
Heterogeneous and Asynchronous Networks of
Timed Systems

José L. Fiadeiro1 and Antónia Lopes2

1Dep. of Computer Science, Royal Holloway University of London, UK
jose.fiadeiro@rhul.ac.uk

2Dep. of Informatics, Faculty of Sciences, University of Lisbon, Portugal
mal@di.fc.ul.pt

Abstract. We present a component algebra and an associated logic for heteroge-
nous timed systems. The components of the algebra are asynchronous networks
of processes that abstract the behaviour of machines that execute according to the
clock granularity of the network node in which they are placed and communicate
asynchronously with machines at other nodes. The main novelty of our theory is
that not all network nodes need to have the same clock granularity: we investi-
gate conditions under which we can guarantee, a priori, that any interconnections
generated at run time through dynamic binding of machines with different clock
granularities leads to a consistent orchestration of the whole system. Finally, we
investigate which logics can support specifications for this component algebra.

1 Introduction

The software systems that are now operating in cyberspace are best modelled as net-
works of machines, where each machine performs local computations and can be inter-
connected dynamically (at run time) to other machines to achieve some goal. Because of
the distributed nature of such networks, it does not make sense to assume that all nodes
of the network, where machines execute, have the same clock granularity. This means
that interconnections can only be established asynchronously and through communica-
tion channels (other machines) that can orchestrate the interactions between machines
according to the clock granularities of the nodes in which they execute.

In this paper, we put forward a component algebra for such heterogeneous and asyn-
chronous networks of timed systems. Our algebra abstracts the behaviour of timed ma-
chines as processes whose traces are generated according to the clock granularity of the
network node in which they execute. We define a composition operator through which
networks can be interconnected and investigate properties of such networks, namely
conditions that guarantee consistency, i.e., that the interconnected processes collectively
generate a non-empty behaviour. Finally, we discuss how specifications for this compo-
nent algebra can be supported through a continuous-semantics metric temporal logic.
Contributions. In [6] we put forward a component and interface algebra for service-
oriented computing that is based on asynchronous networks of processes interconnected
through communication channels. A first extension of this model for timed systems was
presented in [4] based on a homogeneous notion of time – all processes execute accord-
ing to the same time granularity. The present extension to a heterogeneous setting is not

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28905164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

trivial (which justifies this paper) because, where the algebraic properties of composi-
tion in an homogenous-time domain generalise those of the un-timed domain presented
in [6], interconnection in a heterogeneous setting is much more involved – indeed, not
even always admissible. The main challenges come from (a) the fact that the topological
properties of timed traces are more intricate than those of un-timed ones, which requires
the definition of a new time-related refinement relation and a new time-related closure
operator that does not reduce to the Cantor topology of trace-based domains; and (b) the
fact that, in a heterogeneous timed domain, different clock granularities interfere with
the way processes need to be coordinated in order to ensure that they can cooperate.

We have also generalised the notion of asynchronous relational network (ARN) pro-
posed in [6] so as to capture a larger class of systems where coordination of interactions
takes place among groups of processes, not just between pairs of processes. This exten-
sion requires a different algebraic structure for the networks, which is why we moved
from graphs to hypergraphs. From a software engineering point of view, this shift en-
ables us to provide a much richer mathematical model where, essential properties of
run-time interconnections (such as consistency) can still be formulated and analysed,
i.e., the ability for systems to work effectively when interconnected. We provide com-
positionality results for consistency through criteria that can be checked on processes at
design time that guarantee the consistency of interconnections when performed at run
time across different clock granularities.

In terms of logics through which the behaviour of machines can be specified or anal-
ysed, we abandoned the implicit-time model used in [6], which is not realistic for the
class of applications that need to run across heterogeneous time domains, in favour of a
metric temporal logic [10]. The challenges here concern the requirements of the com-
ponent model for topological notions of closure that go beyond the traditional safety-
related ones, which led us to adopt a continuous semantics with a new operator that
captures the required notion of closure.

Related Work. Several researchers have recently addressed discrete timed systems
with heterogeneous clock granularities but the focus has not been on the the develop-
ment of theories of composability for these systems as we do in this paper. An exception
is [11], which studies when the composition of heterogeneous tag machines [2] is sound
and complete. However, the notion of composition considered therein is more relaxed
than ours (allowing for the delay between events to be modified) and, as a consequence,
not appropriate for addressing global properties of systems interconnected at run time as
actually implemented, which we do by adopting instead a trace-based model in which
composition corresponds to intersection. A trace-based model has also the advantage
of abstracting from the specificities of the different classes of automata that can be cho-
sen as models of implementations. Because un-timed networks were investigated in [6]
over traces, adopting a similar model for timed ones also allows us to better appreciate
the differences between un-timed and timed domains.

Formal clock calculi have also been developed that address heterogeneity, for ex-
ample [7] in which a synchronous data-flow language is proposed that supports the
modelling of multi-periodic systems and the refinement of clock granularities in a way
that is similar to what we propose this paper. However, the main focus of such calculi
has been on modelling and simulation, not so much on the challenges that heterogene-

2

ity raises on run-time interconnection of systems and, therefore, they are too specific on
aspects that do not directly impact on system properties such as consistency. In fact, to
the best of our knowledge, ours is the first model that adopts networks as components
of systems and, therefore, addresses (run-time) compositionality at the network level.

