous composition is not

necessarily the intersection of the languages of the components. For example, the former

will consist of traces that refine the granularity defined by the common divisor of the

clock granularities of the two timed machines, whereas the latter may have traces that

do not conform to that time pattern. In this sense, parallel composition of machines does

not capture the joint behaviour of the system consisting of those machines.

Nevertheless, if the machines are compatible, their parallel composition is a best ap-

proximation of their joint behaviour:

Theorem 5.1. Let Mi@ηi – i = 1, 2 – be such that M1 and M2 are compatible and
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let δ be the greatest common divisor of their clock granularities. The composition

M =
δ

n(lηi ,vηi ,tηi )

i=1,2
Mi

is the machine that best approximates Λ = ι1(ΛM1@η1) ∩ ι2(ΛM2@η2), i.e.,

— ΛM w Λ and,

— for any other machine M′ such that ΛM′ w Λ, M′ wM.

Having a best approximation is important so that properties of the joint behaviour of the

two localised timed machines can be inferred from or simulated by that of the composite

machine. For example, this result is important to certify that the behaviour Λ of a

system of components that implement given compatible machines Mi@ηi – i = 1, 2 – is

not empty and, hence, that the components can indeed operate together. This is because,

by Theo. 5.1, M =
f(lηi ,vηi ,tηi )
i=1,2 Mi is such that ΛM w Λ and, hence, if M is consistent,

Λ is not empty.

This is the starting point for the network algebra that we define in the remainder of

this section.

5.3. Interfaced machines, attachments and networks

In the previous section, we have shown that the machine that results from applying the

composition operator to two machines only approximates their joint behaviour. That is,

the algebra of timed machines that we developed in Sec. 3.2 does not provide an exact

model for systems of machines.

In the context of modern systems (of systems) whose structure change as they inter-

connect, dynamically, with other systems, reducing a system to a (big) component does

not make sense either: where in traditional software engineering a system is delivered as

a whole to a client, networks of systems that operate in cyberspace are not delivered to

anyone — they behave autonomously. That is, we are interested in networks as objects.

This is why we develop instead an algebra of networks of localised timed machines

that can capture the dynamics of networks and over which we can reason about the

joint behaviour of the machines that execute over the network; the composition operator

of this network algebra does not compose machines — it interconnects them without

reducing them to a single machine.

In order to be able to be interconnected in networks, machines need interfaces through

which they can expose the actions (input or output) through which they can interact

with other machines. For that purpose, we organise actions in sets that we call ports: a

port is a finite non-empty set (of actions).

Definition 5.3 (Interfaced timed machine). An interfaced DTIOM is a pair 〈M, γ〉
where

—M = 〈δ,A〉 is a DTIOM;

— γ is a finite set of mutually disjoint ports such that ActIA ∪ActOA =
⋃
M∈γM .

That is, each input and each output action of the machine belongs to exactly one of its
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ports. Notice that ports may have a mix of input and output actions. This is because ports

are abstractions that are convenient for organising networks of machines (as formalised

below) where machines exhibit, at each port, interactions that may be more complex

than a simple input/output relation.

Because we want that machines can bind to other machines at run time, not design

time, it would not be realistic to assume that machines have mutually disjoint alphabets.

Therefore, we need a way of interconnecting machines that is not based on shared names,

i.e., we need explicit, not implicit interconnections.

Definition 5.4 (Attachment). An attachment between 〈M1, γ1〉 and 〈M2, γ2〉 is a

bijection ξ : M1 ↔M2 – M1∈γ1 and M2∈γ2 – that reverses polarities, i.e., if a1ξa2 then

a1 ∈ ActI1 iff a2 ∈ ActO2 .

That is, an attachment establishes a one-to-one correspondence between two ports such

that any two actions that are connected have opposite I/O polarities.

Interfaced timed machines can be localised in exactly the same way as timed machines

(Def. 5.1), for which we use the notation 〈M, γ〉@η. In the rest of the paper, we often

refer to localised interfaced timed machines simply as ‘timed machines’ or ‘machines’.

We can now define networks of (localised interfaced) timed machines as follows:

Definition 5.5 (Network of timed machines). A network of localised interfaced

timed machines (NTM) α consists of:

— A finite undirected (multi)graph 〈N,E〉 where N is a non-empty finite set (of nodes)

and E is a finite set (of edges) equipped with a function that associates an unordered

pair {p, q} of distinct nodes to every edge e (which we normally denote e : {p, q}).
That is, we allow for more than one edge between any two nodes but no edge between

any node and itself.

— A labelling function that assigns to every node p a localised interfaced timed machine

αp and, to every edge e : {p, q}, an attachment ξe between αp and αq such that:

(a) Edges only connect machines with commensurate time granularities, i.e., if e :

{p, q} then αp and αp have commensurate time granularities.

(b) No port is involved in more than one attachment, i.e., if e1 : {p, q1} and e2 :

{p, q2} with q1 6= q2 then the port of αp that is used in ξe1 is different from that

used in ξe2 .

For every node p, we use Mp = 〈δp,Ap〉, γp and ηp to denote the various components

of αp, and Actp and Λp to denote the set of actions of Ap and the language of Mp@ηp,

respectively.

We also define the following sets and mappings:

— Actα is the set (alphabet) of actions associated with α, which is obtained as follows:

for every p ∈ N and every M∈γp,
– if there is an edge e = {p, q} and an attachment ξe between αp and αq that

connects M then, for every action a ∈M , {p.a, q.ξe(a)} ∈ Actα;

– otherwise, i.e., if M is not connected to any other node of the graph, for every

action a ∈M , p.a ∈ Actα.
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That is, we prefix all actions with the node from which they originate unless the

actions belong to a port that is connected in the graph, in which case the actions are

also paired with the actions to which they are attached to form synchronisation sets.

— For every p ∈ N , ιp is the function that maps Actp to Actα, which prefixes the actions

of Actp as described above.

— Λα = {λ ∈ Λ(Actα) : ∀p ∈ N(λ|ιp ∈ Λp)}.
— Πα = {π ∈ Π(Actα) : ∀p ∈ N(π|ιp ∈ Πp)}.

Note that Actα is well defined because no port is involved in more than one attachment

and, for any attachment ξ : M1 ↔ M2 associated with an edge e = {p1, p2}, the corre-

sponding synchronisation sets are of the form {p1.a1, p2.ξe(a1)}, which are the same as

{p2.a2, p1.ξ−1e (a2)} if a2 = ξe(a1).

It is important to note that the nodes of the graph are not machines: they are labelled

with machines. This means that several nodes may be labeled with the same machine

(several instances of the same machine are running autonomously in the network), or

with the same DTIOM but with different localisations (meaning that they joined the

network at different stages of execution), or with machines that share the same TIOA

but operate on a different clock granularity (meaning that the network connects devices

of the same kind but operating over different platforms). In a sense, machines act as

types and the nodes act as instances of the types that label them. This is reflected in the

use of the translations ι that prefix every action with the node to which they belong.

Also notice that, for every p∈N , ( |ιp) first removes the actions that are not in the image

of the language Actp by ιp, and then removes the prefix; in the case of synchronisation

sets, it also removes the action that belongs to the other node. Therefore, the set Λα
consists of all traces over the alphabet of the network that are projected to traces of the

languages of the timed machines in the network:

Λα =
⋂
p∈N

ιp(Λp)

We take this set to represent the behaviour of α. That is, the behaviour of the network is

given by the intersection of the behaviour of the timed machines translated to the lan-

guage of the network, which is how we defined the behaviour of the interconnection of

two timed machines in Sec. 5.2.

Notice that, because the automata involved are open, the translations applied to sets

of traces effectively open the behaviour of the machines to actions in which they are

not involved. Furthermore, because the languages of machines are r-closed, so is Λα (the

intersection of r-closed sets being r-closed), which is why we are able to deal with different

clock granularities.

A particular case of a network (see Fig. 7) is a graph with two nodes labelled with

the DTIOMs Mx and My of Ex. 3.3, each with a single interface — Actx and Acty,

respectively — and a single edge labelled with the identity {a, b} ↔ {a, b} and localised

at their initial states, which is well formed because δx and δy have commensurate clock

granularities and the identity reverses polarities. As discussed in Sec. 5.2 (Theo. 5.1), the
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machine Mx
f(A,0,0),(1,0,0)My is a best approximation of the behaviour of the network,

i.e., of ΛMx@(A,0) ∩ ΛMy@(1,0).

Mx Mya?
b!

a!
b?

Fig. 7. A network consisting of two nodes, one labelled with Mx and the other with My,

and an edge labelled with {a, b} ↔ {a, b} connecting the two nodes.

As also discussed in Sec. 5.2, we cannot necessarily find a machine M that generates

Λα as its language: because the different clock granularities in α do not necessarily agree

with each other, it is possible to have timed traces 〈σ, τ〉 in Λα for which there is no

clock granularity δ such that τ is a δ-time sequence; on the contrary, all timed traces

generated by a machine have a time granularity (that of its clock).

Definition 5.6 (Approximation). We say that a machine M is an approximation of

a network α (M w α) if ΛM w Λα. A machine Mα is a best approximation of α if

Mα w α and, for any other machine M such that M w α, M wMα.

Proposition 5.1. If M w α then δM is a common divisor of all the clock granularities

of the nodes of α.

Therefore, if no common divisor of all the clock granularities of the nodes of α exists, α

cannot be approximated by a machine.

We can generalise Theo. 5.1 to the case where a common divisor of all the clock

granularities of its nodes exists. In order to compute a machine that (best) approximates

α, we refine all the machines of α to operate over the greatest common divisor δα.

Theorem 5.2. Let α be a network such that a common divisor of all the clock granu-

larities of its nodes exists and δα be their greatest common divisor. The machine

M =
δα

n(lηp ,vηp ,tηp )

p∈Nα
ιp(Mp)

where the ιp translate the alphabet of the automata αp to Actα (Def. 5.5) and prefix all

clocks of the automata with p., is the best approximation of α.

A particular case is when α is connected, i.e., when there is a path between any two of

its nodes.

Proposition 5.2. For every connected network α, there is a common divisor of the clock

granularities of the machines that label its nodes.

Corollary 5.2. For every connected network α, there is a machine Mα that best ap-

proximates it.
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This result is useful to determine how a connected component of a network can be

executed (or simulated) over a processor (or set of processors sharing the same clock). It

will also be useful in the next section to reason about consistency of networks.

5.4. Dynamic composition of networks

A network consisting of just two machines with no interconnection between them can

hardly be meaningfully considered as a ‘system’: their behaviours do not interfere with

each other and, hence, no emergent behaviour would result from considering them to-

gether. Therefore, the networks that are of interest as building blocks of systems are

those that are connected. In this section, we provide an algebra of connected networks

whose composition operator interconnects two separate connected networks or adds an

interconnection within an existing connected network. To extend this algebra to arbi-

trary networks one would just need another operation of juxtaposing two networks. In

Sec. 5.5, we also discuss how important properties of networks can be reduced to those

of their connected components.

In order to establish interconnections, we need the notion of interaction-point, i.e.,

ports that are available to be interconnected:

Definition 5.7 (Interaction-point). An interaction-point of a network α is a pair

〈p,M〉 such that p∈Nα and M∈γp is not used in any edge e : {p, q} of α — we denote by

Jα the collection of interaction-points of α. For every interaction point 〈p,M〉, we define

〈p,M〉I = p.(M ∩ ActIp) and 〈p,M〉O = p.(M ∩ ActOp ) — the input and output actions

that belong to the interface M prefixed with p., respectively.

