4 research outputs found

    Quantification and segmentation of breast cancer diagnosis: efficient hardware accelerator approach

    Get PDF
    The mammography image eccentric area is the breast density percentage measurement. The technical challenge of quantification in radiology leads to misinterpretation in screening. Data feedback from society, institutional, and industry shows that quantification and segmentation frameworks have rapidly become the primary methodologies for structuring and interpreting mammogram digital images. Segmentation clustering algorithms have setbacks on overlapping clusters, proportion, and multidimensional scaling to map and leverage the data. In combination, mammogram quantification creates a long-standing focus area. The algorithm proposed must reduce complexity and target data points distributed in iterative, and boost cluster centroid merged into a single updating process to evade the large storage requirement. The mammogram database's initial test segment is critical for evaluating performance and determining the Area Under the Curve (AUC) to alias with medical policy. In addition, a new image clustering algorithm anticipates the need for largescale serial and parallel processing. There is no solution on the market, and it is necessary to implement communication protocols between devices. Exploiting and targeting utilization hardware tasks will further extend the prospect of improvement in the cluster. Benchmarking their resources and performance is required. Finally, the medical imperatives cluster was objectively validated using qualitative and quantitative inspection. The proposed method should overcome the technical challenges that radiologists face

    Data-efficient deep representation learning

    Get PDF
    Current deep learning methods succeed in many data-intensive applications, but they are still not able to produce robust performance due to the lack of training samples. To investigate how to improve the performance of deep learning paradigms when training samples are limited, data-efficient deep representation learning (DDRL) is proposed in this study. DDRL as a sub area of representation learning mainly addresses the following problem: How can the performance of a deep learning method be maintained when the number of training samples is significantly reduced? This is vital for many applications where collecting data is highly costly, such as medical image analysis. Incorporating a certain kind of prior knowledge into the learning paradigm is key to achieving data efficiency. Deep learning as a sub-area of machine learning can be divided into three parts (locations) in its learning process, namely Data, Optimisation and Model. Integrating prior knowledge into these three locations is expected to bring data efficiency into a learning paradigm, which can dramatically increase the model performance under the condition of limited training data. In this thesis, we aim to develop novel deep learning methods for achieving data-efficient training, each of which integrates a certain kind of prior knowledge into three different locations respectively. We make the following contributions. First, we propose an iterative solution based on deep learning for medical image segmentation tasks, where dynamical systems are integrated into the segmentation labels in order to improve both performance and data efficiency. The proposed method not only shows a superior performance and better data efficiency compared to the state-of-the-art methods, but also has better interpretability and rotational invariance which are desired for medical imagining applications. Second, we propose a novel training framework which adaptively selects more informative samples for training during the optimization process. The adaptive selection or sampling is performed based on a hardness-aware strategy in the latent space constructed by a generative model. We show that the proposed framework outperforms a random sampling method, which demonstrates effectiveness of the proposed framework. Thirdly, we propose a deep neural network model which produces the segmentation maps in a coarse-to-fine manner. The proposed architecture is a sequence of computational blocks containing a number of convolutional layers in which each block provides its successive block with a coarser segmentation map as a reference. Such mechanisms enable us to train the network with limited training samples and produce more interpretable results.Open Acces

    Contribuciones de las técnicas machine learning a la cardiología. Predicción de reestenosis tras implante de stent coronario