Several frameworks have also been proposed for component/service-based software
systems that exhibit timed properties, although not in a heterogeneous-time context.
Algebraic frameworks such as [5,8,9,13] address global properties similar to consis-
tency, such as compatibility – whether the conversation protocols (modelled as timed
automata) followed by the peers in a choreography lead to deadlocks or time conflicts
that prevent them from completing (e.g., reaching final states). However, the focus in
this context is on the modelling of the (timed) conversation protocols that characterise
the global behaviour of a (fixed) number of peers. What we investigate in this paper
is, instead, conditions through which we can guarantee that the orchestrations of com-
ponents, whose interconnection is performed at run time, can work together. This has
implications on the properties that are required of networks in order to guarantee con-
sistency. An example is the way time is managed: in choreography, this is done globally
for the (fixed) set of peers; in our approach, this needs to be done locally at the level
of each process because composition is dynamic through run-time binding to machines
that may be executing in platforms where the clock granularity is different.

2 Preliminaries

We start by recalling a few concepts related to traces and their Cantor topology. Given a
setA, a trace λ overA is an element ofAω . We denote by λ(i) the (i+1)-th element of
λ. A segment π is an element ofA∗, the length of which we denote by |π|. We use π < λ
to mean that the segment π is a prefix of λ. Given a ∈ A, we denote by π ·a the segment
obtained by extending π with a. A property Λ over A is a set of traces. For every
property Λ, we define Λf = {π : ∃λ ∈ Λ(π < λ)}— the segments that are prefixes of
traces in Λ, also called the downward closure of Λ — and Λ̄ = {λ : ∀π < λ(π ∈ Λf)}
— the traces whose prefixes are in Λf , also called the closure of Λ. A property Λ is said
to be closed iff Λ ⊇ Λ̄ (and, hence, Λ = Λ̄).

In our model, traces consist of an infinite sequence of pairs of an instant of time
and a set of actions — the actions that are observed at that instant. In order to model
networks of systems, we allow sets of actions to be empty: on the one hand, this allows
us to model finite behaviours, i.e., systems that stop executing actions after a certain
point in time while still part of a network; on the other hand, it allows us to model
observations that are triggered by actions performed by components outside the system.

Definition 1 (Timed traces) Let A be a set (of actions).

– A time sequence τ is a trace over R≥0 such that: τ(0) = 0; τ(i) < τ(i + 1)
for every i ∈ N; the set {τ(i) : i ∈ N} is unbounded, i.e., time progresses (the
‘non-Zeno’ condition). An action sequence σ is a trace over 2A such that σ(0) = ∅.

– A timed trace overA is a pair λ=〈σ, τ〉 of an action and a time sequence. We denote
the sets of timed traces and segments over A by Λ(A) and Π(A), respectively.

3

– Given a timed property Λ ⊆ Λ(A) we define, for every time sequence τ , Λτ =
{σ∈(2A)

ω
: 〈σ, τ〉∈Λ} — the action property defined by Λ and τ , and Λtime =

{τ : ∃σ∈(2A)
ω

(〈σ, τ〉∈Λ)}— the time sequences of traces in Λ.
– Given δ ∈ R>0, the δ-time sequence τδ is defined by τδ(i) = i · δ for every i∈N. A
δ-timed trace over A is a timed trace 〈σ, τδ〉, the set of which is denoted by Λδ(A).
A δ-timed property is a timed property that consists of δ-timed traces.

Definition 2 (Time refinement) Let ρ : N → N be a monotonically increasing func-
tion that satisfies ρ(0) = 0.

– Let τ , τ ′ be two time sequences. We say that τ ′ refines τ through ρ, which we denote
by τ ′ �ρ τ , iff, for every i ∈ N, τ(i) = τ ′(ρ(i)). We say that τ ′ refines τ , which we
denote by τ ′ � τ , iff τ ′ �ρ τ for some ρ.

– Let λ = 〈σ, τ〉, λ′ = 〈σ′, τ ′〉 be two timed traces. We say that λ′ refines λ through
ρ — which we denote by λ′ �ρ λ — iff τ ′ �ρ τ and, for every i ∈ N and ρ(i) <
j < ρ(i+1), σ(i) = σ′(ρ(i)) and σ′(j) = ∅. We also say that λ′ refines λ— which
we denote by λ′ � λ — iff λ′ �ρ λ for some ρ.

– The r-closure of a timed property Λ is Λr = {λ′ : ∃λ∈Λ(λ′ � λ)}. We say that Λ
is closed under time refinement, or r-closed, iff Λr ⊆ Λ.

A time sequence refines another if the former interleaves time observations between
any two time observations of the latter. Refinement extends to traces by requiring that
no actions be observed in the finer trace between two consecutive times of the coarser.

It is not difficult to prove that the refinement relation makes the space of all time
sequences a complete meet semi-lattice, the meet of two time sequences ρ1 and ρ2 being
given by the recursion ρ(i+1) = min({ρ1(j) > ρ(i), j ∈ N}∪{ρ2(j) > ρ(i), j ∈ N})
together with the base ρ(0) = 0. However, if one considers the space of all δ-time
sequences {τδ : δ∈R>0}, it is easy to see that a meet of τδ1 and τδ2 exists iff δ1 and δ2
are commensurable, i.e., there are n,m∈N>0 such that δ1/n = δ2/m, in which case
the meet is τδ where δ is their greatest common divisor.

Functions between sets of actions (alphabet maps) are useful for defining relation-
ships between individual processes and the networks in which they operate.

Definition 3 (Projection and translation) Let f :A→ B be a function (alphabet map).

– For every σ∈(2B)ω , we define σ|f∈(2A)ω pointwise as σ|f (i) = f−1(σ(i)) — the
projection of σ over A. If f is an inclusion, then we tend to write |A instead of |f
(when applied to a trace, |A forgets the actions of B that are not in A).