The following constructors can be defined over networks:

Definition 5.8 (Atomic network). We build an atomic network with a single node

labelled with an interfaced timed machine localised in its initial state.

Formally, given a consistent interfaced timed machine 〈M, γ〉, we build the network α〈M,γ〉
as follows:

— Its graph is 〈{p}, ∅〉.
— Its labelling function assigns 〈M, γ〉@ηM to p.

Because, as already argued, 〈M, γ〉 and α〈M,γ〉 are essentially the same, this operation

simply turns a consistent interfaced timed machine into a network.

Definition 5.9 (Binding operations). We define two constructors that add attach-

ments: one between two networks and the other within a network.

inter-binding: We attach an interaction-point of a connected network to an interaction-

point of another connected network. Because the machines associated with the cor-

responding nodes will need to interact via their interaction points, their clock gran-

ularities need to be commensurate. In the resulting network, the histories of all the

machines are updated with the partial executions that they will have performed at

the time of the binding.
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Formally, given:

— two connected networks 〈Ni, Ei, αi, ξi〉, i = 1, 2;

— an attachment ξ{q1,q2} : Mq1 ↔Mq2 between two interaction-points where qi ∈ Ni
and δq1 and δq2 are commensurate;

— for each i = 1, 2, a δαi-time prefix παi of Παi (the prefix of αi at the time of the

binding) and, for each p ∈ Nαi , a partial execution η′p of Mp whose first state is

the last state of ηp and such that the projection of παi to the behaviour of each

Mp refines the prefix generated by η′p (η′p is the partial execution performed by

Mp as part of αi);

the result of the inter-binding is the network (α1 ξ{q1,q2}
α2) defined as follows:

— Its set of nodes is the disjoint union of the sets of nodes of the two networks.

— Its set of edges is the disjoint union of the sets of edges of the two networks plus

an additional edge e : {q1, q2} connecting the two interaction points.

— Its node-labelling function assigns to every node pi ∈ Ni the same machine Mpi

but localised at ηpi ; η
′
pi (the history ofMpi at the time the binding is established).

— Its edge-labelling function assigns to every edge ei ∈ Ei the same attachment ξiei ,

and assigns to the new edge e : {q1, q2} the attachment ξ{q1,q2}.

intra-binding: Given a connected network, we add an attachment between two of its

interaction points (which are necessarily labelled with machines that have commensu-

rate clock granularities because the network is connected). In the resulting network,

the histories of all the machines are updated with the partial executions that they

will have performed at the time of the binding.

Formally, given:

— a connected network 〈N,E, α, ξ〉;
— an attachment ξ{q1,q2} : Mq1 ↔Mq2 between two of its interaction points;

— a δα-time prefix π of Πα (the prefix at the time of the binding) and, for each p ∈ N ,

a partial execution η′p ofMp whose first state is the last state of ηp and such that

the projection of π to the behaviour of each Mp refines the prefix generated by

η′p;

the result of the intra-binding is the network α+
ξ{q1,q2}

defined as follows:

— Its set of nodes is N .

— Its set of edges is E ∪ {e} where e /∈ E and e : {q1, q2}.
— Its node-labelling function assigns to every node p ∈ N the same machine Mp

but localised at ηp; η
′
p.

— Its edge-labelling function is identical to ξ on E and assigns to the new edge

e : {q1, q2} the attachment ξ{q1,q2}.
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Notice that, as a result of a binding, two of the interaction-points are lost, i.e., no more

interconnections can be made through the ports that were used. This achieves at the

network level what internal actions do at the machine level by removing input/output

pairs from the sets of input and output actions of machines that are composed in parallel.

Interconnecting machines in a network does not compose them in an algebraic sense (i.e.,

a new machine is not returned), but the ports that are interconnected are no longer

available for other interconnections.

Binding creates a new network, even in the case of intra-binding because of the addition

of a new attachment. This is why it is important that timed machines are localised in

networks: to determine the behaviour of the new network, we need to know the history of

each of the machines involved at the time of the binding as this will determine how they

are going to progress within the new context of interactions that the network creates.

The fact that the networks are connected, and that the intra-binding is performed

through attachments between machines whose clock granularities are commensurate

(which ensures that the new network is well defined), ensures that the binding can be

made when all the machines involved have reached a state, i.e., at a multiple of their clock

granularities. Therefore, given a trace of the new network, we can reconstruct a trace of

each of the machines involved, which ensures that machines are indeed autonomous, i.e.,

their behaviour is fully determined by the TIOA according to which they execute, their

clock granularities, and the interactions they have with other machines. Indeed, using

Cor. 5.1, we can establish the following two results:

Proposition 5.3. Let α′ be the result of inter-binding α1 and α2.

(1) Let pi ∈ Nαi and η′pi be the partial execution of Mpi at which the binding is made.

Given a trace λ′ ∈ Λα′ , (ηpi ; η
′
pi);λ

′|ιpi ∈ ΛMpi
.

(2) Let παi ∈ Παi be the prefix of αi at which the binding is made and ιi : Actαi→Actα′
the mappings between their two alphabets. Given λ′ ∈ Λα′ , παi .λ

′|ιi ∈ Λαi .

Proposition 5.4. Let α′ be the result of intra-binding within α.

(1) Let p ∈ Nα and η′p be the partial execution of Mp at which the binding is made.

Given a trace λ′ ∈ Λα′ , (ηp; η
′
p);λ

′|ιp ∈ ΛMp
.

(2) Let π ∈ Πα be the prefix of α at which the binding is made and ι : Actα→Actα′ the

mapping between their two alphabets. Given λ′ ∈ Λα′ , π.λ
′|ι ∈ Λα.

That is, any behaviour of a machine after a binding is in the language of the machine given

the history at the point of the binding. Furthermore, every trace that is generated after

the binding is an admissible continuation of the prefixes at the time of the binding; this

is because, although the synchronisation that results from the binding was not originally

required, it was admissible. Notice that inter- and intra-binding can only take place at

a time that is a multiple of the clock granularities of all the machines involved in the

networks.

Naturally, it still remains to investigate under which conditions we can guarantee

that the new network can generate any behaviour at all, i.e., that the machines can

interoperate according to the new interconnection, which we do in the next section.
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One can also define operations that unbind (destructors), i.e., remove an attachment,

which either produce a network if the removal of the attachment preserves connectivity,

or two networks otherwise.

Definition 5.10 (Unbinding operations). Given:

— a connected network 〈N,E, α, ξ〉;
— an edge e : {q1, q2};
— a prefix π of Πα at the time of the unbinding and, for each p ∈ N , a partial execution

η′p ofMp, such that the projection of π to the behaviour of eachMp is generated by

η′p;

we define the network α′ as follows:

— Its set of nodes is N .

— Its set of edges is E \ {e}.
— Its node-labelling function assigns to every node p ∈ N the same machine Mp but

localised at ηp; η
′
p.

— Its edge-labelling function is identical on E \ {e}.
The result of the unbinding is:

— α′ if the network is connected, which we denote by α−e ;

— otherwise, the two connected components that result from removing the edge, which

we denote by α−eq1 and α−eq2 .

Naturally, α−eq1 and α−eq2 can be considered as the connected components of the network

obtained by simply juxtaposing them.

We can also prove:

Proposition 5.5. Let α′ result from unbinding within α.

(1) Let p ∈ Nα′ and η′p be the partial execution of Mp at which the unbinding is made.

Given a trace λ′ ∈ Λα′ , (ηp; η
′
p);λ

′|ιp ∈ ΛMp
.

(2) Let π ∈ Πα be the prefix of α at which the unbinding is made and ι : Actα′→Actα the

mapping between their two alphabets (which reflects the removal of the attachment).

Given π.λ ∈ Λα, λ|ι ∈ Λα′ .

That is, like for binding, any behaviour of a machine after unbinding is in the language

of the machine given the history at the point of the binding. However, the result is now

that any suffix that could have been generated in the original network after unbinding is

an admissible trace of the new network.

5.5. Consistency and feasibility

We now generalise the notions of consistency (Def. 4.1) and feasibility (Def. 4.6) to

networks.

Definition 5.11 (Consistent network). A network α is consistent if Λα 6= ∅.

Consistency means that there is a timed trace that is shared by all timed machines
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(nodes) as connected through the attachments (edges). A stronger property requires that,

no matter what inputs the network receives from its environment at an interaction-point,

it can produce a joint timed trace.

Definition 5.12 (Feasibility). Let α be a network. The network α is said to be feasible

in relation to an interaction-point 〈p,M〉 and a multiple δ of δp if, for every δ-timed trace

λ over 〈p,M〉I , there is a trace λ′ ∈ Λα such that λ′|〈p,M〉I � λ, where λ′|〈p,M〉I is the

timed trace obtained from λ′ by forgetting the elements in Actα \ 〈p,M〉I from the

underlying action sequence.

A network α is feasible if it is feasible in relation to Jα (the collection of all its

interaction-points) and the corresponding clock granularities.

Returning to the discussion at the beginning of Sec. 5.4, consistency and feasibility are

only challenging properties to prove for connected components of networks: two networks

that are brought together as a network without any interconnection added to them

will be consistent (resp. feasible) if and only if the component networks are. That is,

the consistency or feasibility of a network can always be reduced to the consistency or

feasibility of their connected components.

Therefore, we restrict the checking of consistency and feasibility to connected networks.

We do so by extending the notions introduced in Sec. 4 to connected networks using

Theo. 5.2, i.e., by using properties of the timed machineMα that is a best approximation

of α.

Definition 5.13. Let α be a connected network.

— α is said to make independent progress iff Mα makes independent progress.

— α is said to be DP-enabled in relation to one of its interaction-points 〈p,M〉 iff Mα

is DP-enabled in relation to 〈p,M〉I and δp (note that δp is a multiple of δα).

— α is said to be cooperative in relation to one of its interaction-points 〈p,M〉 and a

multiple δ of δp, iff Mα is cooperative in relation to 〈p,M〉O and δ.

The following theorem, which is the counterpart of Prop. 4.2 for networks, results directly

from the fact that, for any connected network α, Mα w α (Theo. 5.2).

Proposition 5.6. If a connected network α makes independent progress, then it is

consistent. If α is also DP-enabled in relation to each of its interaction-points, then it is

feasible.

Notice that, because the machines that operate in any network α need to be consistent,

Mα is necessarily initializable. We consider now how the other properties can be checked

in a compositional way for the constructors (atomic network and binding operations).

The checking of consistency and feasibility of atomic networks reduces to checking

those properties over the DTIOM that labels the node, which has been covered in Sec. 4.

We now investigate how consistency and feasibility of networks obtained through bind-

ing can be checked. We first check properties of a network built through intra-binding:

Theorem 5.3. Let α be a connected network and ξ{p,q} : Mp ↔ Mq be an attachment

where 〈p,Mp〉 and 〈q,Mq〉 are interaction points such that δp and δq are commensurate.
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(1) If α makes independent progress and is DP-enabled in relation to the interaction

points 〈p,Mp〉 and 〈q,Mq〉 and, for some δ common multiple of δp and δq, α is both

δ-cooperative in relation to 〈p,Mp〉 and 〈q,Mq〉, then α+
ξ{p,q}

also makes independent

progress and, therefore, is consistent.

Moreover, for every interaction point 〈v,Mv〉 of α different from those involved in the

attachment:

(2) If α is DP-enabled in relation to 〈v,Mv〉 so is α+
ξ{p,q}

(3) If α is cooperative in relation to 〈v,Mv〉 and δ multiple of δv so is α+
ξ{p,q}

.

