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Abstract: Human action recognition targets recognising different actions from a sequence of
observations and different environmental conditions. A wide different applications is applicable to
vision based action recognition research. This can include video surveillance, tracking, health care,
and human–computer interaction. However, accurate and effective vision based recognition systems
continue to be a big challenging area of research in the field of computer vision. This review introduces
the most recent human action recognition systems and provides the advances of state-of-the-art
methods. To this end, the direction of this research is sorted out from hand-crafted representation
based methods including holistic and local representation methods with various sources of data, to a
deep learning technology including discriminative and generative models and multi-modality based
methods. Next, the most common datasets of human action recognition are presented. This review
introduces several analyses, comparisons and recommendations that help to find out the direction of
future research.

Keywords: human action recognition; hand-crafted feature; deep learning; feature representation

1. Introduction

Human Action Recognition (HAR) has a wide-range of potential applications. Its target is
to recognise the actions of a person from either sensors or visual data. HAR approaches can
be categorised into visual sensor-based, non-visual sensor-based and multi-modal categories [1,2].
The main difference between visual and other categories is the form of the sensed data. The visual
data are captured in the form of 2D/3D images or video whilst others capture the data in the form
of a 1D signal [2]. Over the last few years, wearable devices such as smart-phones, smart-watches,
and fitness wristbands have been developed. These have small non-visual based sensors and are
equipped with computing power and communication capability. They are also relatively low cost
which has helped to open up new opportunities with ubiquitous applications. These include health
monitoring, recuperative training and disease prevention, see, e.g., [3].

At the same time, visual sensor-based methods of human action recognition are one of the most
prevalent and topical areas in the computer vision research community. Applications have included
human–computer interaction, intelligent video surveillance, ambient assisted living, human–robot
interaction, entertainment and content-based video search. In each one of those applications,
the recognition system is trained to distinguish actions carried out in a scene. It may also perform
some decisions or further processing based on that inference.

It can be stated that wearable devices have several limitations such as in most cases they need
to be worn and to operate constantly. This might be a significant issue for real applications that may
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require readiness and deployability. In turn, requiring specific technical requirements related to e.g.,
battery life, size and performance of the sensor, see, e.g., [4]. In addition, they might not be suitable
or efficient to employ in e.g., crowd applications or other related scenarios. These limitations are not
applicable to computer-vision based HAR. Computer vision based HAR can be applied to most of
application scenarios without these technical requirements or limitations.

From about 1980, researchers have presented different studies on action recognition based on
images and/or video data [5,6]. In many instances, researchers have been following or drawing
inspiration from elements of the operating principles of the human vision system. The human
vision system receives visual information about an object especially with respect to movement and
shape and how it changes with time. Observations are fed to a perception system for recognition
processes. These biophysical processes of the human recognition system have been investigated by
many researchers to achieve similar performance in the form of computer vision systems. However,
several challenges such as environmental complexities, scale variations, non-rigid shapes, background
clutter, viewpoint variations and occlusions make computer vision systems unable to fully realise
many elementary aspects of a human vision system.

Action recognition systems can be categorised into different four categorises according to the
complexity of human action. This can include: primitive [7], single person [8], interaction [9],
and group [10] actions recognition. Primitive action indicates basic movement of human body
parts—for example, “lifting a hand” and “bending”. Single person actions indicate a set of primitive
actions of a single person such as “running” and “jumping”. Interaction indicates actions involve
humans and objects, such as “carrying a box” and “playing a guitar”. Group actions refer to actions
occurring in a group of people such as a “procession”, “meeting”, and “group walking”.

In general, computer vision methods based HAR can be classified into two categories in terms of
a comprehensive investigation of the literature: (a) Traditional hand-crafted feature based methods
followed by a trainable classifier for action recognition. In addition, (b) deep learning based approaches
are able to learn features automatically from raw data and are commonly followed by a trainable
classifier for action recognition [11,12].

Many important survey and review papers have been published on human action recognition and
related techniques. However, usually, published reviews go out-of-date. For this reason, writing an
updated review on human action recognition is significantly required although it is considered hard
work and a challenging task. In this review, discussions, analysis and comparisons of state-of-the-art
methods are provided for vision based human action recognition. Handcrafted based methods and
deep learning based methods are introduced along with popular benchmark datasets and significant
applications. This paper also considered different designs of recognition models including: hybrid,
modalities-based and view-invariant based. A brief detail of different architectures is introduced for
vision-based action recognition models. Recent research works are presented and explained to help
researchers to follow the path for possible future works.

The structure of this review starts at low level based methods for action recognition. This is
followed by description of some of the important details of feature descriptor based techniques.
A number of improvements that can be achieved in these aspects are identified. These are also
transferable with respect to the performance of action recognition systems in general. Thereafter,
it reviews higher level feature representation based methods. It explains the widespread feature
descriptor based techniques with respect to different aspects. The paper then covers the mainstream
research that has resulted in the developments of the widely known deep learning based models and
their relation to action recognition systems.