– For every timed trace λ = 〈σ, τ〉 over B, we define its projection over A to be
λ|f = 〈σ|f , τ〉, and for every timed property Λ over B, Λ|f = {λ|f : λ ∈ Λ} —
the projection of Λ to A.

– For every timed property Λ over A, we define f(Λ) = {〈σ, τ〉 : 〈σ|f , τ〉 ∈ Λ} —
the translation of Λ to B.

We are particularly interested in translations defined by prefixing every element of a
set with a given symbol. Such translations are useful for identifying in a network the
machine to which an action belongs — we do not assume that machines have mutually
disjoint alphabets. More precisely, given a set A and a symbol p, we denote by (p.) the
function that prefixes the elements of A with ‘p.’.

4

3 Heterogeneous Timed Asynchronous Relational Nets

We put forward a generalisation of the component algebra proposed in [6]. The main
differences are that (1) we address networks of processes that operate over heteroge-
neous time, and (2) we use hypergraphs instead of simple graphs in order to account
for multiple, not just peer-to-peer interactions. We start by detailing the communication
model and then proceed to defining networks and investigating some of their properties.

3.1 Processes and connections

Our communication model is asynchronous, interactions being based on the exchange
of messages. We organise messages in sets that we call ports: a port is a finite set
(of messages). Ports are communication abstractions that are convenient for organising
networks of systems as formalised below. Every message belonging to a port has an
associated polarity: − if it is an outgoing message (published at the port) and + if it is
incoming (delivered at the port). Therefore, every port M has a partition M− ∪M+.
For every port M we define its dual Mop, which is obtained by swapping the polarities
of the messages in M , i.e., Mop− = M+ and Mop+ = M−.

The actions of sending (publishing) or receiving (being delivered) a message m
are denoted by m! and m¡, respectively. More specifically, if M is a port, we define
AM− = {m! : m ∈ M−}, AM+ = {m¡ : m ∈ M+}, and AM = AM− ∪ AM+ —
the set of actions associated with M . Even if a process does not refuse the delivery of
messages it can decide to discard them, e.g., if they arrive outside the expected protocol,
and not all published messages can be guaranteed to be delivered to their destination.

Definition 4 (Process) A process is a triple P = 〈δ, γ, Λ〉 where: (1) δ ∈ R>0 is the
granularity of the clock of the process; (2) γ is a finite set of mutually disjoint ports;
(3) Λ is the r-closure of a non-empty δ-timed property over Aγ =

⋃
M∈γ AM defining

the behaviour of the process.

The fact that processes are r-closed means that they contain all possible interleavings of
empty observations, thus capturing their behaviour in any possible environment. This
notion of closure can be related to mechanisms that, such as stuttering [1], ensure that
components do not constrain their environment.

We designate the process 〈δ, {M}, Λδ(AM)r〉 by �δM . This is a process with a
single port M that, at any time that is a multiple of its clock granularity, accepts any set
of actions belonging to AM , which henceforth is named RUN.

Our model of interaction is based on orchestrating the joint behaviour of a collec-
tion of parties, each of which defines a process; the same party may engage in different
orchestrations. Each such orchestration is performed by another process – the orches-
trator – that coordinates the joint behaviour of the other parties. Each party is connected
to the orchestrator by what we call an attachment:

Definition 5 (Attachment) An attachment is a triple 〈C, ξ, P 〉whereC = 〈δC , γC , ΛC〉
and P = 〈δP , γP , ΛP 〉 are processes and ξ is an injective map from MC∈γC to
MP∈γP that reverses polarities, i.e., ξ(M+

C) ⊆ M−P and ξ(M−C) ⊆ M+
P . An attach-

ment is well formed iff δP is a multiple of δC . We often use ξ to designate the whole
attachment (triple) if the source and target processes are clear from the context.

5

Notice that ξ translates AMC
to AMP

by switching publications and deliveries, i.e.,
ξ(m¡) = ξ(m)! for m∈M+

C and ξ(m!) = ξ(m)¡ for m∈M−C . The condition that δP is
a multiple of δC for the attachment to be ‘well formed’ reflects the fact that the source
needs to be able to ‘tick’ (deliver and receive messages) in a way that is compatible
with the target. Attachments are used for building connections:

Definition 6 (Connection) A connection is a triple Ξ = 〈C, γF , ξ〉 where: (1) C is a
process 〈δ, γ, Λ〉 – the orchestrator of the connection; (2) γF ⊆ γ consists of the ports
that are ‘free’; (3) ξ assigns to each Mi ∈ γ a well-formed attachment ξi : Mi →MPi

of C to a process Pi such that, (a) for every Mi 6= Mj , MPi 6= MPj , (b) for every
Mi ∈ γF , Pi = �δ

Mop
i

and ξi is the identity.

That is, a connection consists of a process that orchestrates interactions among a num-
ber of parties. Those parties are attached to the orchestrator, not directly to each other,
thus making communication between parties to be asynchronous. Some of the ports of
the orchestrator may be ‘free’, thus accounting for the ability of the connection to grow
at run time by accepting new parties, i.e., connections may be open. Those free ports
are attached to RUN. Each port of a party can only be used by at most one attachment,
i.e., if a party plays different roles in the same connection, it does so via different ports.
Because all the attachments in a connection need to be well formed, the clock granu-
larity of each party Pi needs to be a multiple of that of the orchestrator C. Therefore,
not all sets of processes can be interconnected: in order to be part of a connection, they
need to have a common divisor.

3.2 Networks

Definition 7 (HT-ARN) A heterogenous timed asynchronous relational net (HT-ARN)
α consists of:

– A finite hypergraph 〈N,E〉 where N is a non-empty finite set of nodes and E is a
finite set of hyperedges – each hyperedge is a non-empty set {pi | i=1..n} of nodes.