Therefore, under the conditions of (1) and (2) above, we can conclude that, for every

interaction point 〈v,Mv〉 of α different from those involved in the attachment, α+
ξ{p,q}

is

feasible in relation to 〈v,Mv〉 if so is α.

Therefore, adding an attachment to a connected network does not change the sufficient

conditions that determine the consistency and feasibility of the network.

In summary, the properties of making independent progress, being cooperative and

being DP-enabled can be checked compositionally for connected networks, reducing the

proofs of having those properties to the atomic cases (which are checked over simple

machines).

Finally, we check networks built through inter-binding:

Theorem 5.4. Let α1 and α2 be two disjoint connected networks and ξ{p,q} : Mp ↔Mq

be an attachment where 〈p,Mp〉 is an interaction point of α1 and 〈q,Mq〉 an interaction

point of α2 such that δp and δq are commensurate.

(1) If α1 and α2 make independent progress, α1 is DP-enabled in relation to 〈p,Mp〉, α2

is DP-enabled in relation to 〈q,Mq〉, and for some δ common multiple of δp and δq,

α1 is cooperative in relation to 〈p,Mp〉 and δ, and α2 is cooperative in relation to

〈q,Mq〉 and δ, then (α1 ξ{p,q} α2) also makes independent progress and, therefore, is

consistent.

Moreover, for every interaction point 〈v,Mv〉 of αi different from that involved in the

attachment:

(2) If αi is DP-enabled in relation to 〈v,Mv〉 so is (α1 ξ{p,q} α2).

(3) If αi is cooperative in relation to 〈v,Mv〉 and δ multiple of δv so is (α1 ξ{p,q} α2).

Therefore, under the conditions of (1) and (2) above, we can conclude that, for every in-

teraction point 〈v,Mv〉 of αi different from that involved in the attachment, (α1 ξ{p,q} α2)

is feasible in relation to 〈v,Mv〉 if so is αi.

In relation to unbinding, the following property is a corollary of Prop. 5.5.2:

Theorem 5.5. Let α′ be a network that results from unbinding within α.

— α′ is consistent if so is α.

— α′ is feasible in relation to 〈p,Mp〉 and δ multiple of δp if so is α.

Notice that one cannot infer feasibility in relation to the new interaction points that are

created by the unbinding. To check feasibility in relation to those points one needs to go
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back to the properties of the individual machines in the network using the results proved

above for binding.

6. Related Work

In this section, we discuss related work on models of dynamic reconfigurable systems,

after which we cover other work that addresses heterogeneous time. Before that, we relate

the work reported in this paper with our own previous work.

The model we propose in this paper is based on the algebra for timed-machines pre-

sented in (Delahaye et al., 2014), which encompasses two operations over timed machines:

heterogeneous composition and refinement; this algebra was itself a generalisation of the

homogeneous timed component algebra that was proposed in (Delahaye et al., 2013) for

services. That algebra was extended herein with a new operator for the heterogeneous

composition of timed machines that are not in their initial states to account for run-time

interconnections of systems. This extension supports the definition of the new algebra of

networks, which includes operations through which a network can be modified at run time

through the binding of its components to components of other networks, intra-binding

and unbinding.

A different algebra for heterogeneous networks of timed systems is presented in (Fi-

adeiro and Lopes, 2017) that is more abstract in the sense that is based purely on traces,

i.e., it is independent of the nature of the machines that execute in the networks. That

algebra is based on an asynchronous communication model and multi-party interactions.

A logic is also proposed for specifying and reasoning about network behaviour.

Models for Dynamic Reconfiguration. Most of the work that addresses the mod-

elling of systems with a structure that can change at run time follows a process-calculi

approach. However, there have been a few attempts to develop state-based formalisms

that handle dynamicity.

A mathematical model for dynamic systems based on an extension of I/O automata is

presented in (Attie and Lynch, 2001; Attie and Lynch, 2016). Dynamic I/O Automata

support the dynamic creation of automata and the dynamic change in the communication

links (represented by changes in the signatures). The possible evolutions of a dynamic

network of interacting automata are defined at design-time and, hence, its semantics is

itself captured in terms of a (configuration) automaton.

A similar perspective is taken in (Fisher et al., 2011), which proposes Dynamic Reactive

Modules – a generalisation of Reactive Modules (Alur and Henzinger, 1999) – to support

the dynamic reconfiguration and creation/death of new processes by adapting concepts

from object-oriented programming languages to the world of state-transition systems

communicating by shared variables. More specifically, the mechanisms of object creation

from classes and referencing are adapted to modules and processes: module classes can

be instantiated, values can be passed during instantiation, and a reference to any newly

created module is returned so that it can communicate with the other modules and vice

versa.

Another state-based formalism that supports dynamic reconfiguration is Dynamic BIP
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(Bozga et al., 2012). This formalism extends the BIP component framework (Basu et al.,

2011) in order to support the description of architectures that admit dynamic change

of interactions among a (fixed) set of components. In contrast with the two other ap-

proaches mentioned above, BIP enforces a clear separation between the behaviour of

the individual elements and the way they are interconnected. However, Dynamic BIP

blurs this separation: interactions are not explicitly described but, instead, need to be

calculated for each state (based on the current state and the declared local constraints).

As far as we are aware, ours is the first framework that offers a component algebra

for run-time interconnection of systems that does not assume that the way the network

of systems can evolve is known at design time and is somehow executed from within

the systems. Our mathematical model for dynamic networks of systems abstracts away

from the reasons that, for instance, determine that a running system joins or leaves a

network at a given point in time. Models that capture this type of decisions can be

built upon our basic model, be it a central controller as in Dynamic I/O Automata or

object-oriented mechanisms as in Dynamic Reactive Modules; yet another model could

be based on service-oriented architectures, i.e., by building on service discovery, selection

and binding mechanisms, which we have explored in (Fiadeiro and Lopes, 2010), though

using a different component algebra.

Heterogeneous Time. Several researchers have addressed discrete timed systems with

heterogeneous clock granularities. However, the main focus has been either on specifica-

tion or on modelling and simulation, not so much on the challenges that heterogeneity

raises on run-time interconnection of systems. For example, Forget et al. propose in

(Forget et al., 2008) a synchronous data-flow language that supports the modelling of

multi-periodic systems. In this setting, each system has its own discrete periodic clock

granularity; composition is supported by a formal clock calculus that allows, in particu-

lar, for the refinement of clock granularities in a way that is similar to what we propose

in Sec. 3. Aside from the fact that we adopt an automata-based representation, the

main difference with our work is that they leave open the question of component-based

verification of properties such as consistency.

Similarly, in (Chen et al., 2015), the authors introduce a formal communication model

of behaviour for the composition of heterogeneous real-time cyber-physical systems based

on logical clock constraints. Although their model supports the combination of heteroge-

neous timed systems, the authors do not consider the particular case of discrete periodic

systems. In (Sander and Jantsch, 2004), the authors present a methodology (ForSyDe)

for high-level modelling and refinement of heterogeneous embedded systems; whilst the

semantics they propose, and the notion of clock-refinement they introduce, are similar in

essence to ours, their main focus is again on modelling and simulation, whereas ours is

on the structures that support compositional reasoning over properties of interconnected

systems.

To cope with heterogenous time scales, several approaches to the specification of real-

time systems, notably the Timebands Framework (Burns and Hayes, 2010), have also

adopted an explicit representation of time granularity. That framework, unlike others,

does not require that all descriptions be transformed into the finest granularity.
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Heterogeneous time scales are also addressed in (Bliudze and Krob, 2009) in the con-

text of a unified framework for discrete and continuous systems that adopts an approach

to modelling time similar to ours. Systems are regarded as dataflow transformers where

dataflows can be observed at any time but their values allowed to change only at dis-

crete moments specified by the underlying clock. Periodic clocks with a fixed period δ

are identified therein as the most important class of clocks for modelling real systems.

The challenge of data synchronisation between different time scales is addressed by con-

sidering that machines have separate clocks for input, output and internal operations

(constraining when inputs can be received, outputs can be produced and internal tran-

sitions can be performed, respectively). This work was generalised in (Golden et al.,

2012) by doing away with the clock periodicity and considering instead one-slot buffers

to synchronise dataflows.

Some attempts have also been made at addressing compositionality, for example in (Le

et al., 2013) through the concept of tag machine (Benveniste et al., 2005). However, the

notion of composition of systems introduced by the authors (using tag morphisms) is

more relaxed than ours in that it allows for the delay between events to be modified in

given tag machines. A consequence of this generality is that the language resulting from a

composition is not an approximation of the intersection of the original languages, which,

as argued in our paper, is essential for addressing global properties of interconnected

systems as implemented.

From a practical point of view, some tools have been developed for modelling and

simulating heterogeneous systems. For example, Ptolemy Classic (Buck et al., 1994)

introduced the concept of heterogeneous combinations of semantics such as asynchronous

models with timed discrete-events models. The concept was picked up in other tools such

as System C (Grötker, 2002), Metropolis (Gößler and Sangiovanni-Vincentelli, 2002) and

Ptolemy II (Lee and Zheng, 2007). The common characteristics of these tools is that

(1) they are based on a model that is more general than the one we propose in this

paper, and (2) they do not consider composition of discrete timed systems with different

periodic clocks. As a consequence, they are not able to provide results as strong as ours

when it comes to reasoning about specific global properties of interconnected systems.

7. Concluding remarks

This paper proposes a new mathematical framework for the compositional design of timed

heterogeneous systems based on an extension of timed input/output automata (Kaynar

et al., 2006; David et al., 2010) where automata are assigned a clock granularity (what we

call timed machines). Composition is thus extended to cater for automata that operate

over different clock granularities.

One key aspect of our work is that we support the design of heterogeneous timed

systems whose clock granularities can be made compatible without modifying the time

domains of the individual components. This is important so that components can be

interconnected at run time, not design time, which is essential for addressing the new

generation of systems that are operating in cyberspace, where they need to be inter-

connected, on the fly, to other systems. Our approach is truly compositional in that we
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can obtain properties of a whole system of interconnected components without having

to compute their composition.

Another novel contribution comes from the fact that we distinguish between an algebra

of timed machines — where the composition of two timed machines returns another timed

machine (their parallel composition) — and an algebra of networks of timed machines —

where composition binds networks at run time to create more complex networks. This

is important because, in the context of modern systems (of systems) whose structure

change as they interconnect, dynamically, with other systems, reducing a system to a

(big) component does not make sense: where in traditional software engineering a system

is delivered as a whole to a client, networks of systems that operate in cyberspace are

not delivered to anyone — they behave autonomously.

The main properties of networks that we address are consistency (there exists at least a

joint trace on which all components can agree) and feasibility (there exists at least a joint

trace on which all components can agree no matter what input they receive from their

environment). The technical results that support compositional verification of consistency

and feasibility are based on new notions of time refinement and of cooperation conditions

through which timed components can be ensured to be open to interactions with other

components across different time granularities.

There are three main directions for future work. The first is to implement and evaluate

our approach on concrete case studies. A possibility would be to implement the framework

as an extension of Ptolemy (Buck et al., 1994), which would give us access to industrial-

size case studies. The second aims at defining an operational semantics that captures the

symbiosis that exists between execution and binding, i.e, where state executions within a

network trigger the binding to another network, and where binding affects the execution

of a network — a preliminary approach has been presented in (Chauchat, 2015). The

third is to develop a logic and interface algebra for networks that is similar to the one

presented in (Fiadeiro and Lopes, 2013) but adapted to a real-time context and reflecting

run-time binding.
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Appendix

Proof of Lemma 3.1

For all locations l and clock valuations v and v′ such that v ∼ v′, the states (l, v) and (l, v′)

ofM have equivalent outgoing transitions, i.e. whenever state (l, v) can take a transition

(l, S, C,R, l′) ∈ E and end up in (l′, v′′), state (l, v′) can take the same transition and

end up in (l′, v′′′) with v′′ ∼ v′′′, and vice versa.