2. Popular Challenges in Action Recognition Models

Initially, it might be useful to highlight some of the most popular challenges in action recognition
based methods.
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2.1. Selection of Training and Testing Data

The type of data can strongly affect the efficiency of a recognition model. Three types of data
are usually used for action recognition. These are RGB, depth, or skeleton information, each of
which can have advantages and disadvantages. For instance, significant texture information can be
provided from an RGB input. This might be considered to be closely related to the visual information
that humans typically process. On the other hand, a lot of variations can occur in the appearance
information that depend on e.g., lighting conditions. In contrast to RGB, depth map information
is invariant to illumination changes. This makes it easier to detect foreground objects from the
background scene. In addition, a depth map provides 3D characteristics about the captured scene.
However, depth map information also commonly has some defects. For instance noisy measurements
are sometimes a problem need to be purified and refined. Another input type is skeleton information.
Skeletons can be obtained using different approaches; see, e.g., [13–16]. Skeleton can be obtained from
RGB or more commonly depth information. However, this type of information is often captured or
computed imperfectly especially in an occluded or noisy environment. In this work, the complementary
information available in the RGB and depth map data are exploited directly for action recognition.

2.2. Variation in Viewpoint

Most methods assume that actions are performed from a fixed viewpoint. However, in a real case,
the location and posture of the person vary considerably based on the viewpoint where the action
is captured from. In addition, a variation in motion patterns are also appeared in each different
view which makes recognition of an action more difficult. Training a classifier using multiple
camera information is a way used by [17] to tackle this issue. View-invariant representation was
also obtained by modeling a 3D body posture for action recognition such in [18]. Researchers try to to
utilise view-invariant features space using Fourier transform and cylindrical coordinate systems [19].
However, researchers [20,21] have reported that most multi-view datasets involve uniform or fixed
background. Therefore, in order to evaluate the performance of various methods, it would be necessary
to validate those using actions recorded in real-world settings.

2.3. Occlusion

An action required to be recognised should be clearly visible in the video sequences. This is not
true in the real case, especially in a normal surveillance video. Occlusion can be presented by the person
itself or by any other objects in the field. This can make body parts performing an action invisible
which can cause a big issue for the research community. Volumetric analysis and representation [22] of
an action can tackle self-occlusion issues and helps to match and classify the action. Considering body
parts separately is a feasible way to handle occlusions. This can be performed using Pose-based
constraints [23] and Probabilistic-based methods [24,25]. The multiple camera setup method is another
approach that is used by researchers to handle occlusion problems [26].

2.4. Features Modelling for Action Recognition

In general, two popular methods are found to be considered for designing features for action
recognition. One can use feature design based application methods which lead to the utilisation of
the hand-crafted features. Another way is to automatically capture features from input data. This can
be achieved using deep learning techniques which have often shown competitive performance in
comparison to hand-crafted feature based methods [27].

2.5. Cluttered Background

Cluttered background is a case that formed a distraction introducing ambiguous information
in the video of an action [28]. Different vision-based methods are affected by this issue such as an
optical flow algorithm that is used to calculate motion information but with unwanted background
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motion (due to cluttered background) along with the required motion. In addition, this issue has a
great influence on colour-based and region-based segmentation approaches as these methods require
uniform background to achieve high quality segmentation. In order to handle and avoid the issues
introduced, many research works assumed a static background or an approach to deal with the videos
prior to processing [20,29].

2.6. Feature Design Techniques

Different levels of features can be used for action recognition. Some researchers such as [30–32]
proposed to employ the input as a whole referred to here as holistic methods. Other researchers such
as [33–36] considered salient points of interest from input data with what are known as local feature
based methods.

Motion is an important suorce of information that needs to be considered for action recognition.
Different techniques have been proposed to model motion information in the feature computation
step. This has included optical flow for low level feature displacements and trajectories across
multiple frames which can then be fed to classifiers or to further feature extraction processes.
Some other research has included motion information in the classification step with models such
as: Hidden Markov Models [37]; Conditional Random Fields [38]; Recurrent Neural Network [39];
Long-Short Term Memory; and 3D Convolution Neural Network [40]. All of these are able to model
sequential information by design.

In such systems, an efficient feature set is able to reduce the burden for improving the
recognition. An overview is now provided of selected state-of-the-art methods with respect to all
aforementioned challenges and approaches mentioned above. In the following, action recognition
systems are partitioned based on hand-crafted features in addition to those based on different deep
learning techniques.