– A labelling function that assigns a process αp = 〈δp, γp,Ap〉 to every node p and
a connection Ξc = 〈αc, γcF , ξc〉 to every hyperedge c such that:

i) For every hyperedge c, Ξc defines an onto mapping from γc to c.
ii) Each ξci is an attachment of αc to αpi .

iii) If two hyperedges c and d share a node p, then the attachments ξc and ξd
associated with p have different codomains, i.e., attach to different ports of αp.

We also define the following sets and mappings:

– Aα is the alphabet associated with α – the union of the alphabets of the processes
that label the nodes translated by prefixing all actions with the corresponding node.

iv) For every p ∈ N , we denote by ιp is the function that maps Aγp to Aα, which
prefixes the actions of Aγp with p.

iiv) For every c ∈ E, we denote by ιc is the function that maps Aγc to Aα. This
function is such that, for every p∈c, ιc(AM) = ιp(ξp(AM)) where M is the
source port of ξp. That is, actions of the orchestrator are translated through
ξp to the attached process p (reversing polarities) and then according to ιp.

6

– Λα = {λ ∈ Λ(Aα) : ∀p ∈ N ∪ E (λ|ιp ∈ Λαp)}

Note that, for every p∈N , (|ιp) first removes the actions that are not in the language
p.Ap and then removes the prefix p, and similarly for every c∈E. Therefore, the set Λα
consists of all traces over the alphabet of the HT-ARN that are projected to traces of all
its processes and channels:

Λα =
⋂
p∈N∪E ιp(Λαp)

We take this set to represent the behaviour of α. That is, the behaviour of the HT-ARN is
given by the intersection of the behaviour of the processes at the nodes and the hyper-
edges (connections) translated to the language of the HT-ARN — this corresponds to
what one normally understands as a parallel composition in trace-based models. No-
tice that, because the free ports of connections are labelled with run processes, only the
non-free ports are relevant for the behaviour of the HT-ARN. Further notice that, when
applied to a set of traces, the translations effectively open the behaviour of the processes
to actions in which they are not involved.

As an example, consider a HT-ARN that models a heterogeneous system in which a
bank clerk orchestrates a process that receives credit-requests, a process that gets infor-
mation on risk from a database of clients, and a process that handles approved credit re-
quests. As depicted in Fig. 1, its hypergraph has nodes c:CreditRequest , d:ClientsDB ,
m:CreditMgr and r:RUN, and the hyperedge {c, d,m, r}:〈Clerk , {P 4

k }, id〉 where:

– CreditRequest is a process that has a single port through which it sends creditReq
and accept , and receives approved , denied and transferDate. This process starts
by sending a creditReq and waits ten time units for receiving approved or denied .
In the first case it sends accept and waits fifty time units for receiving transferDate.
The granularity δc of its clock is 0.5.

– ClientsDB is a process that has a single port through which it receives getClientRisk
and sends clientRiskValue and clientRiskUnknown . When the first getClientRisk
is delivered, it takes no more than seven time units to publish either clientRiskValue
or clientRiskUnknown . The granularity of its clock is 0.2.

– CreditMgr has a single port through which it receives processCredit and sends
expectedDate. When the first processCredit is delivered, it takes no more than
four time units to publish expectedDate. The granularity of its clock is 0.3.

– Clerk is a process with four ports: P 1
k , P

2
k , P

3
k , P

4
k . For instance, in port P 1

k , it re-
ceives messages creditReq and accept and sends the messages approved , denied
and transferDate. After the delivery of the first creditReq on P 1

k , it publishes
getClientRisk on P 2

k within five time units; then it waits ten time units for the de-
livery of clientRiskValue or clientRiskUnknown in the same port. If the risk of the
transaction is known, this is enough for making a decision and sending approved
or denied in port P 1

k ; if not, it publishes getRisk on P 4
k within five time units and

waits twenty time units for the delivery of riskValue . After sending approved (if
ever), Clerk waits forty time units for the delivery of accept , upon which it sends
processCredit on P 3

k within two time units and waits for expectedDate; when this
happens, it sends transferDate within two time units on P 1

k . The granularity δk of
its clock is 0.1.

7

– RUN is�0.1
P 4
k
op and id is a set with four identity attachments (this is because, for ease

of presentation, we have picked the same names in every pair of connected ports).

The fact that the port P 4
k is free is represented in Fig. 1 by the grey shadow.

creditReq
approved

denied

transferDate
accept

k: Clerk

d: ClientsDB m: CreditMgr

getRisk
riskValue

r: RUNc: CreditRequest

getClientRisk

clientRiskValue
clientRiskUnknown

processCredit
expectedDate

P1
k

P2
k P3

k

P4
k

Fig. 1. A HT-ARN consisting of a connection with a free port and three processes.

It is also important to note that, although the existence of a connection between two
processes implies that the clock of the orchestrator is a common divisor of those of the
processes, it is not necessary that a common divisor exists for all clock granularities
of a HT-ARN. However, a common divisor exists for all clock granularities of every
sub-net that is connected (i.e., one in which every pair of processes is linked via a path
of connections). In particular, if a HT-ARN is a connected hypergraph, this means that
it can be implemented over (or simulated by) a single processor.

As in [6], two HT-ARNs can be composed through the ports that are still available
for establishing further interconnections, i.e., not connected to any other port, which we
call interaction-points.