    Get PDF
    [ES]Antecedentes: Existen pocos temas de actualidad equiparables a la posibilidad de la tecnología actual para desarrollar las mismas capacidades que el ser humano, incluso en medicina. Esta capacidad de simular los procesos de inteligencia humana por parte de máquinas o sistemas informáticos es lo que conocemos hoy en día como inteligencia artificial. Uno de los campos de la inteligencia artificial con mayor aplicación a día de hoy en medicina es el de la predicción, recomendación o diagnóstico, donde se aplican las técnicas machine learning. Asimismo, existe un creciente interés en las técnicas de medicina de precisión, donde las técnicas machine learning pueden ofrecer atención médica individualizada a cada paciente. El intervencionismo coronario percutáneo (ICP) con stent se ha convertido en una práctica habitual en la revascularización de los vasos coronarios con enfermedad aterosclerótica obstructiva significativa. El ICP es asimismo patrón oro de tratamiento en pacientes con infarto agudo de miocardio; reduciendo las tasas de muerte e isquemia recurrente en comparación con el tratamiento médico. El éxito a largo plazo del procedimiento está limitado por la reestenosis del stent, un proceso patológico que provoca un estrechamiento arterial recurrente en el sitio de la ICP. Identificar qué pacientes harán reestenosis es un desafío clínico importante; ya que puede manifestarse como un nuevo infarto agudo de miocardio o forzar una nueva resvascularización del vaso afectado, y que en casos de reestenosis recurrente representa un reto terapéutico. Objetivos: Después de realizar una revisión de las técnicas de inteligencia artificial aplicadas a la medicina y con mayor profundidad, de las técnicas machine learning aplicadas a la cardiología, el objetivo principal de esta tesis doctoral ha sido desarrollar un modelo machine learning para predecir la aparición de reestenosis en pacientes con infarto agudo de miocardio sometidos a ICP con implante de un stent. Asimismo, han sido objetivos secundarios comparar el modelo desarrollado con machine learning con los scores clásicos de riesgo de reestenosis utilizados hasta la fecha; y desarrollar un software que permita trasladar esta contribución a la práctica clínica diaria de forma sencilla. Para desarrollar un modelo fácilmente aplicable, realizamos nuestras predicciones sin variables adicionales a las obtenidas en la práctica rutinaria. Material: El conjunto de datos, obtenido del ensayo GRACIA-3, consistió en 263 pacientes con características demográficas, clínicas y angiográficas; 23 de ellos presentaron reestenosis a los 12 meses después de la implantación del stent. Todos los desarrollos llevados a cabo se han hecho en Python y se ha utilizado computación en la nube, en concreto AWS (Amazon Web Services). Metodología: Se ha utilizado una metodología para trabajar con conjuntos de datos pequeños y no balanceados, siendo importante el esquema de validación cruzada anidada utilizado, así como la utilización de las curvas PR (precision-recall, exhaustividad-sensibilidad), además de las curvas ROC, para la interpretación de los modelos. Se han entrenado los algoritmos más habituales en la literatura para elegir el que mejor comportamiento ha presentado. Resultados: El modelo con mejores resultados ha sido el desarrollado con un clasificador extremely randomized trees; que superó significativamente (0,77; área bajo la curva ROC a los tres scores clínicos clásicos; PRESTO-1 (0,58), PRESTO-2 (0,58) y TLR (0,62). Las curvas exhaustividad sensibilidad ofrecieron una imagen más precisa del rendimiento del modelo extremely randomized trees que muestra un algoritmo eficiente (0,96) para no reestenosis, con alta exhaustividad y alta sensibilidad. Para un umbral considerado óptimo, de 1,000 pacientes sometidos a implante de stent, nuestro modelo machine learning predeciría correctamente 181 (18%) más casos en comparación con el mejor score de riesgo clásico (TLR). Las variables más importantes clasificadas según su contribución a las predicciones fueron diabetes, enfermedad coronaria en 2 ó más vasos, flujo TIMI post-ICP, plaquetas anormales, trombo post-ICP y colesterol anormal. Finalmente, se ha desarrollado una calculadora para trasladar el modelo a la práctica clínica. La calculadora permite estimar el riesgo individual de cada paciente y situarlo en una zona de riesgo, facilitando la toma de decisión al médico en cuanto al seguimiento adecuado para el mismo. Conclusiones: Aplicado inmediatamente después de la implantación del stent, un modelo machine learning diferencia mejor a aquellos pacientes que presentarán o no reestenosis respecto a los discriminadores clásicos actuales
    corecore