3. Applications of Action Recognition Models

During the last decade, many researchers have paid attention to the action recognition field with a
significant evolution of the number of publications. This section highlights state-of-the-art applications
that consider human action recognition methodologies to assist humans. Different applications of
the current action recognition approaches are discussed including: smart homes and assisted living,
healthcare monitoring, security and surveillance, and human–robot interaction [41,42].

3.1. Surveillance and Assisted Living

Different modern technologies have provided a wide range of improvements in the performance
of independent assisted living systems. This comes true using action recognition techniques to
monitor and assist occupants. For example, a smart home system proposed by [43] used machine
learning and features extraction techniques to analyse the activity patterns of an occupant to introduce
automation policies based on the identified patterns to support the occupants. Another smart system
has been introduced by [44] for human behaviour monitoring and support (HBMS). This was achieved
by observing an occupant’s daily living activities using the Human Cognitive Modeling Language
(HCM-L). Then, the HBMS control engine is applied to assist individuals in a smart way. On the
other hand, vision-based technologies are introduced in different security applications such as the
surveillance system that introduced by [45]. This system has the ability to recognise human behaviours
such as fighting and vandalism events that may occur in a public district using one or several camera
views [46]. Multiple camera views were used by [47] to detect and predict suspicious and aggressive
behaviours in real time and in a crowded environment.

3.2. Healthcare Monitoring

The development of medical research and technology remarkably improved the quality of patients’
life. However, higher demands of medical personnel made researchers try different technologies to
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improve healthcare monitoring methods that may be essential in emergency situations. Basically, one
or more factors can be involved in the design of healthcare monitoring systems. This can include fall
detection, human tracking, security alarm and cognitive assistance components. In [48], a vision-based
system was proposed for healthcare purposes. It used Convolutional Neural Networks to detect person
falling. Optical flow sequences were used as input to the networks followed by a three training phases.
Fall detection system for home surveillance was proposed by [49]. A surveillance video was used to
detect the fall. Background subtraction was used to detect the moving object and segmented within a
bounding box. Few rules were used with the transitions of a finite state machine (FSM) to detect the fall
based on the measures of the extracted bounding box. An intelligent monitoring system was proposed
by [50] to monitor the “elopement” events of dementia units and to automatically alert the caregivers.
Audio and video daily activities were collected and detected using an HMM-based algorithm.

3.3. Entertainment and Games

In the recent years, gaming industries have developed a new generation of games based on the
full body of a gamer such as dance and sports games. RGB-D sensors (see, e.g., [51]) are used in this
kind of games to improve the perception of human actions. A rich information of an entire scene is
provided by these sensors to facilitate action recognition tasks [52,53].

3.4. Human–Robot Interaction

Human–robot interaction is considerably adapted in home and industry environments.
An interaction is achieved to perform a specific task such as “Passing a cup” or “locating an object”.
A vision-based method is one of the effective communication ways between human and robots [54,55].

3.5. Video Retrieval

Most search engines use the associated information to manage video data. Text data such as tag,
description, title and keywords is one piece of information that can be used for such purposes [56].
However, one piece of information can be incorrect, which results in unsuccessful video retrieval.
An alternative approach was proposed by [57] for video retrieval by analysing human actions in videos.
The designed framework computed the similarity between action observations to then be used to
retrieve videos of children with autism in a classroom setting.

3.6. Autonomous Driving Vehicles

An automated driving system is aimed to ensure safety, security, and comfort. One of the
most important components of this system is action prediction and recognition algorithms [55,58].
These methods can analyse human action and motion information in a short period of time that helps
to avoid critical issues such as collision.

4. Hand-Crafted Feature Representation for Action Recognition

We will start by demonstrating some classical human action recognition based methods based on
hand-crafted features. Classical image classification based methods usually consist of three consecutive
steps: features extraction, local descriptor computation and classification. Similar steps have been
employed more generally for image and video classification as well as human action recognition.

4.1. Holistic Feature Representation Based Methods

Holistic feature representation based methods treat Regions Of Interest (ROI)s as a whole in
which all pixels are exploited to compute the descriptors. In general, holistic based methods consist
of two steps for action recognition which are person detection and descriptor computation. Holistic
methods consider a global structure of the human body to represent an action, where it is not necessary
to localise body parts. The key idea is that discriminative global information can be represented from a
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region of interest which can then be used for action characterisation. Holistic methods can be efficient
and effective in addition to simple to compute due to the use of global information only. This makes
this kind of method important for videos which might contain background clutter, camera motion,
and occlusions.

In general, holistic methods can be classified into two categories based on the information that is
used for the recognition problem:

• Recognition based on shape information such as shape masks and the silhouette of the person;
• Recognition based on shape and global motion information.