Definition 8 (Interaction-point) An interaction-point of a HT-ARN α is a pair 〈v,M〉
such that v∈Nα is a node and either (1) M∈γv is one of its ports and v is not at-
tached through M to any hyperedge — what we call a process interaction-point, or
(2) v belongs to an hyperedge cv∈Eα, M is a free port of Ξcv and v is attached to
M — what we call a connection interaction-point. We denote by Jα the collection of
interaction-points of α.

We can interconnect two HT-ARNs by merging process interaction-points with connec-
tion interaction-points via attachments that are well-formed:

Definition 9 (Composition of HT-ARNs) Let α and β be two HT-ARNs with disjoint
sets of nodes and θ be a family of wires between α and β, where a wire is a triple

θi = 〈〈vi,Mcvi
〉, ξi, 〈pi,Mpi〉〉

such that, either

8

1. 〈vi,Mcvi
〉 is a connection interaction-point of α, 〈pi,Mpi〉 is a process interaction-

point of β and 〈αcvi , ξi : Mcvi
→Mpi , βpi〉 is a well-formed attachment, or

2. 〈vi,Mcvi
〉 is a connection interaction-point of β, 〈pi,Mpi〉 is a process interaction-

point of α and 〈βcvi , ξi : Mcvi
→Mpi , αpi〉 is a well-formed attachment,

with mutually-disjoint sets of interaction points. We define the HT-ARNα‖θβ as follows:

– Its hypergraph is 〈N,E〉 where N is obtained from Nα ∪ Nβ by removing the
nodes corresponding to the connection interaction-points, and E is obtained from
Eα∪Eβ by replacing, for each attachment ξi:Mcvi

→Mpi , the node vi by pi in cvi .
– Its node-labelling function γ coincides with γα or γβ on the remaining nodes.
– Its hyperedge-labelling function Ξ is as Ξα ∪ Ξβ except that, for each attachment
ξi : Mcvi

→Mpi , the attachment of the run process at Mcv is replaced with ξi and
Mcvi

is removed from the set of free ports of Ξcvi .

In order to illustrate composition of HT-ARNs, consider a HT-ARN that is obtained
from the HT-ARN depicted in Fig. 1 by replacing the node c:CreditRequest by r′:RUN′

and making free the port P 1
k , where RUN′ is the process �0.1

P 1
k
op . The HT-ARN pre-

sented in Fig. 1 is the composition of that HT-ARN and an atomic HT-ARN defined by
c:CreditRequest through a wire ξ that connects the interaction-point 〈r′, P 1

k 〉 of the first
HT-ARN to 〈c, P 1

k
op〉, the single interaction-point of the latter. The wire ξ is built over

the function between the two ports that keeps the names and only reverses polarities.
This defines a well-formed attachment because δc is a multiple of δk.

4 Consistency

The joint consistency of the processes and the orchestrators operating in a HT-ARN is
an important property because it ensures that their implementations can work together.

Definition 10 (Consistent HT-ARN) A HT-ARN α is said to be consistent if Λα 6= ∅.

In [6], we defined a sub-algebra of (un-timed) ARNs that are consistent and closed un-
der composition. The characterisation of this sub-algebra relied on the closure operator
induced by the Cantor topology over action sequences. The same closure operator can
be defined over timed traces but, for the purpose of separating the properties required of
the action sequences from those of the time sequences and the way they can be checked
over automata (which we do in [3]), it is useful to consider other notions of closure.

We can use the Cantor topology over (2A)ω to define a notion of closure relative to
a fixed time sequence:

Definition 11 (Closure relative to time) A timed property Λ is closed relative to time
or, simply, t-closed, iff, for every τ ∈ Λtime, Λτ is closed. A t-closed HT-ARN is one in
which all processes that label nodes or hyperedges (connections) are t-closed.

Processes that are closed relative to time define safety properties in the usual un-timed
sense: over a fixed time sequence, which cannot be controlled by the processes, the
violation of the property can be checked over a finite trace. It is also easy to prove that:

9

Proposition 12 Let α be a HT-ARN: (a) Λα is r-closed; (b) if α is t-closed, so is Λα.

The first follows from the fact that all processes are r-closed by construction. The second
follows from the fact that the intersection of t-closed properties is also t-closed.

A property that was found to be relevant in [6] for characterising consistent (un-
timed) asynchronous relational nets concerns the ability to make joint progress. In the
timed version, we need to take into account the way time itself progresses.

Definition 13 (Progress-enabled) For every HT-ARN α and time sequence τ , let

Πατ = {π∈(2Aα)
∗

: ∀p∈N ∪ E (π|ιp∈Λfαpτ)}

We say that α is progress-enabled in relation to τ iff

ε ∈ Πατ and ∀π∈Πατ ∃A⊆Aα((π·A) ∈ Πατ)

We say that α is progress-enabled iff there is a time sequence τ such that α is progress-
enabled in relation to every τ ′ � τ .

The set Πατ consists of all the segments that the processes can jointly engage in across
the time sequence τ . Notice that if Πατ is not empty, τ is a refinement of a δαp -time
sequence for every node or edge p of α. Furthermore, because the intersection of A
with the alphabet of any process can be empty, being progress-enabled does not require
all parties to actually perform an action.

By itself, being progress-enabled does not guarantee that a HT-ARN is consistent:
moving from finite to infinite behaviours requires the analysis of what happens ‘at the
limit’. However, if we work with t-closed properties, the limit behaviour will remain
within the HT-ARN:

Theorem 14 A HT-ARN is consistent if it is t-closed and progress-enabled.