Proof. Let l ∈ Loc be a location and v ∼ v′ be two equivalent clock valuations. Assume

that there exists a transition (l, S, C,R, l′) ∈ E enabled in (l, v) and ending up in (l′, v′′).

By construction, we thus have

—for all 0 ≤ t ≤ δ, v + t |= Inv(l),

—v′′ = (v + δ)R, and

—v + δ |= C.

We now verify that the same holds for (l, v′). Consider a clock c ∈ C. Because v ∼ v′,
we have that either (a) v(c) = v′(c) or (b) v(c) > MaxA(c) and v′(c) > MaxA(c). In

both cases, we obtain that (l, S, C,R, l′) is enabled in (l, v′) and ends up in (l′, v′′′) with

v′′ ∼ v′′′.

Proof of Theo. 3.1

For all action sequences σ over Act, 〈σ, τδM〉 is a timed trace defined by an execution in

JMK iff σ(1)σ(2) . . . ∈ L(BM), where L denotes the language of the Büchi automaton.

Proof. Let λ = 〈σ, τδ〉 be a timed trace over Act and assume that it is defined by the

execution in JMK

(l0, v0)
σ(1),R1−→ (l1, v1)

σ(2),R2−→ (l2, v2) · · ·
where (l0, v0) is necessarily (l?, v?).

By definition of M, all involved valuations vi are such that vi(c) is a multiple of δ for

all c. As a consequence, we define νi to be such that, for all c ∈ C, νi(c) = vi(c)/δ if

vi(c) ≤ MaxA(c) and νi(c) = bMaxA(c)
δ c + 1 otherwise. Notice that, in this way, (l?,ν0)

coincides with the initial state of the Büchi automaton.

Consider now a state (li, vi) from the above execution. Because there exists a transition

(li, σ(i+ 1), Ci+1, Ri+1, li+1) ∈ E

that is enabled in (li, vi), there is a corresponding transition (li,νi)
σ(i+1)−→ (li+1,νi+1) in

BM. As a consequence, we obtain that σ(1)σ(2) . . . ∈ L(BM).

Reversely, assume that σ(1)σ(2) . . . ∈ L(BM). By construction, there exists a corre-

sponding execution in BM as follows:

q0
σ(1)−→ (l1,ν1)

σ(2)−→ · · ·

We have that q0 = (l?, v?/δ) where v?/δ is the clock valuation that, for every c ∈ C,

assigns v?(c)/δ if v?(c) ≤ MaxA(c) and assigns bMaxA(c)
δ c+ 1 otherwise.
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We build the corresponding execution from the initial state (l?, v?) of M. From the

initial state (l?, v?/δ) of the Büchi automaton, there is a transition (l?, v?/δ)
σ(1)−→ (l1,ν1)

in BM. Therefore, there exists a corresponding transition (l?, σ(1), C1, R1, l1) inM such

that (l?, v?)
σ(1),R1−→ (l1, v1) in M, with v1 = (v? + δ)R1 . In addition, we can show that

v1(c) = ν1(c) · δ for all c ∈ C such that v1(c) ≤ MaxA(c) + δ and ν1(c) = bMaxA(c)
δ c+ 1

otherwise. By Lemma 3.1, all transitions that can be taken from (l1, v1) can also be taken

from (l1,ν1 · δ) and vice versa. Thus, because there exists a transition

(l1,ν1)
σ(2)−→ (l2,ν2)

in BM, there is a corresponding transition from (l1,ν1 · δ) and hence the same holds for

(l1, v1) in M.

Following this reasoning, we build an execution of M as follows:

(l?, v?)
σ(1),R1−→ (l1, v1)

σ(2),R2−→ (l2, v2) · · ·
where for all vi, either vi(c) = νi(c) · δ or vi(c) > MaxA(c) + δ and νi(c) = bMaxA(c)

δ c+ 1.

Proof of Prop. 4.2

Any initializable DTIOM that makes independent progress is consistent.

Proof. Let M be a DTIOM that is initializable and makes independent progress. We

construct an execution of M

(l?, v?) = (l0, v0)
S0,R0−→ (l1, v1)

S1,R1−→ (l2, v2)
S2,R2−→ . . .

by choosing each edge (li, Si, Ci, Ri, li+1) as guaranteed by the definition of making in-

dependent progress and vi+1 = (vi + δM)Ri . The construction is good because M ini-

tializable guarantees that (l?, v?) is reachable and the definition of making independent

progress applied to (li, vi) guarantees that (li+1, vi+1) is reachable.

Proof of Lem. 4.1

Let k ∈ N>0.

(a) If a DTIOM M is initializable then so is Mk.

(b) If a DTIOM M can make independent progress then so can Mk.

(c) If a DTIOM M is DP-enabled in relation to J ⊆ ActIM and a multiple δ of δM then

Mk is DP-enabled in relation to J and δ.

(d) Let M be a cooperative DTIOM with respect to Q ⊆ ActM and a multiple δ of δM.

Then Mk is also cooperative in relation to Q and δ′.

Proof. Let k ∈ N>0.

(a) The result follows trivially from the construction ofMk: the initial location ofMk is

(l?, 0) and its invariant is InvM(l?), and the initial clock valuation ofMk is the same
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as that ofM and, hence, if v?+t � Inv(l?), for 0 ≤ t ≤ δM , then v?+t � InvMk
(l?, 0),

for 0 ≤ t ≤ δM/k.

(b) Let M be a DTIOM that can make independent progress and δ = δM. Consider

(l, i) ∈ LocMk
such that ((l, i), v) is reachable in Mk. We want to prove that Mk

can make independent progress from that state.

By the construction of Mk (cf. Def. 3.4), we know that if ((l, i), v) is reachable at a

time T in Mk then T = T ′ + i.δ/k for some time T ′ such that (l, v′ = v − i.δ/k) is

reachable in M at time T ′ (i.e., we wind up the clock to the previous ‘tick’ of M to

find a state of M with the same location that is necessarily reachable).

We have two cases to consider depending on whether T corresponds to the last ‘tick’

of Mk before T ′ + δM (in which case Mk performs the corresponding transition of

M), or T corresponds to an intermediate point between T ′ and T ′ + δM:

—If i = k − 1, because M can make independent progress and (l, v′ = v − i.δ/k) is

reachable inM, we know that there exists an edge (l, A, C,R, l′) ∈ EM such that:

(a) A ⊆ ActO∪Actτ , (b) v′+δ � C and (c) for all 0 ≤ t ≤ δ, (v′+δ)R+t � Inv(l′).

By construction, ((l, i), A,C,R, (l′, 0)) ∈ EMk
. Because

v + δ/k = v′ + (k − 1).δ/k + δ/k = v′ + δ

we conclude that (a) v + δ/k � C and (b) for all 0 ≤ t ≤ δ/k, (v + δ/k)R + t �
Invk((l′, 0)). Therefore, Mk can make independent progress when at ((l, i), v)

with i = k − 1.

—If i ∈ [0..k − 2] then, by construction, ((l, i), ∅, true, ∅, (l, i + 1)) ∈ EMk
and

InvMk
((l, i+1)) = InvM(l). Moreover, because (l, v′) is reachable inM, we have

that v′ + t � InvM(l) for all 0 ≤ t ≤ δ. Because v = v′ + i.δ/k, we can conclude

that (v + (δ/k)) + t � InvMk
((l, i + 1)), for all 0 ≤ t ≤ δ/k. Therefore, Mk can

make independent progress when at ((l, i), v) with i ∈ [0..k − 2].

(c) Let M be a DP-enabled DTIOM in relation to J ⊆ ActIM.

Consider B ⊆ J , an edge ((l, i), A,C,R, (l′, i′)) ∈ EMk
and a clock valuation v such

that: (a) ((l, i), v) is reachable in Mk at a time T such that T + δM/k is a multiple

of δ, (b) v+ δM/k � C, and (c) for all 0 ≤ t ≤ δM/k, (v+ δM/k)R + t � Inv((l′, i′)).

By construction, we know that if ((l, i), v) is reachable at a time T in Mk then

T = T ′ + i.δM/k for some time T ′ such that (l, v′ = v − i.δM/k) is reachable in

M at time T ′. Because T + δM/k is a multiple of δ (and, hence, of δM), we have

that i = k − 1. Again by construction, we have that i′ = 0, (l, A, C,R, l′) ∈ EM and

v + δM/k = v′ + δM.

BecauseM is DP-enabled, there exists an edge (l, B ∪ (A \ J), C ′, R′, l′′) ∈ EM such

that (a) v′ + δM � C ′, and (b) for all 0 ≤ t ≤ δM, (v′ + δM)R
′

+ t � Inv(l′′).

By construction, we have that ((l, i), B ∪ (A \ J), C ′, R′, (l′′, 0)) ∈ EMk
. From the

properties above we can conclude that (a) v + δM/k � C ′ and (b) for all 0 ≤ t ≤
δM/k, (v + δM/k)R

′
+ t � Invk((l′′, 0)).



Dynamic Networks of Heterogeneous Timed Machines 43

(d) LetM be a cooperative DTIOM with respect to Q ⊆ ActM and a multiple δ of δM.

Consider an edge ((l, i), A,C,R, (l′, i′)) ∈ EMk
and a clock valuation v such that:

(a) ((l, i), v) is reachable in Mk at a time T for which T + δM/k is not a multiple of

δ (b) v + δM/k � C and (c) for all 0 ≤ t ≤ δM/k, (v + δM/k)R + t � Inv((l′, i′)).

By construction, we know that if ((l, i), v) is reachable at a time T in Mk then

T = T ′ + i.δM/k for some time T ′ such that (l, v′ = v − i.δM/k) is reachable in M
at time T ′. We have two cases to consider:

—If i = k − 1, we have that i′ = 0, (l, A, C,R, l′) ∈ EM, and T + δM/k = T ′ + δM
(which implies that T ′+δM is not a multiple of δ). BecauseM is cooperative with

respect to Q and δ, we know that there exists an edge (l, A \Q,C ′, R′, l′′) ∈ EM
such that (a) v′+δM � C ′ and (b) for all 0 ≤ t ≤ δM, (v′+δM)R

′
+t � InvM(l′′).

By construction, it follows that ((l, i), A \ Q,C ′, R′, (l′′, 0)) ∈ EMk
. From the

properties above we can also conclude that (a) v + δM/k � C ′ and (b) for all

0 ≤ t ≤ δM/k, (v + δM/k)R
′
+ t � InvMk

((l′′, 0)).

—If i ∈ [0..k − 2], we have, by construction, that l′ = l, i′ = i+ 1, A = ∅, C = true,

and R = ∅. In this case, the result follows trivially because A \Q = A.

Preservation of properties under homogeneous composition

For the proof of Lem. 4.2 it is useful to establish first an auxiliary result for homogenous

composition.

Lemma 7.1. Let Mi = 〈δ,Ai〉, i = 1, 2, be two DTIOMs such that A1 and A2 are

compatible. Let M =
f(li,vi,ti)
i=1,2 Mi where, for i = 1, 2, (li, vi) is a reachable state at time

ti in Mi. Let δ′ be a multiple of δ such that t1 is a multiple of δ′.