4.1.1. Shape Information Based Methods

Holistic based approaches are often based on information from the silhouettes, edges, optical flow,
etc. Such methods are sensitive to noise, background clutter, and variations in occlusion and
view-points e.g., see [59]. Silhouette information provides shape information about the foreground
in the image. Different techniques can be employed to compute silhouette information from the
background scene. One simple technique is background subtraction that can be used with high
confidence when the camera is static. On the other hand, some research such as in [60] has utilised
human tracker and camera motion estimation to obtain silhouette information and to cope with the
drawbacks of camera motion. Shape information can be utilised in the time domain to help to consider
the evolution of the silhouette over time. Differences in the binary silhouettes have considered by [61].
These were accumulated in the spatial and temporal domains to construct a Motion Energy Image
(MEI) and a Motion History Image (MHI), respectively. These depict an action with a single template.
MEI is a binary template that indicates regions of movement. MHI indicates regions of motion where
more recent motion regions have higher weight. Three-dimensional (3D) shape information was used
by [31] for action recognition by stacking 2D silhouette information into a space-time volume. For
invariant representations to geometrical transformations such as scaling and translation, an extended
Random transform was proposed by [62]. This was applied to binary silhouette information for action
recognition. Contours of MEI templates were exploited by [63]. A descriptor was obtained which was
found to be invariant to scale changes and translations.

A lot of research has utilised shape and silhouette information to represent the human body for
human action recognition. In [30,64], shape masks of different images were used to introduce MEI and
MHI based temporal templates for action recognition.

It has been observed that some actions can be represented by key poses. This was proposed
by [65] where a method was described to detect forehand and backhand tennis strokes by matching
edge information to labelled key postures together with annotated joints. These were then tracked
between the key consecutive frames based on the silhouette information.

A number of significant methods are presented by [66] to describe space-time shapes based
on silhouette information for action recognition. Background subtraction was used to extract the
silhouette of a person. The Poisson equation was then used to obtain saliency, dynamics and shape
structure features. A high dimensional feature vector was introduced to describe sequences of 10
frames in length. This was matched to shapes of test sequences at the end.

Space-time shapes were also used by [67] where contour information was obtained using
background subtraction. Then, a set of characteristic points (saddles, valleys, ridges, peaks and
pits) were used to represent actions on the surface of the shape. The space-time shapes were matched
to recognise actions using point-to-point correspondences.

In [68], a set of silhouette exemplars were used for matching against frames in action sequences.
A vector was formed of the minimum matching distance between each exemplar and any frame of the
sequence. A Bayes classifier was employed to learn action classes with two different scenarios: first,
silhouette information; second, edge information.

A foreground shape based motion information model was presented by [69] to represent motion
from a group of consecutive frames of an action sequence. A motion context descriptor was introduced
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over a region with the use of a polar search grid, where each cell was represented with a SIFT
descriptor [70]. The final descriptor was created by summing up the entire groups of a sequence.
After that, three different approaches were used to recognise actions which were Probabilistic Latent
Semantic Analysis (pLSA) [71], w3-pLSA (pLSA extension) and Support Vector Machine (SVM).

Colour and location information based segmentation has been used by [72] to automatically
over-segment event video. Then, optical flow and volumetric features were used to match
over-segmented video against a set of training events such as picking up a dropped object or waving
in a crowd.

It is obvious from the aforementioned approaches that silhouette information can provide strong
cues for the human action recognition problem. However, significant challenges arise in the presence
of clutter, occlusion and camera motion. In addition, silhouette information can describe some types
of actions by showing characteristics of the outer contours of a person. However, other actions that
include, e.g., self-occlusion, may not easily be recognised from silhouette information alone. Therefore,
the motion and shape information is further enhanced with the use of local feature representations
discussed shortly.

RGB-D Information Based Shape Models

A new era can be considered to have begun when low cost RGB-D sensors were produced. These
simultaneously provide appearance and spatial 3D information. Such devices (e.g., Microsoft Kinect,
Asus Xtion) have the ability to work in real time. By adding the depth-map feature, the device is able to
provide information about the distance of each pixel to the sensor in a range from 0.5 m to 7 m. These
have played a key role in the enhancement of object detection and segmentation algorithms. RGB-D
sequences based methods improve recognition performance with a low time complexity. However,
depth and skeleton representation based methods of action recognition remain only applicable over a
limited range and specific environmental conditions.