We now show how HT-ARNs can be guaranteed to be progress-enabled by construc-
tion: we identify atomic HT-ARNs that are progress-enabled and prove that the class
of progress-enabled HT-ARNs is closed under composition. We start by remarking
that, given a process P , the HT-ARN that consists of a single node labelled with P
is progress-enabled in relation to at least a δ-time sequence and all its refinements, and
therefore is progress-enabled. The same applies to any HT-ARN that consists of a fi-
nite set of unconnected processes — in fact, this generalises to any finite juxtaposition
of progressed-enabled HT-ARNs (or, indeed, consistent HT-ARNs); the challenge is in
checking that progress-enabled HT-ARNs are closed under composition because com-
position connects HT-ARNs, i.e., it creates connected components.

In [6], we gave criteria for the composition of two (un-timed) progress-enabled
ARNs to be progress-enabled based on the ability of processes to buffer incoming mes-
sages – being ‘delivery-enabled’. In a timed domain, it becomes necessary to iden-
tify time sequences across which all parties can work together. Given a HT-ARN and
one of its interaction-points 〈v,M〉, we define the set D〈v,M〉 of deliveries that can be
made at that point —D〈v,M〉={v.m¡ :m∈M+} if 〈v,M〉 is a process interaction-point
and {v.m! : m∈M+} otherwise. Notice that in the latter case 〈v,M〉 is a connection
interaction-point and deliveries to that point (in M) are publications by v.

10

Definition 15 (Delivery-enabled HT-ARN) A HT-ARNα = 〈P,C, δ, γ, Λ〉 is delivery-
enabled in relation to one of its interaction-points 〈v,M〉∈Iα if, for everyB ⊆ D〈v,M〉,
τ∈Λtime and (π·A)∈Πατ such that τ(|π|) is a multiple of δv (i.e., the process at v
makes a step), (π · B ∪ (A \D〈v,M〉)) ∈ Πατ (i.e., the process at v accepts the deliv-
eries in B instead of those in A.)

That is, being delivery-enabled at an interaction point requires any joint segment of the
HT-ARN over a time sequence to be extensible with any set of messages delivered at that
interaction-point. Note that in the case of a connection interaction-point, being delivery-
enabled means that the orchestrator of the connection is ready to accept publications at
the node v. Also note that being delivery-enabled does not interfere with the decision
to publish messages: B ∪ (A\D〈v,M〉) retains all the publications in A.

Finally, we need to make sure that the processes that orchestrate connections can
work together with the processes that they interconnect, i.e., that they do not force the
delivery of messages when the processes cannot receive them:

Definition 16 (Cooperative connections) Let Ξ = 〈C, γF , ξ〉 be a connection with
C = 〈δ, γ, Λ〉 and, for every attachment ξi : Mi → MPi of C to a process Pi, let
Ei = {m! : m ∈M−i }. The connection is said to be cooperative if, for every τ∈Λtime
and for every ξi, if (π·A)∈Λfτ and τ(|π|) is not a multiple of δPi then π · (A\Ei) ∈ Λfτ .

That is, if after π the connection wants to make a delivery when a process is not in
sync, there is an alternative path from π where no delivery is made at that time. Notice
that, because δPi is a multiple of δ, publications are always made in sync with the
orchestrator. Therefore, in the context of a delivery-enabled HT-ARN, if τ(|π|) is not a
multiple of δPi , π·∅ ∈ Λfτ .

Theorem 17 Let α be a composition of progress-enabled HT-ARNs through a family of
wires with mutually-disjoint sets of interaction points i.e.,

α = (α1

ni=1...n

〈〈vi,Mcvi
〉,ξi,〈pi,Mpi

〉〉
α2)

where each 〈〈vi,Mcvi
〉, ξi, 〈pi,Mpi〉〉 is a wire between α1 and α2. If the connec-

tions involved in θ (those that label the hyperedges cvi) are cooperative and the HT-
ARNs are delivery-enabled in relation to the interaction-points being connected, then
α is progress-enabled.

Therefore, the proof that a HT-ARN is progress-enabled can be reduced to checking that
individual processes and orchestrators are delivery-enabled in relation to their interac-
tion points. To guarantee that the HT-ARN is consistent, it is sufficient to choose pro-
cesses and orchestrators that are t-closed (implement safety properties). All the check-
ing can be done at design time, not at composition time.

5 A compositional theory for HT-ARNs

In this section, we discuss a logic that supports the specification of timed properties as
defined in Section 2 and defines a specification theory for our component algebra.

11

Several extensions of LTL have been proposed to express and reason about real time,
among which Metric Temporal Logic (MTL)[10]. MTL works over timed traces and
has been studied extensively in relation to important properties such as decidability.
The formulas of MTL are built from a set of atomic propositions A using Boolean
connectives and time-constrained versions of the until operator of the form UI where
I ⊆ [0,∞) is an interval with endpoints in Q≥0∪{∞}.

φ ::= a | ¬φ | φ ⊃ φ | φ UI φ

Our purpose is to be able to use such a logic to define a process through a collection Φ of
sentences over the languageAγ of the actions defined by the set γ of process ports, such
that the behaviour of the process can be defined as {λ : λ � Φ}, i.e., the set of timed
traces that satisfy all the sentences in Φ. We then want to use the inference mechanisms
of the logic to be able to derive properties of processes and of HT-ARNs.

Because the behaviour of a process is the r-closure of a non-empty δ-timed prop-
erty (Def. 4), where δ is a clock granularity, we need to be able to define the process
semantics of a collection Φ of sentences in such a way that it meets those require-
ments. In addition, because only t-closed processes can guarantee good properties of
HT-ARNs such as consistency, we should restrict ourselves to a safety fragment.