(a) IfM1 is DP-enabled in relation to J ⊆ ActI1 and δ′, thenM is DP-enabled in relation

to J \ActO2 and δ′.

(b) If M1 is cooperative in relation to Q ⊆ ActO1 \ ActI2 and δ′, then M is cooperative

in relation to Q and δ′.

Proof.

(a) LetM1 be DP-enabled in relation to J ⊆ ActI1 and δ′ a multiple of δ and t1 a multiple

of δ′. Consider B ⊆ J \ActO2 , an edge ((l1, l2), A,C1 ∧C2, R1 ∪R2, (l
′
1, l
′
2)) ∈ EA1‖A2

and a clock valuation v1 ∪ v2 such that: (a) ((l1, l2), v1 ∪ v2) is reachable in M at a

time T such that T + δ is a multiple of δ′, (b) (v1 ∪ v2) + δ � C1 ∧C2, and (c) for all

0 ≤ t ≤ δ, ((v1 ∪ v2) + δ)R1∪R2 + t � Inv1(l′1) ∧ Inv2(l′2).

By construction of M (cf. Def. 2.7), we know that, for i = 1, 2, there exists an edge

(li, Ai, Ci, Ri, l
′
i) ∈ Ei such that: (a) Ai = A ∩ Acti, (b) vi + δ � Ci, and (c) for all

0 ≤ t ≤ δ, (vi + δ)Ri + t � Invi(l′i). By the construction of M, we also know that

(l1, v1) is reachable in A1 at a time t1 +T . The fact that t1 is a multiple of δ′ together

with the hypothesis that T + δ is a multiple of δ′ implies that t1 +T + δ is a multiple

of δ′,
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Because M1 is DP-enabled in relation to J and δ′, there exists an edge (l1, B ∪
(A1 \ J)), C ′1, R

′
1, l
′′
1 ) ∈ E1 such that: (a) v1 + δ � C ′1, and (b) for all 0 ≤ t ≤ δ,

(v1 + δ)R
′
1 + t � Inv1(l′′1 ).

Let A′ = B ∪ (A \ J). On the one hand, because B ⊆ J \ ActO2 ⊆ ActI1 and A1 =

A∩Act1, we have that A′ ∩Act1 = (B ∩Act1)∪ ((A \ J)∩Act1) = B ∪ (A1 \ J). On

the other hand, because A2 = A∩Act2, we have that A′ ∩Act2 = (B ∩Act2)∪ ((A \
J) ∩Act2) = (A \ J) ∩Act2 = A2.

Then, by construction, there exists an edge ((l1, l2), B∪(A\J), C1∧C2, R1∪R2, (l
′′
1 , l
′
2)) ∈

EA1‖A2
such that: (a) (v1 ∪ v2) + δ � C ′1 ∧C2, and (b) for all 0 ≤ t ≤ δ, ((v1 ∪ v2) +

δ)R
′
1∪R2 + t � Inv1(l′′1 )∧ Inv2(l′2). Hence, we can conclude that M is DP-enabled in

relation to J \ActO2 and δ′.

(b) LetM1 be cooperative in relation to Q ⊆ ActO1 \ActI2 and δ′, a multiple of δ such that

t1 is a multiple of δ′. Consider an edge ((l1, l2), A,C1∧C2, R1∪R2, (l
′
1, l
′
2)) ∈ EA1‖A2

and a clock valuation v1 ∪ v2 such that: (a) ((l1, l2), v1 ∪ v2) is reachable in M at a

time T such that T + δ is not a multiple of δ′, (b) (v1 ∪ v2) + δ � C1 ∧C2, and (c) for

all 0 ≤ t ≤ δ, ((v1 ∪ v2) + δ)R1∪R2 + t � Inv1(l′1) ∧ Inv2(l′2).

By the construction of A1 ‖ A2 (cf. Def. 2.7), we know that, for i = 1, 2, there exists

an edge (li, Ai, Ci, Ri, l
′
i) ∈ Ei such that: (a) Ai = A ∩ Acti, (b) vi + δ � Ci, and

(c) for all 0 ≤ t ≤ δ, (vi+δ)Ri + t � Invi(l′i). By the construction ofM, we also know

that (l1, v1) is reachable in A1 at a time t1 + T . The fact that t1 is a multiple of δ′

together with the hypothesis that T + δ is not a multiple of δ′ implies that t1 +T + δ

is not a multiple of δ′,

Because M1 is cooperative in relation to Q and δ′, there exists an edge (l1, A1 \
Q,C ′1, R

′
1, l
′′
1 ) ∈ E1 such that: (a) v1+δ � C ′1, and (b) for all 0 ≤ t ≤ δ, (v1+δ)R

′
1 +t �

Inv1(l′′1 ).

Let A′ = A \ Q. On the one hand, because Q ⊆ ActO1 \ ActI2, A′ ∩ Act1 = (A ∩
Act1) \Q = A1 \Q = A′1. On the other hand, we have that Q∩Act2 = ∅ and, hence,

A′ ∩Act2 = A ∩Act2 = A2.

Then, by construction, there exists an edge ((l1, l2), A\Q,C1∧C2, R
′
1∪R2, (l

′′
1 , l
′
2)) ∈

EA1‖A2
such that: (a) (v1 ∪ v2) + δ � C ′1 ∧C2, and (b) for all 0 ≤ t ≤ δ, ((v1 ∪ v2) +

δ)R
′
1∪R2 + t � Inv1(l′′1 ) ∧ Inv2(l′2). Hence, we can conclude that M is cooperative in

relation to Q and δ′.

Proof of Lem. 4.2

Let Mi = 〈δi,Ai〉, i = 1, 2, be two δ-compatible DTIOMs. Let M =
δ

n(li,vi,ti)

i=1,2
Mi

where, for i = 1, 2, (li, vi) is a reachable state at time ti in Mi. Let δ′1 be a multiple of

δ1 such that t1 is a multiple of δ′1.
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(a) IfM1 is DP-enabled in relation to J ⊆ ActI1 and δ′1, thenM is DP-enabled in relation

to J \ActO2 and δ′1.

(b) If M1 is cooperative in relation to Q ⊆ ActO1 \ ActI2 and δ′1, then M is cooperative

in relation to Q and δ′1.

Proof.

—Let ki = δi/δ. Lemma 4.1 (c) allows us to infer that Miki is DP-enabled in relation

to J and δ′1. Because δ′1 is a multiple of δ1 and, hence of δ, we are in conditions of

applying Lem. 7.1 (a), which ensures that M is DP-enabled in relation to J \ ActO2
and δ′1.

—Let ki = δi/δ. Lem. 4.1 (d) allows us to infer that Miki is cooperative in relation

to Q and δ′1. Because δ′1 is a multiple of δ1 and, hence of δ, we are in conditions of

applying Lem. 7.1 (b), which ensures that M is cooperative in relation to Q and δ′1.

Preservation of independent progress under homogeneous composition

For the proof of Theo. 4.1 it is useful to establish first an auxiliary result for homogenous

composition.

Lemma 7.2. Let Mi = 〈δ,Ai〉, i = 1, 2, be two DTIOMs that can make independent

progress such that A1 and A2 are compatible. Let

M =

(li,vi,ti)n

i=1,2

Mi

where, for i = 1, 2, (li, vi) is a reachable state at time ti in Mi.

M is initializable and, if, for some δ′ multiple of δ such that t1 and t2 are multiples of

δ′,M1 is DP-enabled in relation to ActI1 ∩ActO2 and δ′,M2 is DP-enabled in relation to

ActI2 ∩ActO1 and δ′, and bothM1 andM2 are δ′-cooperative in relation to Act1 ∩Act2,

then M makes independent progress (and, hence, by Prop. 4.2, is consistent).

Proof. Let Ai=〈Loci, l?i,Ci, v?i, Ei, Acti, Invi〉, for i = 1, 2.

The fact that M is initializable follows from (1) the fact that, by definition of M, its

initial state is ((l1, l2), v1∪v2) and Inv(l1, l2) = Inv1(l1)∧ Inv2(l2), and (2) the fact that

each (li, vi) is a reachable state in Mi (and, hence, for all 0 ≤ t ≤ δ, vi + t � Invi(li)).

Consider state ((l′1, l
′
2), v′1 ∪ v′2) reachable in M at time T . By definition of M and

because, each (li, vi) is a reachable state at time ti in Mi, it follows that, for i = 1, 2,

(l′i, v
′
i) is reachable inMi at time ti+T . Because eachMi can make independent progress,

for i = 1, 2, there is an edge (l′i, Ai, Ci, Ri, l
′′
i ) ∈ Ei such that (a) Ai ⊆ ActOi ∩ Actτi ,

(b) v′i + δ � Ci, and (c) for all 0 ≤ t ≤ δ, (v′i + δ)Ri + t � Invi(l′′i ). We have two cases to

consider:

—T is multiple of δ′:
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In this case, because each ti is a multiple of δ′, so is ti + T . Let A′ = (A1 \ (ActI1 ∩
ActO2 )) ∪ (A2 \ (ActI2 ∩ActO1 )) and A′i = A′ ∩Acti.
We have that A′1 = (A1 \ (ActI1 ∩ActO2 ))∪ (A2 ∩ActI1). BecauseM1 is DP-enabled in

relation to ActI1 ∩ActO2 and δ′, ti + T is multiple of δ′ and A2 ∩ActI1 ⊆ ActI1 ∩ActO2 ,

there is an edge (l′1, A
′
1, C

′
1, R

′
1, l
′′′
1 ) ∈ E1 such that (a) v′1 + δ � C ′1, and (b) for all

0 ≤ t ≤ δ, (v′1 + δ)R
′
1 + t � Inv1(l′′′1 ). Similarly, we can conclude that there is an

edge (l′2, A
′
2, C

′
2, R

′
2, l
′′′
2 ) ∈ E2 such that (a) v′2 + δ � C ′2, and (b) for all 0 ≤ t ≤ δ,

(v′2 + δ)R
′
2 + t � Inv1(l′′′2 ).

Then, by construction of A1 ‖ A2 and M, there exists an edge ((l′1, l
′
2), A′, C ′1 ∧

C ′2, R
′
1 ∪ R′2, (l′′′1 , l′′′2 )) in M such that: (a) (v′1 ∪ v′2) + δ � C ′1 ∧ C ′2, and (b) for all

0 ≤ t ≤ δ, ((v′1 ∪ v′2) + δ)R
′
1∪R

′
2 + t � Inv1(l′′′1 ) ∧ Inv2(l′′′2 ).

—T is not a multiple of δ′:

In this case, because each ti is a multiple of δ′, ti + T is also not a multiple of δ′. Let

A′ = A1 \ (Act1 ∩Act2) ∪A2 \ (Act1 ∩Act2) and A′i = Ai ∩Acti.
We have that, for i = 1, 2, A′i = A1 \ (Act1 ∩ Act2). Because, for i = 1, 2, Mi is δ′-

cooperative in relation toAct1∩Act2, we have that there is an edge (l′i, A
′
i, C
′
i, R
′
i, l
′′′
i ) ∈

Ei such that (a) v′i + δ � C ′i, and (b) for all 0 ≤ t ≤ δ, (v′i + δ)R
′
i + t � Invi(l′′′i ).