As a result, many RGB holistic approaches have been extended to the RGB-D scenario to utilise
depth-map characteristics. A 3D-MHI has proposed by [73] for action recognition. This was performed
by extending the traditional MHI to use depth information. In [74], the depth silhouette was sampled
into a representative set of 3D points and used to introduce the shape of salient regions. The key
idea was to project the depth map onto three orthogonal Cartesian planes and use the points along
each plane to recognise the actions. A useful technique was used by [75] where the depth maps
were projected onto three orthogonal Cartesian planes to produce Depth Motion Maps (DMM) by
combining through summation the stacked motion energy of each of the projected maps. DMMs can
express the variation of a subject’s motions during the performance of an activity. In [76], DMMs were
used for activity recognition together with an l2-regularised collaborative representation classifier
with a distance-weighted Tikhonov matrix was also used. DMMs was used by [77] with Local
Binary Patterns (LBP)s to utilise motion cues. Two fusion levels were also considered including
feature-fusion level and decision-fusion level. The DMM based results showed reasonable human
activity recognition performance.

Different levels of the same data sequence have been used with DMM computations to create a
hierarchical DMMs in [78]. An LBP based descriptor was used to characterise local rotation invariant
texture information. Then, a Fisher kernel was employed to create patch descriptors. These were fed
into a kernel-based extreme learning machine classifier. A similar approach was followed by [79].
A Histogram of Oriented Gradients (HOG)s descriptor was used along with kernel entropy component
analysis for dimensionality reduction. Finally, a linear support vector machine was used in the
classification. For both hierarchical DMM based approaches, the results demonstrated a significant
performance improvement.

A 4D space-time grid has introduced by [80] that extended the work by [31]. This has done
by dividing space and time dimensions into multiple cells. These were used to obtain Space Time
Occupancy Patter (STOP) feature vectors for action recognition. In [81], a 4D Histogram Of Surface
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Normal Orientations (HON4D) was proposed to describe video for action recognition after computing
the normal vectors for each frame. The features of the surface normal were captured in the 4D space of
spatial, depth and time dimensions.

The rich characteristics of the depth information can help make people detection and segmentation
tasks easier and less challenging which in turn improves holistic approaches, making them more
robust with RGB-D images. However, some drawbacks of holistic methods include their sensitivity
to occlusions and noise in the depth maps. Therefore, a good representation can be presented by
combining motion and shape information which in turn may improve the recognition rate of the system.

4.1.2. Hybrid Methods Based on Shape and Global Motion Information

The work by [82] is a good example of shape and motion feature based tracking and action
recognition. The authors assumed that the movements of body parts were restricted to regions around
the torso. Subjects were bounded with rectangular boxes where the centroids were selected as the
feature for tracking. The velocity of the centroids was considered, utilising body motion features to
cope with occlusions between multiple subjects. Periodic actions such as walking were detected with a
nearest centroid algorithm calculated across spatio-temporal templates and reference templates. This
approach, however, only utilised motion information which can be improved by considering other
features such as texture, color, and shape.

Another method which used motion information was proposed by [83] based on optical flow to
track soccer players and to recognise simple actions in video. A person was tracked and stabilised.
Then, a descriptor was computed over the motion information and spatio-temporal cross-correlation
was used for matching with a database. This approach was tested on sequences from ballet, tennis and
football datasets, and it achieved impressive results on low resolution video. However, their types
of systems may depend on several conditions such as position of the region of interest in the frame,
spatial resolution and relative motion with respect to the camera. In addition, the model is based
on a global representation which can be affected by occlusions between multiple objects and a noisy
environment in the background.

Flow motion has also been used by [84] for action recognition. A flow descriptor was employed
to select low level features in the form of a space-time overlapped grid. Then, mid level features were
selected using the AdaBoost algorithm.

A space-time template based method was introduced by [85] for action recognition. It was based
on the maximum average correlation height filter. A spatio-temporal regularity flow was used to
capture spatio-temporal information and to train a Maximum Average Correlation Height (MACH)
filter. Experiments on a number of datasets including the KTH dataset demonstrated action recognition
and facial expression recognition.

Volumetric feature based action recognition was proposed by [86] where Viola–Jones features were
computed over a video’s optical flow. A discriminative set of features were obtained by direct forward
feature selection which employed a sliding window approach to recognise the actions. The model was
trained and tested on real videos with actions that included sit down, stand up, close laptop and grab
a cup actions.

Shape information was used by [87] to track an ice hockey player and to recognise
actions. Histograms of Oriented Gradients (HOG)s were used to describe each single frame.
Principal Component Analysis (PCA) was then used for dimensionality reduction. At the end, a Hidden
Markov Model (HMM) was employed to recognise actions.

A new technique was proposed to utilise a hybrid representation by combining optical flow
and appearance information by [88]. They exploited the optical flow information and Gabor filter
features for action recognition. Both kinds of features were extracted from each single frame and then
concatenated. They used different lengths of snippets of frames to highlight how many frames were
required for recognising an action. The Weizmann and KTH datasets were used for evaluation schemes.
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Motion and shape information based action recognition was also used by [89] where a multiple
instance learning based approach was employed to learn different features from a bag of instances.
This included foreground information, Motion History Image (MHI) and HOGs. Simple actions
in crowded events in addition to shopping mall data were used to evaluate the proposed method.
The experiments showed that the use of multiple types of features resulted in better performance in
comparison with a single type of feature.