Fragments of MTL have been characterised in which only safety properties can
be expressed such as SAFETY-MTL[12], which requires that sentences are in negation
normal form and all eventualities to be time-bounded:

φ ::= a | ¬a | φ ∧ φ | φ ∨ φ | φ UI φ | φRI φ | φR φ

where I is bounded andRI (resp.R) is the dual of UI (resp. U[0,∞)) operator. In a time
context, a safety property Λ is one that is divergent safe, i.e., for any timed trace λ, if
for all π<λ there is λ′∈Λ such that π<λ′, then λ∈Λ. It is easy to see that divergent-safe
properties are also t-closed, showing that SAFETY-MTL is adequate for our purposes.

However, the need to specify and reason about r-closed sets of timed traces requires
the characterisation of an appropriate fragment of SAFETY-MTL. An alternative, which
we take in this paper, is to adopt instead the continuous semantics of MTL. Although
the continuous semantics renders MTL and SAFETY-MTL undecidable, it provides a
much simpler specification logic for HT-ARNs. We are currently working on the iden-
tification of a suitable fragment of SAFETY-MTL with the pointwise semantics.

The models of a continuous semantics are expressed in terms of signals:

Definition 18 (Signal) A signal for an alphabet A is a function f : R>0 → 2A with
finite variability, that is, with only finitely many discontinuities in any finite amount of
time. The semantics of MTL over signals is as follows:

– f, t � a iff a∈f(t)

– f, t � ¬φ iff f, t 2 φ
– f, t � φ1 ⊃ φ2 iff if f, t � φ1 then f, t � φ2
– f, t � φ1 UI φ2 iff there exists u ≥ t s.t. (u − t) ∈ I , f, u � φ2 and, for all
t < r < u, f, r � φ1

– f � φ iff f, 0 � φ

12

Definition 19 (Signals vs timed traces) Given an alphabet A: (1) a timed-trace λ =
〈σ, τ〉 defines the signal fλ where, for every i, fλ(τ(i)) = σ(i) and fλ(t) = ∅ every-
where else; (2) a signal f and a time sequence τ define a timed trace λτf = 〈σ, τ〉 where
σ(i) = f(τ(i)). We use λδf to denote the δ-timed trace defined by f and τδ .

An important result is that all refinements of a given trace define the same signal:

Proposition 20 Given timed-traces λ and λ′, λ′ � λ implies fλ′ = fλ. It follows that,
for every Φ, ΛΦ = {λ : fλ � Φ} is r-closed.

This is why the continuous semantics provides a ‘natural’ specification logic for HT-
ARNs: only r-closed properties can be specified.

Definition 21 (Process specification) A specification of a process 〈δ, γ, Λ〉 is 〈Aγ , Φ〉
such that Φ is in SAFETY-MTL and Λ � Φ, i.e., for every λ ∈ Λ, fλ � Φ.

As an example consider again the process CreditMgr and suppose that its set of timed
traces Λm is the r-closure of the set of 0.3-timed traces 〈σ, τ〉 satisfying

∀i∈N (processCredit¡∈σ(i) ∧ ∀j<i processCredit¡/∈σ(j))⇒
∃k>i (expectedDate!∈σ(k) ∧ τ(k)−τ(i)<4 ∧ ∀j 6=kexpectedDate!/∈σ(j))

It is not difficult to prove that, for every λ∈Λm,

fλ � processCredit¡R(¬processCredit¡ ∨3<4expectedDate!)

where 3<t φ abbreviates (true U[0,t) φ). This sentence specifies that expectedDate is
published within four time units from the first delivery of processCredit .

Given now a clock granularity δ and a specification 〈Aγ , Φ〉, we are interested
to know if there is actually a process 〈δ, γ, Λ〉 that it specifies, i.e., if 〈Aγ , Φ〉 is ‘δ-
satisfiable’. Note that, because the set of processes that 〈Aγ , Φ〉 specifies is closed under
union, if the set is not empty it will admit a biggest process.

Consider ΛΦ={λ : fλ � Φ}. By Prop. 20, ΛΦ is r-closed. However, ΛΦ is not nec-
essarily the r-closure of a set of δ-timed traces. Consider instead the set {λ : λ∈Λδ(Aγ)
and fλ � Φ}r. To determine if the set is not empty, we would have to find a δ-timed
trace λ such that fλ � Φ. For that purpose, we could consider the δ-timed trace λδg for
some g � Φ (assuming that Φ is logically satisfiable). However, it is not immediate that
fλδg � Φ. This is because g and fλδg are not necessarily the same signal: λδg retains only
the observations made at multiples of δ and fλδg then constructs a signal that observes
the empty set of actions at all other instants, which g may fail to do. Our approach is
to construct a sentence Axδ such that g � Axδ implies g = fλδg . We can then take the
set ΛδΦ = {λδf : f � Φ and f � Axδ}r and reduce the δ-consistency of 〈Aγ , Φ〉 to the
satisfiability of Φ ∪ {Axδ}.

Proposition 22 ΛδΦ � Φ.

Hence, if Φ ∪ {Axδ} is satisfiable, 〈δ, γ, ΛδΦ〉 is a process, actually the biggest process
that is specified by 〈Aγ , Φ〉, which we take as its denotation.

We detail now the construction ofAxδ . We introduce a new class of unary operators
�δ where δ∈Q>0, which allow us to express that a sentence holds at all multiples of δ:

13

f, t � �δ φ iff for all n ∈ N, f, t+ n · δ � φ

Notice that restricting δ to Q>0 is not a real limitation. On the one hand, a connected
HT-ARN is such that all the clock granularities are commensurate, which means that we
can convert them to rational numbers by dividing them by a common divisor. On the
other hand, reasoning about HT-ARNs that are not connected is not relevant because
disconnected components do not interfere with each other. Notice that, for r-closure,
one simply needs a dense set of time granularities.