Then, by construction of A1 ‖ A2 and M, there exists an edge ((l′1, l
′
2), A′, C ′1 ∧

C ′2, R
′
1 ∪ R′2, (l′′′1 , l′′′2 )) in M such that: (a) (v′1 ∪ v′2) + δ � C ′1 ∧ C ′2, and (b) for all

0 ≤ t ≤ δ, ((v′1 ∪ v′2) + δ)R
′
1∪R

′
2 + t � Inv1(l′′1 ) ∧ Inv2(l′′2 ).

Proof of Theo. 4.1

LetMi, i = 1, 2, be two δ-compatible DTIOMs that can make independent progress. Let

M =
δ

n(li,vi,ti)

i=1,2
Mi

where, for i = 1, 2, (li, vi) is a reachable state at time ti in Mi.

If, for some δ′ multiple of δ1 and δ2 such that t1 and t2 are multiples of δ′,M1 is DP-

enabled in relation to ActI1 ∩ActO2 and δ′, M2 is DP-enabled in relation to ActI2 ∩ActO1
and δ′, and both M1 and M2 are δ′-cooperative in relation to Act1 ∩ Act2, then M is

initializable and makes independent progress (and, hence, by Prop. 4.2, is consistent).

Proof. From Lem. 7.2 follows thatM is initializable. Let ki = δi/δ. Lem. 4.1 allows us

to infer thatMiki makes independent progress, is DP-enabled in relation to ActI1 ∩ActO2
and δ′, and is cooperative in relation to Act1 ∩ Act2 and δ′. Because δ′ is a multiple of

δ, we can use Prop. 7.2, which ensures that M can make independent progress.

Proof of Prop. 4.3

A DTIOM M that is initializable, makes independent progress and is DP-enabled in

relation to J ⊆ ActIM and a multiple δ of δM is feasible in relation to J and δ.
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Proof. Let M be a DTIOM that is initializable, makes independent progress and is

DP-enabled in relation to J ⊆ ActIM and a multiple δ of δM. Let λ = 〈σ, τδ〉 be a δ-timed

trace over J and (l0, v0) a reachable state at a time T0 such that T0 + δM is a multiple

of δ. We construct an execution of M starting in (l0, v0)

(l0, v0)
S0,R0−→ (l1, v1)

S1,R1−→ (l2, v2)
S2,R2−→ . . .

as follows. At each state (li, vi), we start by choosing (li, S, C,R, l
′) as guaranteed by the

definition of making independent progress. Notice that, by construction, S ∩ActIM = ∅.
Let suppose that T0 = n.δM. If (n + 1).δM is not a multiple of δ, then we keep that

edge: (a) li+1 = l′, (b) Si = S, (c) Ri = R′, and (d) vi+1 = (vi + δM)R
′
.

If (n + 1).δM is a multiple of δ, then we use the property of being DP-enabled to

add to S the inputs of σ(i + 1): we choose (li, σ((i + 1)/δM) ∪ S,C ′, R′, l′′) and define:

(a) li+1 = l′′, (b) Si = σ((i+ 1)/δM) ∪ S, (c) Ri = R′, and (d) vi+1 = (vi + δM)R
′
.

Notice that the state (li+1, vi+1) is again reachable, ensuring that the construction can

be iterated. It is also evident that the δM-timed trace obtained from this execution is a

refinement of λ.

Proof of Theo. 4.2

LetMi, i = 1, 2, be two δ-compatible DTIOMs that can make independent progress. Let

M =
δ

n(li,vi,ti)

i=1,2
Mi

where, for i = 1, 2, (li, vi) is a reachable state at time ti in Mi. Let δ′1 be a multiple of

δ1 and J ⊆ ActI1. If

(1) M1 is DP-enabled in relation to J and δ′1, and

(2) for some δ′ multiple of δ1 and δ2 such that t1 and t2 are multiples of δ′,

(a)M1 is DP-enabled in relation to ActI1 ∩ActO2 and δ′

(b)M2 is DP-enabled in relation to ActI2 ∩ActO1 and δ′

(c) both M1 and M2 are δ′-cooperative in relation to Act1 ∩Act2
then M is feasible in relation to J \ActO2 and δ′1.

Proof. On the one hand, Theo. 4.1 ensures thatM can make independent progress and

is initializable. On the other hand, Lem. 4.2 ensures that M is DP-enabled in relation

to J \ ActO2 and δ′1. Hence, by Prop. 4.3 we can conclude that M is feasible in relation

to J \ActO2 and δ′1.

Approximation of networks by timed machines

Proof of Theo. 5.1

LetMi@ηi – i = 1, 2 – be such thatM1 andM2 are compatible and let δ be the greatest

common divisor of their clock granularities. The composition

M =
δ

n(lηi ,vηi ,tηi )

i=1,2
Mi
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is the machine that best approximates Λ = ι1(ΛM1@η1) ∩ ι2(ΛM2@η2), i.e.,

— ΛM w Λ and,

— for any other machine M′ such that ΛM′ w Λ, M′ wM.

Proof. Recall that ιi is the inclusion Acti ⊆ Act1 ∪ Act2. Moreover, we have that

ιi(ΛMi@ηi) = {〈σ, τ〉 : 〈σ|ιi , τ〉 ∈ ΛMi@ηi}. Let δ be the greatest common divisor of

δ1 and δ2. By definition, M =
f((lηi ,0),vηi ,tηi )
i=1,2 Miki where ki = δi/δ. From Def. 3.3,

M = 〈δ,A〉, where A is the TIOA we obtain by replacing the initial location and clock

valuation of A1 ‖ A2 with (lη1 , lη2) and vη1 ∪ vη2 , respectively.

M� Λ — Let λ be a timed trace of ΛM. By definition, λ is a refinement of a timed

trace λ′ generated by an execution β of M (i.e., its transitions are labelled with

the actions in λ′). For i = 1, 2, let βi be the projection of β over Miki , i.e., the

execution that is obtained by forgetting the locations, the actions and the clocks of

the other machine. From Def. 3.3, we can conclude that each is an execution of the

corresponding machine starting at the state ((lηi , 0), vηi).

Because βi is an execution ofMiki starting at the state ((lηi , 0), vηi), we can extract

an execution β′i of Mi by forgetting the ki − 1 intermediate edges that make Aiki
go from every location (l, 0) to (l, ki − 1), i.e., we retain the edge that makes the

transition from (l, ki − 1) to (l′, 0) — this edge also makes a transition from l to l′

in Mi. This execution of Mi starts at the state (lηi , vηi). Because the edges that

we forget are labelled with ∅, it is easy to see that λ′ is a refinement of the timed

trace extracted from the execution β′i and, therefore, belongs to ιi(ΛMi@ηi) because

ΛMi@ηi is r-closed.

Therefore λ′∈ιi(ΛMi@ηi) for i = 1, 2, i.e., λ′∈Λ.

M v Λ — Let λ = 〈σ, τ〉∈Λ. We need to prove that there exists λ′ ∈ ΛM that refines

λ.

Let i = 1, 2. By definition, λ|ιi is a refinement of a timed trace λi = 〈σi, τδi〉 generated

by an execution of Mi starting at the state (lηi , vηi). That execution refines to an

execution of Miki starting at the state ((lηi , 0), vηi), which generates the refinement

λiki of λi over the δ-time sequence (Def. 3.4).

From Defs. 2.7 and 3.4, the corresponding execution ofM starts at state (((lη1 , 0), (lη1 , 0)), vη1∪
vη2) and generates the δ-timed trace λ′′ that consists of the pointwise union of all the

ιi(λiki) — λ′′(n) = 〈n.δ, ι1(λ1k1)(n) ∪ ι2(λ2k2)(n)〉.
On the other hand, for every i and n, λ|ιi(n.ki) = ι−1i (λ′′(n.ki)) = λi(n). Therefore,

λ′′|ιi is a refinement of λi and, hence, λ′′ ∈ Λ ∩ ΛM.

Notice, however, that λ′′ is not necessarily a refinement of λ: λ′′ is a δ-timed trace,

which λ does not need to be.

We now prove that the refinement λ′ of λ′′ over the meet τ ′ of τ and τδ refines λ —

that is, we add to λ′′ all the instants present in τ but not in τδ labelled with ∅. We

need to prove that λ is also labelled with ∅ on those instants, that it coincides with
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λ′′ on the instants that they share, and that λ′′ is labelled with ∅ on those instants

of time that are not shared with λ.

Consider an arbitrary instant τ ′(n):

—If τ ′(n) is has been added to τδ, this is because it belongs to τ — say, it is τ(j) for

j = 1 or j = 2 — and is not a multiple of δ. Then, by the definition of refinement,

λ′(n) = ∅. On the other hand, λ(j) = ∅, otherwise none of the λ|ιi could be a

refinement of a timed trace generated by Mi — λ(j) 6= ∅ only when one of the

machines makes a move.

—If τ ′(n) is a multiple of δ — say, τ ′(n) = k.δ — then, by construction, λ′(n) =

λ′′(k) = ι1(λ1k1)(k) ∪ ι2(λ2k2)(k).

–If k is not a multiple of ki for either i = 1 or i = 2, then τ ′(n) does not belong

to τ . On the other hand, this means that λ′′(l) = ∅ because τ ′(n) corresponds

to one of the ‘ticks’ introduced by the refinement of the two machines over δ.

–If k = l.ki for some for either i = 1 or i = 2, then it belongs to τ as τ records

the instants at which the machines make a move. Hence, λ coincides with λ′

at that instant of time.

Finally, because λ′′ ∈ ΛM and ΛM is r-closed, λ′ ∈ ΛM.

M is the machine that best approximates Λ — We have to prove that for any

other machine M′ such that ΛM′ w Λ, M′ wM.

We start by proving that δM′ is a common divisor of δ1 and δ2 and, hence, δ is a

multiple of δM′ .

Let λ a δM′ -timed trace in ΛM′ . There must be a λ′ ∈ Λ that is refined by λ′ = 〈σ, τ〉.
By definiton of Λ, τ contains all the instants of time multiples of δ1 and all the instants

of time multiples of δ2 and, hence, M′ needs to generate all those ‘ticks’ and, hence,

δM′ needs to divide δ1 and δ2.

Let λ ∈ ΛM′ . Then, by definition, there exists a δM′ -timed trace λ′ ∈ ΛM′ that λ

refines. Because M′ approximates Λ, there exists a λ∗ ∈ Λ that λ′ refines. Because

M also approximates Λ, there exists a λ′′′ ∈ ΛM that refines λ∗. By definition, then

there exists a δM′ -timed trace λ′′ that is refined by λ′′′. Because δ is a multiple of

δM′ , it is not difficult to conclude that λ′ refines λ′′ and, hence, λ refines λ′′.

Let λ ∈ ΛM. Because M approximates Λ, there exists a λ∗ ∈ Λ that is refined by λ.

BecauseM′ approximates Λ, there exists a λ′ ∈ ΛM′ that refines λ∗. It is not difficult

to conclude that the refinement of λ′ over the meet of τ and τ ′ refines λ.

Proof of Prop. 5.1

If M w α then δM is a common divisor of all the clock granularities of the nodes of α.

Proof. Let ΛM w Λα and λ = 〈σ, τ〉∈Λα. By definition of w, there must be an execu-

tion ofM that generates a timed trace that refines λ. Because τ contains all the instants
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of time at which the machines at the nodes ‘tick’, M needs to generate all those ‘ticks’

and, hence, δM needs to divide all the clock granularities of the nodes of α.

Proof of Theo. 5.2

Let α be a network such that a common divisor of all the clock granularities of its nodes

exists and δα be their greatest common divisor. The machine

M =
δα

n(lηp ,ιp(vηp ),tηp )

p∈Nα
ιp(Mp)

where the ιp translate the alphabet of the automata αp to Actα (Def. 5.5) and prefix all

clocks of the automata with p., is the best approximation of α.