These holistic based methods have provided some reasonable levels of performance for action
recognition. However, they are not view invariant. Different models would be needed for particular
views. Large amounts of multiple view data would also be needed for training. Some body parts
might be unseen across frames due to occlusions. Second, they are not invariant to time. The same
action performed over different time periods would present quite differently. In addition, it is
worth mentioning that the accuracy of holistic approaches is highly dependent on the detection
and segmentation pre-processing. This work also includes local representation based methods to
benefit from localised information. The next section presents a review of the local representation based
methods for human action recognition.

4.2. Local Feature Representations Based Methods

Local feature based methods tend to capture characteristic features locally within a frame without
a need for human detection or segmentation which can be quite a challenge for RGB based video.
Local feature based methods have been successfully employed in many recognition system applications
such as action recognition [90], object recognition [91] and scene recognition [92]. Local capture based
methods can capture important characteristics of shape and motion information for a local region in
a video. The main advantage of these methods is the autonomous representation of events in terms
of changes across space-time and scale. Furthermore, with appropriate machine learning, it is often
possible, given sufficient data, to capture the important characteristics of the local features of interest.
If appropriately achieved, then it can be possible to separate these features from features computed
from a cluttered background or even multiple movements or objects in a scene. In the following section,
space-time feature detectors, feature trajectories and local descriptor based methods are discussed.
In addition, the incorporation in action localisation and recognition in videos will be considered.

In general, local feature based methods consist of two steps: detecting a point of interest (POI) and
descriptor computation. In image processing, interest points refer to points that have local variation of
image intensities. Interest point detectors usually capture local characteristics. This can be in terms of
space-time and scale in videos by maximising specific saliency functions.

Some research that can be highlighted has focused on feature detectors such as [33] who
proposed to extend the Harris corner detector to a Harris3D detector to include both space and
time. A different feature detector which employed spatial Gaussian kernels and temporal Gabor
filters was proposed by [93]. This considered salient motion features to represent different regions in
videos. Another detector proposed by [94] involved computing entropy characteristics in a cylindrical
neighborhood around specific space-time positions. An extension of the Hessian saliency detector,
Hessian3D, was proposed by [95] to consider spatio-temporal features. This used the determinant of
the 3D Hessian matrix. Salient features were detected by [96] using a global information based method.

A wider experimental evaluation was introduced by [97]. They proposed to exploit different
interest point detectors applied to publicly available action recognition datasets including KTH [98],
UCF sports [85], and Hollywwod2 [99]. The results showed the robustness of dense sampling method,
where interest points were sampled in equal segments in the space and time domains. It was found
that the Harris3D detector achieved some of the best performance in some of the included experiments.

While local interest points are detected, local representation based methods can then be employed
to compute one of the different descriptors over a given region. Different descriptors have been
proposed in a lot of research such in [34] where Histogram of Oriented Gradients (HOG) [100] and
Histogram of Oriented Optical Flow (HOOF) [101] descriptors were used. The authors introduced
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a different way to characterise local motion and appearance information. They combined HOG and
HOOF based approaches on the space-time neighbourhood of the detected points of interest. For each
cell of a grid of cells, four bins of HOG and five bins of HOOF were considered. Normalised and
concatenation were used to form a HOG and HOOF combined descriptor. Moreover, different local
descriptors based on gradient, brightness, and optical flow information were included by [93]. PCA
was also used for dimensionality reduction. The authors explored different scenarios which included
simple concatenation, grid of local histograms and a single global histogram. The experimental results
determined that concatenated gradient information achieved the best performance.

A 3D version of the Histogram of Oriented Gradients (HOG3D) has introduced by [102] as an
extension of the HOG descriptor by [100]. A space-time grid was constructed around each detected
Point Of Interest (POI). A histogram descriptor was then computed and normalised over each of the
cells. The final descriptor was then formed by concatenating the histograms.

In [103], the authors proposed to extend the Scale-Invariant Feature Transform (SIFT) descriptor
originally proposed by [70]. Spatio-temporal gradients were computed over a set of randomly sampled
positions. A Gaussian weight was used to weight each pixel in the neighbourhood with votes into an
N × N × N grid of histograms of oriented gradients. To achieve orientation quantization, the gradients
were represented in spherical coordinates that were divided into 8 × 4 histograms.

An extended Speeded-Up Robust Features (SURF) descriptor originally proposed by [104] was
investigated by [95]. Application to videos was considered by utilising spatio-temporal interest points
which were spatially and temporally scale invariant. The patches were divided into a grid within local
N × N × N histograms. Then, each cell was represented by a vector of Haar wavelet sampled responses.
The experimental results showed the good performance of the proposed detector in comparison with
other detectors.