In the extended language, the sentence �δ (�<δ ∧a∈A ¬a) — where �<t φ is an
abbreviation of ¬(true U[0,t) ¬φ) — expresses a key property of δ-timed traces: empty
observations occur at all time instants that are not multiple of δ. We denote this sentence
byAxδ and, more generally, given B ⊆ A, we useAxBδ to denote �δ (�<δ ∧a∈B ¬a).

Proposition 23 fλ � Axδ if λ refines a δ-timed trace.

Note that, because Axδ is a safety property, we can conclude that ΛδΦ is safe if we
restrict Φ to SAFETY-MTL.

We are now interested in reasoning about properties of HT-ARNs. That is, given a
HT-ARN α and a sentence φ in the language of Aα, we are interested in determining
whether Λα � φ, i.e., fλ � φ for every λ ∈ Λα.

Theorem 24 Let α be a HT-ARN and, for every node (resp. hyperedge) p, let Φαp be a
specification of the process (resp. orchestrator) at p. Let

Φα =
⋃

p∈N∪E
ιp(Φαp ∪Ax

Aαp
δαp

)

We have that Λα � φ if Φα ` φ.

That is, to prove that φ expresses a property of α, it is sufficient to derive φ from
specifications of the processes and orchestrators of α enriched with the corresponding
Axδ axioms.

6 Concluding remarks

In this paper, we have proposed a component algebra that extends the notion of asyn-
chronous relational net developed in [6] to a wider class of systems that operate in a
heterogeneous time domain: a HT-ARN is a multigraph of nodes, each with its own
clock granularity, where processes execute, and hyperedges where interactions among
sets of such processes are orchestrated. Every hyperedge also has its one clock granular-
ity, which needs to be a divisor of the clock granularities of the nodes that it connects so
that they can interact. This is important for modelling the software systems that are now
starting to operate in cyberspace, where they can connect dynamically, i.e., at run time,
to other systems. We provided compositionality results for ensuring the consistency of
interconnections when performed at run time across different clock granularities. Con-
trarily to techniques that operate at design time (e.g., [2]), our results do not require

14

changes to be performed on the processes that execute in such systems so that they can
be interconnected, which would defeat the purpose of supporting dynamic binding.

Our algebra is based on timed traces, which allows us to abstract from the speci-
ficities of the different classes of automata that can be chosen as models of implemen-
tations and characterise at a higher level the topological properties of the languages
generated by such automata that support our compositionality results. In a companion
paper [3] we investigate a specific automata-based model of machines, which we intend
to extend to networks of automata. Another area of further work concerns the logics
that can support an interface algebra for HT-ARNs. Although we provided a version of
SAFETY-MTL that can support the specification of HT-ARNs, we had to rely on a con-
tinuous semantics to enforce the required closure properties. The problem here is that
MTL with a continuous semantics is undecidable; better decidability properties can be
obtained by choosing instead a pointwise semantics (i.e., where the logic is interpreted
directly over timed traces) [12]. Initial results suggest that a pointwise semantics can
be developed for HT-ARNs, though at the cost of restricting the syntax. This is an area
in which we are currently working, also capitalising on the automata-based models of
processes that we have developed in [3].

References

1. M. Abadi and L. Lamport. The existence of refinement mappings. Theor. Comput. Sci.,
82(2):253–284, 1991.

2. A. Benveniste, B. Caillaud, L. P. Carloni, and A. L. Sangiovanni-Vincentelli. Tag machines.
In EMSOFT, pages 255–263. ACM, 2005.

3. B. Delahaye, J. L. Fiadeiro, A. Legay, and A. Lopes. Heterogeneous timed machines. Tech-
nical report, submitted, October 2013.

4. B. Delahaye, J. L. Fiadeiro, A. Legay, and A. Lopes. A timed component algebra for ser-
vices. In D. Beyer and M. Boreale, editors, FORTE, volume 7892 of LNCS, pages 242–257.
Springer, 2013.

5. G. Dı́az, J. J. Pardo, M.-E. Cambronero, V. Valero, and F. Cuartero. Verification of web
services with timed automata. Electr. Notes Theor. Comput. Sci., 157(2):19–34, 2006.

6. J. L. Fiadeiro and A. Lopes. An interface theory for service-oriented design. Theor. Comput.
Sci., 503:1–30, 2013.

7. J. Forget, F. Boniol, D. Lesens, and C. Pagetti. A multi-periodic synchronous data-flow
language. In HASE, pages 251–260. IEEE Computer Society, 2008.

8. N. Guermouche and C. Godart. Timed model checking based approach for web services
analysis. In ICWS, pages 213–221. IEEE, 2009.

9. R. Kazhamiakin, P. K. Pandya, and M. Pistore. Representation, verification, and computation
of timed properties in web. In ICWS, pages 497–504. IEEE Computer Society, 2006.

10. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255–299, 1990.

11. T. T. H. Le, R. Passerone, U. Fahrenberg, and A. Legay. Tag machines for modeling hetero-
geneous systems. In ACSD, pages 186–195. IEEE Computer Society, 2013.

12. J. Ouaknine and J. Worrell. Safety metric temporal logic is fully decidable. In TACAS,
volume 3920 of LNCS, pages 411–425. Springer, 2006.

13. J. Ponge, B. Benatallah, F. Casati, and F. Toumani. Analysis and applications of timed service
protocols. ACM Trans. Softw. Eng. Methodol., 19(4), 2010.

15