Proof. This is a generalisation of Theo. 5.1; the result follows from the associativity of

composition and intersection.

Consistency and feasibility of networks

Proof of Prop. 5.6

If a connected network α makes independent progress, then it is consistent. If α is also

DP-enabled in relation to each of its interaction-points, then it is feasible.

Proof. We start noticing that in a connected network α, for every node p of α, the

machine Mp can stay at the state (lηp , vηp) at least for δp time units (by definition of

partial execution, the invariant of location lηp holds for δp time units). Moreover, there

is a common divisor δ of all the clock granularities δp of the nodes of α. Let δα be their

greatest common divisor. We then have that every Mp can stay at the state (lηp , vηp)

at least for δα. Because the invariant of the location of the initial state of Mα is the

conjunction of the invariants of each lηp and the initial clock valuation is
⋃
p vp, we can

easily conclude thatMα can stay at its initial state at least for δα time units and, hence,

Mα is initializable.

From Prop. 4.2, it follows immediately that if α makes independent progress, then it

is consistent. From Prop. 4.3 it follows that if α is also DP-enabled in relation to each of

its interaction-points, then it is feasible.

Auxiliary Definition and Result

In order to prove the results for networks built through intra-binding we define two new

operation over machines and prove the preservation of some machine properties under

this new operation.

Definition 7.1. Given a machineM and a state (l, v) reachable inM, we defineM�
(l, v) as the machine that only differs from M in the initial location and clock valuation

which are l and v, respectively. Similarly, given an automata A we use A � (l, v) to

denote the automata that only differs from A in the initial location and clock valuation

which are l and v.
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Lemma 7.3. LetM be a machine and (l, v) a state reachable inM. Let δ′ be a multiple

of δM such that (l, v) is reachable in M at a time multiple of δ′.

(1) M� (l, v) is initializable.

(2) if M makes independent progress, so does M� (l, v).

(3) if M is DP-enabled in relation to J and δ′, so is M� (l, v).

(4) if M is cooperative in relation to J and δ′, so is M� (l, v).

Proof.

(1) It follows trivially by the definition of a reachable state that the machine can stay in

(l, v) at least δM time units.

(2) It follows from the fact that all reachable states inM� (l, v) were already reachable

in M.

(3) It follows from the fact that states reachable in M� (l, v) at time T are reachable

in M at time T + k.δ′, for some natural number k.

(4) As in the previous case.

Definition 7.2. Given a machine M, J1 ⊆ ActIM, J2 ⊆ ActOM and a bijection ξ : J1 ↔
J2, we define ξ(M) as the machine that only differs from M in the alphabet and set of

edges, which are as follows:

— ActIξ(M) = ActIM \ J1,

— ActOξ(M) = ActOM \ J2,

— Actτξ(M) = ActτM ∪ {{j1, j2} : j1ξj2},
— Eξ(M) = {(l, ξ∗(S), C,R, l′) : (l, S, C,R, l′)∈EM and ξ∗(S) is defined} where

ξ∗ : 2ActM 9 2Actξ(M)

is the partial function defined only for the sets S such that, for every j1 ∈ J1 and

j2 ∈ J2, j1ξj2 iff j1 ∈ S and j2 ∈ S, in which case ξ∗(S) = {{j1, j2} : j1ξj2 ∧ j1 ∈
S ∧ j2 ∈ S} ∪ S \ (J1 ∪ J2).

Lemma 7.4. Let M be a machine and ξ : J1 ↔ J2 a bijection with J1 ⊆ ActIM
and J2 ⊆ ActOM. If M is initializable and makes independent progress and, for some δ′

multiple of δM, M is DP-enabled in relation to J1 ⊆ ActIM and δ′ and is cooperative in

relation to J2 ⊆ ActOM and δ′, then ξ(M) is initializable and makes independent progress.

Moreover,

— if M is DP-enabled in relation to J ⊆ ActIM \ J1 and δ′′ multiple of δM, so is ξ(M),

— if M is cooperative in relation to J ⊆ ActOM \ J2 and δ′′ multiple of δM, so is ξ(M).

Proof. The set of initial locations, clock valuations and location invariants of ξ(M) is

the same ofM and, hence, ifM is initializable so is ξ(M). For proving that the ability to

make progress is also preserved we start noticing that ξ(M) has no more edges than M
and, hence, the states that are reachable in ξ(M) were also reachable inM. Let (l, v) be

a state in ξ(M) reachable at time T . Because it is also reachable at time T inM and this

machine makes progress, we know that there exists an edge (l, A, C,R, l′) ∈ EM such that
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(a) A ⊆ ActOM∪ActτM, (b) v+δM � C and (c) for all 0 ≤ t ≤ δM, (v+δM)R+t � Inv(l′).

If ξ∗(A) is defined then (l, ξ∗(A), C,R, l′) is an edge of ξ(M) and we have nothing else

to prove. If ξ∗(A) is not defined, we consider the biggest set S2 such that S2 ⊆ A ∩ (J2)

and ξ(S2) 6⊆ A. We know that this set is not empty. We have two cases:

(1) If T +δM is multiple of δ′, then becauseM is DP-enabled in relation to J1 and δ′, we

know that there exists an edge (l, A∪ξ(S2), C ′, R′, l′′) ∈ EM such that (a) v+δM � C ′

and (b) for all 0 ≤ t ≤ δM, (v + δM)R
′

+ t � Inv(l′′). Let A′ = A ∪ ξ(S2). By

construction of A′ we know that ξ∗(A′) is defined and, hence, (l, A′, C ′, R′, l′′) is an

edge of ξ(M). We also know that ξ(S2) ⊆ Actτξ(M) and, hence, A′ ⊆ ActOξ(M) ∪
Actτξ(M).

(2) If T + δM is not a multiple of δ′, then because M is cooperative in relation to

J2 and δ′, we know that there exists an edge (l, A \ S2, C
′, R′, l′′) ∈ EM such that

(a) v+δM � C ′ and (b) for all 0 ≤ t ≤ δM, (v+δM)R
′
+ t � Inv(l′′). Let A′ = A\S2.

By construction of A′ we know that ξ∗(A′) is defined and, hence, (l, A′, C ′, R′, l′′) is

an edge of ξ(M). We also know that A′ ⊆ ActOξ(M) ∪Actτξ(M).

We now prove the second part. Suppose that M is DP-enabled in relation to J ⊆
ActIM \ J1 and δ′′ multiple of δM. Let (l, v) be a state in ξ(M) reachable at time T

such that (T+δM) is a multiple of δ′′ and B⊆J . Also, let (l, A, C,R, l′) be an edge in

Eξ(M) such that v + δM � C and, for all 0 ≤ t ≤ δM, (v + δM)R + t � InvM(l′). By

construction of ξ(M) we have that (l, ξ∗−1(A), C,R, l′) be an edge in Eξ(M). Because

(l, v) is also reachable at time T in M and this machine is DP-enabled in relation to

J ⊆ ActIM \J1 and δ′′ we have that there exists an edge (l, B∪ (ξ∗−1(A)\J), C ′, R′, l′′) in

EM such that v+ δM � C ′ and, for all 0 ≤ t ≤ δM, (v+ δM)R
′
+ t � InvM(l′′). Because

J ⊆ ActIM \ J1 and B⊆J , ξ∗(B ∪ (ξ∗−1(A) \ J) = B ∪ A\J . Hence, we the have that

(l, ξ∗(B ∪ (A\J)), C ′, R′, l′′) is in Eξ(M). The proof of preservation of cooperativeness in

relation to J ⊆ ActOM \ J2 follows the same lines.

Proof of Prop. 5.3

Let α be a connected network and ξ{p,q} : Mp ↔ Mq be an attachment where 〈p,Mp〉
and 〈q,Mq〉 are interaction points such that δp and δq are commensurate.

(1) If α makes independent progress and is DP-enabled in relation to the interaction

points 〈p,Mp〉 and 〈q,Mq〉 and, for some δ common multiple of δp and δq, α is both

δ-cooperative in relation to 〈p,Mp〉 and 〈q,Mq〉, then α+
ξ{p,q}

also makes independent

progress and, therefore, is consistent.

Moreover, for every interaction point 〈v,Mv〉 of α different from those involved in the

attachment:

(2) If α is DP-enabled in relation to 〈v,Mv〉 so is α+
ξ{p,q}

(3) If α is cooperative in relation to 〈v,Mv〉 and δ multiple of δv so is α+
ξ{p,q}

.

Therefore, under the conditions of (1) and (2) above, we can conclude that, for every

interaction point 〈v,Mv〉 of α different from those involved in the attachment, α+
ξ{p,q}

is

feasible in relation to 〈v,Mv〉 if so is α .
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Proof. We start noticing that ξ{p,q} : Mp ↔ Mq, being an attachment, also defines

a bijection between 〈p,Mp〉I ∪ 〈q,Mq〉I and 〈p,Mp〉O ∪ 〈q,Mq〉O. We also use ξ{p,q} to

denote this bijection. Let N be the set of nodes of α, which is also the set of nodes of

α+
ξ{p,q}

.

(1) For every v ∈ N , let η′v be the partial execution ofMv at which the binding is made

whose first state is the last state of ηv. We first prove that

Mα+
ξ{p,q}

= ξ{p,q}(Mα � (l′, v′))

where l′ = ⊗v∈N (lηv ;η′v , 0) and v′ =
⋃
v∈N vηv;η′v .

On the one hand we have that

Mα =
δα

n(lηv ,ιv(vηv ),tηv )

v∈N
ιv(Mv) = 〈δα,

n

v∈N
ιv(Avkv )� (l, v)〉

where δα is the greatest common divisor of {δv : v ∈ N}, kv = δv/δα, ιv translates the

alphabet of the automata Avkv to Actα and translates every clock c of the automata

Avkv to v.c and l = ⊗v∈N (lηv , 0) and v =
⋃
v∈N vηv . Recall that for the messages in

ports not connected in α, such as 〈p,Mp〉 and 〈q,Mq〉, ιv(a) = v.a.

Because there is a δα-time prefix π of Πα such that the projection of π to the behaviour

of eachMp refines the prefix generated by η′p, we can conclude that (l′, v′) is a state

reachable in Mα in a time that is both multiple of δp and δq.

Mα � (l′, v′) = 〈δα,
n

v∈N
ιv(Avkv )� (l′, v′)〉

Then we have that

ξ{p,q}(Mα � (l′, v′)) = 〈δα, ξ{p,q}(
n

v∈N
ιv(Avkv ))� (l′, v′)〉

On the other hand, we have that

Mα+
ξ{p,q}

=
δα

n(lηv ;η′v
,ι′v(vηv ;η′v

),tηv ;η′v
)

v∈N
ι′v(Mv) = 〈δα,

n

v∈N
ι′v(Avkv )� (l′, v′)〉

where ι′v translates the alphabet of the automata Avkv to the alphabet of α+
ξ{p,q}

and translates every clock c to v.c. Recall that messages in all ports but 〈p,Mp〉
and 〈q,Mq〉 are translated by ι′v in the same way they are translated by ιv whereas

messages a ∈ Mp are translated by ι′p to {p.a, q.ξ{p,q}(a)} and messages in a ∈ Mq

are translated by ι′q to {q.a, p.ξ{p,q}(a)}.
Because the application of ξ{p,q} to

f
v∈N ιv(Avkv ) replaces actions of the form p.a

and q.a by internal actions {p.a, q.ξ{p,q}(a)} and {q.a, p.ξ{p,q}(a)}, respectively, it is

easy to conclude that the alphabet of ξ{p,q}(Mα) is equal to that of Mα+
ξ{p,q}

.