RGB-D Information Based Local Features

There has also been research that includes depth map data based local feature methods.
These follow many of the same or similar steps as for RGB video. For instance, at the gross level,
finding salient points of interest and then computing the descriptor. In [105], the authors proposed a
Histogram of Oriented Principal Components (HOPC) descriptor. This captured the characteristics
around each point of interest within a 3D cloud space. The descriptor was formed by concatenating
projected Eigenvectors. These resulted from Principal Component Analysis on the space-time volume
around the points of interest. The HOPC descriptor was found to be view invariant. Video was
also treated in [106] as a space-time volume of depth values. A Comparative Coding Descriptor
(CCD) was then used to encode space-time relations of points of interest. Set of cuboids were used
to construct a series of codes that characterised the descriptor. In [107], a descriptor called Local
Occupancy Pattern (LOP) was presented. This was used to describe the appearance information of
sub-regions of depth images by which was utilised to characterise object-interaction actions. In another
work by [108], a Random Occupancy Pattern (ROP) was introduced to deal with depth sequences
as a space-time volume. The descriptor was defined by a sum of the pixel values in a sub-volume.
Since several sub-volumes had different sizes and locations, a random sampling based method was
used to effectively recognise the sub volumes. Overall, local feature based methods are commonly
used with different inputs. These can include skeletons where joints have been a particular focus
for detector, RGB where a detector have been used to detect POIs on an RGB frame, or similarity for
the depth.

4.3. Trajectories Based Methods

Many researchers have claimed that the spatial domain in video has different characteristics
from the temporal domain. Thus, points of interest should not be detected in a 3D spatio-temporal
space. Consequently, a lot of research such as [36,101,109–111] has included tracking of detected points
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of interest across the temporal domain. Then, the volume of the trajectory points are often used to
compute the descriptors for video representation.

Detecting points of interest in video and forming trajectories through the temporal domain has
been used by many researchers. For instance, the Kanade–Lucas–Tomasi (KLT) tracker [112] was
used in [109] to track Harris3D interest points [33]. These formed feature trajectories which were then
represented as sequences of log polar quantised velocities. The KLT tracker has also been used by [36],
where trajectories were clustered and used to compute affine transformation matrix to represent the
trajectories. In [70,110], SIFT descriptors were matched between two consecutive frames for trajectory
based feature extraction. Unique-match points were exploited whist others were discarded.

Dense sampling based interest point extraction achieved better performance in action recognition
by [97]. Dense trajectories were later used by [101] who sampled dense points of interest on a
grid. Dense optical flow was then used to track POIs through time. Trajectories were formed by
concatenating points from subsequent frames. Moreover, to exploit motion information, different
descriptors (HOG, HOOF, Motion Boundary Histogram (MBH)) were computed within a space-time
volume around the trajectory. Finally, the method was evaluated with publicly available action datasets
including: KTH, YouTube, Hollywood2, and UCF sports. Competitive performance was achieved in
comparison to the state-of-the-art approaches. Different extensions of dense trajectory based methods
have been proposed by many researchers such as [113–118].

Local descriptor based methods often follow similar steps in comparison to POI detection.
Early research extracted descriptors from cuboids which were formed around the point of interest
in space-time domains, see, e.g., [33,93]. However, the same process can be followed to utilise
trajectories. Most popular local descriptor based approaches have exploited cuboids or trajectories as
explained below.

A number of different descriptors were introduced by [119] to capture appearance and motion
features from video. A comparison between single and multi scale higher order derivatives,
histograms of optical flow, and histograms of spatio-temporal gradients was developed. The local
neighbourhood of the detected interest points was described by computing histograms of optical
flow and gradient components for each cell of a N × N × N grid. Thereafter, PCA was applied to
the concatenation of optical flow and gradient component vectors to exploit the most significant
eigenvalues as descriptors. The experiments showed the usefulness and applicability of the histograms
of optical flow and spatial-temporal gradient based descriptors.

The Histograms of Optical Flow (HOOF) descriptor was proposed by [34] to identify local motion
information. Spatio-temporal neighbourhoods were defined around detected POIs and optical flow
was computed between consecutive frames.

Another robust descriptor, which also benefited from optical flow, was presented by [120]
to extract local motion information called the Motion Boundary Histogram (MBH) descriptor.
This descriptor follows the HOG descriptor in binning the orientation information of spatial derivatives
into histograms. These descriptors can be employed with trajectory information as was done by [121].
A spatio-temporal volume was formed around each trajectory and divided into multiple cells. Each
cell was represented by a combination of HOG, HOOF and MBH descriptors. Some other research that
used trajectories for action recognition can be found such as [122–124].