Now we just need to prove that the two automata also have the same edges.

(a) (⊗v∈Nqv, S, C,R,⊗v∈Nq′v) is an edge of
f
v∈N ιv(Avkv ) iff C = ∧v∈NCv, R =
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∪v∈NRv and (qv, S ∩ ιv(Actv), Cv, Rv, q′v) is an edge of ιv(Avkv ), which is equiv-

alent to (qv, ι
−1
v (S ∩ ιv(Actv)), ι−1v (Cv), ι

−1
v (Rv), q

′
v) is an edge of Avkv .

(b) Then, by construction of ξ{p,q}(
f
v∈N ιv(Avkv )), we have that (⊗v∈Nqv, S, C,R,⊗v∈Nq′v)

is an edge of ξ{p,q}(
f
v∈N ιv(Avkv )) iff

C = ∧v∈NCv and R = ∪v∈NRv and

(qv, ι
−1
v (ξ∗

−1

{p,q}(S) ∩ ιv(Actv)), ι−1v (Cv), ι
−1
v (Rv), q

′
v) is an edge of Avkv (∗)

(c) We need to conclude (∗) is equivalent to (⊗v∈Nqv, S, C,R,⊗v∈Nq′v) is an edge

of
f
v∈N ι

′
v(Avkv ). We know that this condition is equivalent to C = ∧v∈NCv,

R = ∪v∈NRv and (qv, ι
′−1
v (S ∩ ι′v(Actv)), ι′−1v (Cv), ι

′−1
v (Rv), q

′
v) is an edge of

Avkv . Because ιv and ι′v translate clocks in the same way, we only need to prove

that

ι−1v (ξ∗
−1

{p,q}(S) ∩ ιv(Actv)) = ι′
−1
v (S ∩ ι′v(Actv))

—For actions a 6∈Mp ∪Mq:

–a ∈ ι−1v (ξ∗
−1

{p,q}(S) ∩ ιv(Actv)) iff

ιv(a) ∈ ξ∗−1

{p,q}(S) and ιv(a) ∈ ιv(Actv) iff

v.a ∈ ξ∗−1

{p,q}(S) and a ∈ Actv iff

v.a ∈ S and a ∈ Actv.
–a ∈ ι′−1v (S ∩ ι′v(Actv)) iff

ι′v(a) ∈ S and ι′v(a) ∈ ι′v(Actv) iff

v.a ∈ S and a ∈ Actv.
—For actions a ∈Mp:

–a ∈ ι−1v (ξ∗
−1

{p,q}(S) ∩ ιv(Actv)) iff

ιv(a) ∈ ξ∗−1

{p,q}(S) and ιv(a) ∈ ιv(Actv) iff

{p.a, q.ξ{p,q}(a)} ∈ ξ∗−1

{p,q}(S) and a ∈ Actv iff

{p.a, q.ξ{p,q}(a)} ∈ S and a ∈ Actv.
–a ∈ ι′−1v (S ∩ ι′v(Actv)) iff

ι′v(a) ∈ S and ι′v(a) ∈ ι′v(Actv) iff

{p.a, q.ξ{p,q}(a)} ∈ S and a ∈ Actv.
—For actions a ∈Mq the proof is similar.

(2) Second we notice that we are in conditions of applying Lemma 7.3: (l′, v′) is reachable

inMα at a time multiple of δp and δq (and, hence, also of δα). Hence, we can conclude

that Mα � (l′, v′) is initializable and makes independent progress, is DP-enabled in

relation to 〈p,Mp〉I and δp and in relation to 〈q,Mq〉I and δq and, for some δ common

multiple of δp and δq,Mα � (l′, v′) is both δ-cooperative in relation to 〈p,Mp〉O and

〈q,Mq〉O.
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(3) Third, we show that we are in the conditions of applying Lemma 7.4. We know that

Mα � (l′, v′) is DP-enabled in relation to both 〈p,Mp〉I and δp and to 〈q,Mq〉I and

δq. This implies that Mα � (l′, v′) is DP-enabled in relation to 〈p,Mp〉I ∪ 〈q,Mq〉I
and any multiple of δp · δq. Similarly, the fact that, for some δ common multiple of

δp and δq, Mα is δ-cooperative in relation to both 〈p,Mp〉O and 〈q,Mq〉O, implies

that Mα � (l′, v′) is δ-cooperative in relation to 〈p,Mp〉O ∪ 〈q,Mq〉O. We can then

conclude that Mα+
ξ{p,q}

is initializable and makes independent progress.

(4) We now prove that, if Mα is DP-enabled in relation to 〈v,M〉I and δv and 〈v,M〉
is an interaction point of Mα different from those being connected, so is Mα+

ξ{p,q}
.

Because the intersection of 〈v,M〉I with 〈p,Mp〉I ∪ 〈q,Mq〉I is empty, we can use the

second part of Lemma 7.4 to conclude that Mα+
ξ{p,q}

is DP-enabled in relation to

〈v,M〉I and δv. In a similar way, we can prove that if Mα is cooperative in relation

to 〈v,M〉O and δ multiple of δv and 〈v,M〉 is an interaction point different from those

being connected, so is Mα+
ξ{p,q}

.

Proof of Theo. 5.4

Let α1 and α2 be two disjoint connected networks and ξ{p,q} : Mp ↔Mq be an attachment

where 〈p,Mp〉 is an interaction point of α1 and 〈q,Mq〉 an interaction point of α2 such

that δp and δq are commensurate.

(1) If α1 and α2 make independent progress, α1 is DP-enabled in relation to 〈p,Mp〉, α2

is DP-enabled in relation to 〈q,Mq〉, and for some δ common multiple of δp and δq,

α1 is cooperative in relation to 〈p,Mp〉 and δ, and α2 is cooperative in relation to

〈q,Mq〉 and δ, then (α1 ξ{p,q} α2) also makes independent progress and, therefore, is

consistent.

Moreover, for every interaction point 〈v,Mv〉 of αi different from that involved in the

attachment:

(2) If αi is DP-enabled in relation to 〈v,Mv〉 so is (α1 ξ{p,q} α2).

(3) If αi is cooperative in relation to 〈v,Mv〉 and δ multiple of δv so is (α1 ξ{p,q} α2).

Therefore, under the conditions of (1) and (2) above, we can conclude that, for every in-

teraction point 〈v,Mv〉 of αi different from that involved in the attachment,(α1 ξ{p,q} α2)

is feasible in relation to 〈v,Mv〉 if so is αi.

Proof. For every v ∈ Nαi , let η′v be the partial execution of Mv at which the binding

of α1 and α2 is made (recall that, by definition of inter-binding, the first state of η′v is

necessarily the last state of ηv).

On the one hand, we have that

M(α1 ξ{p,q}
α2) =

δ′′

n(lηv ;η′v
,ι′v(vηv ;η′v

),tηv ;η′v
)

v∈Nα1
∪Nα2

ι′v(Mv)

where δ′′ is the greatest common divisor of {δv : v ∈ Nα1∪Nα2}, ι′v translates the alphabet
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of Mv to the alphabet of (α1 ξ{p,q} α2) and translates every clock c to v.c. Notice that

δ′′ exists because each network αi is connected (and therefore has a greatest common

divisor δαi of its clock granularities) and the fact that δp and δq are commensurate makes

δα1
and δα2

commensurate; in fact δ′′ is the greatest common divisor of δα1
and δα2

.

On the other hand, for i = 1, 2 we have that

Mαi =
δαi

n(lηv ,ιv(vηv ),tηv )

v∈Nαi
ιv(Mv)

where δαi is the greatest common divisor of {δv : v ∈ Nαi} and ιv translates the alphabet

of Mv to Actαi and translates every clock c to v.c.

By definition of inter-binding we have that, for i = 1, 2, there is a δαi-time prefix

παi of Παi such that, for every v ∈ Nαi , the projection of παi to the behaviour of

each Mv refines the prefix generated by η′v. For i = 1, 2, let li = ⊗v∈Nαi (lηv ;η′v , 0) and

vi =
⋃
v∈Nαi

vηv ;η′v and ti be the timestamp of the last action in παi . The conditions met

by η′v for every v ∈ Nαi allow us to conclude that (li, vi) is a state reachable in Mαi in

time ti. Moreover, we know that ti is a multiple of δv for every v ∈ Nαi .
Because α1 and α2 are disjoint, the machines Mα1 and Mα2 have disjoint alphabets

and, hence,

M =
δ′

n(li,vi,ti)

i=1,2
Mαi

where δ′ is the greatest common divisor of δα1
and δα2

, corresponds to the parallel

composition with no communication. In particular, the set of input, output and private

actions of M is obtained through the union of the corresponding sets of actions in Mα1

and Mα2
.

We start by noting that, as observed above, δ′ and δ′′ are the same. Then, we have

that ξ{p,q} : Mp ↔Mq, being an attachment, also defines a bijection between 〈p,Mp〉I ∪
〈q,Mq〉I and 〈p,Mp〉O ∪ 〈q,Mq〉O. Because these are sets of input actions and output

actions of M, respectively, we can build ξ{p,q}(M). We have that

M(α1 ξ{p,q}
α2) ≡ ξ{p,q}(M)

where ≡ represents α-equivalence (under locations renaming). The proof of this result

follows the same lines of the similar result presented already in the proof of Proposi-

tion 5.3. Location renaming is needed in this case because the locations of M are of the

form ((⊗v∈Nα1
(lv, i), j), (⊗v∈Nα2

(lv, k),m)) whereas the locations of M(α1 ξ{p,q}
α2) are

of the form ⊗v∈Nα1
∪Nα2

(lv, n).

By Theorem 4.1 we have that ifMα1
andMα2

are initializable and make independent

progress, so does M. As noticed before, ti is a multiple of δv for every v ∈ Nαi and,

hence, by applying Lemma 4.2 we can conclude that

—If Mαi is DP-enabled in relation to 〈v,Mv〉I and δv, so is M (because the two

machines have disjoint alphabets, the intersection of 〈v,Mv〉I with the set of output

actions of the other machine is empty).

—IfMαi is cooperative in relation to 〈v,Mv〉O and δ a multiple of δv, so isM (because

the two machines have disjoint alphabets, 〈v,Mv〉O does not include any input action

of the other machine).
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In particular, we have that

—M is DP-enabled in relation to both 〈p,Mp〉I and δp and 〈q,Mq〉I and δq;

—for some δ common multiple of δp and δq, M is δ-cooperative in relation to both

〈p,Mp〉O and 〈q,Mq〉O.

This implies that we are in conditions of applying Lemma 7.4. We use the first part of

this lemma to conclude that ξ{p,q}(M) is initializable and makes independent progress.

For every interaction point 〈v,Mv〉 of αi different from that involved in the attachment

we have that 〈v,Mv〉 is still an interaction point of ξ{p,q}(M). BecauseM is DP-enabled

in relation to 〈v,Mv〉I and δv and the intersection of 〈v,Mv〉I with 〈p,Mp〉I ∪〈q,Mq〉I is

empty, by the second part of Lemma 7.4, we can conclude that ξ{p,q}(M) is DP-enabled

in relation to 〈v,Mv〉I and δv. Similarly, we can conclude that ξ{p,q}(M) is cooperative

in relation to 〈v,Mv〉O and δ a multiple of δv.