4.4. Other Feature Representations Based Methods

A different representation method has been employed in computer vision tasks called Bag of
Words (BOW) also referred to as a bag of visual models; see, e.g., [125]. The key idea of this approach
is to represent image data as a normalised histogram called code words. The visual words (code
words) can be constructed during the learning process by clustering similar patches of an image that
can be described by a common feature descriptor. In this way, some techniques will result in similar
histograms for similar images. These can be fed into a classification step. BOW based methods have
been used in a lot of research for action recognition such as [28,93,126,127].



J. Imaging 2020, 6, 46 12 of 32

Another popular feature representation technique is the Fisher vector descriptor which can be
considered as a global descriptor. This technique determines the best calibration for a generative model
to better model the distribution of extracted local features. The descriptor is formed using the gradient
of a given sample’s likelihood with respect to the parameters of the distribution. It is estimated from
the training set and scaled by the inverse square root of the Fisher information matrix. A Fisher vector
descriptor was first presented by [128] for image classification. For more details about Fisher vector
based image classification and action recognition tasks, please see [129,130].

More comprehensive details of action recognition, motion analysis, and body tracking can be
also found in [131–135]. Some state-of-the-art works that used traditional hand-crafted representation
based methods are presented and compared in Table 1.

Table 1. State-of-the-art methods of traditional hand-crafted representations with different datasets for
human action recognition.

Paper Year Method Dataset Accuracy

[136] 2009 Space-time volumes KTH 89.4
[101] 2011 Dense trajectory KTH 95
[137] 2011 Space-time volumes KTH 94.5

UCF sports 91.30
[138] 2011 Shape-motion Weizmann 100
[139] 2011 LBP Weizmann 100
[140] 2012 bag-of-visual-words HDMB-51 29.2
[141] 2012 Trajectory HDMB-51 40.7
[142] 2012 HOJ3D + LDA MSR Action 3D 96.20
[143] 2013 Features (Pose-based) UCF sports 90

MSR Action 3D 90.22
[144] 2013 3D Pose MSR Action 3D 91.7
[145] 2013 Shape Features Weizmann 92.8
[111] 2013 Dense trajectory HDMB-51 57.2
[146] 2014 Shape-motion Weizmann 95.56

KTH 94.49
[147] 2014 EigenJoints + AME + NBNN MSR Action 3D 95.80
[148] 2014 Features (FV + SFV) HDMB-51 66.79

Youtube action 93.38
[149] 2014 Dissimilarity and sparse representation UPCV Action dataset 89.25
[150] 2014 Shape features IXMAS 89.0
[151] 2016 Trajectory MSR Action 3D 89
[152] 2016 Shape Features Weizmann 100
[153] 2016 Shape features IXMAS 89.75
[154] 2016 LBP IXMAS 80.55
[155] 2016 Motion features IXMAS 83.03
[64] 2017 MHI MuHAVi 86.93
[156] 2017 spatio-temporal+HMM MSR Action 3D 93.3

MSR Daily 94.1
[157] 2018 Joints + KE Descriptor MSR Action 3D 96.2

It is worth pointing out that a variety of higher-level representations techniques have been
proposed to capture discriminative information for complex action recognition. Deep learning
is an important technique that has demonstrated effective capability for producing higher-level
representations with significant performance improvement. Deep learning based models have the
ability to process input data from a low level and to convert it into a mid or high-level feature
representation. Consequently, the next section presents a good review of deep learning based models
that have been used for human action recognition.
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5. Deep Learning Techniques Based Models

Recent research studies have shown that hand-crafted feature based methods are not suitable
for all types of datasets. Consequently, a new relatively and important class of machine learning
technique referred to as deep learning has been established. Multiple levels of feature representations
can be learnt that can make sense of different data such as speech, image and text. Such methods are
capable of automatically processing raw image and video data for feature extraction, description, and
classification. Trainable filters and multiple layer based models are often employed in these methods
for action recognition and representation.

This section presents descriptions of some important deep learning models that have been used for
human action recognition. However, it is very difficult to train a deep learning model from scratch with
limited data. Thus, models are often limited to appearance based data or some described representation.
Deep learning based models can be classified into three categories which are: generative models e.g.,
Deep Belief Networks (DBNs), Deep Boltzmann machines (DBMs), Restricted Boltzmann Machines
(RBMs), and regularized auto-encoders; supervised models e.g., Deep Neural Networks (DNNs),
Recurrent Neural Networks (RNNs), and Convolutional Neural Networks (CNNs); and hybrid models.
However, hybrid models are not discussed in this work.

5.1. Unsupervised (Generative) Models

The key idea of deep learning based generative models is that they do not need target labels
for the learning process. Such models are appropriate when labelled data are scarce or unavailable.
The evolutionary of deep learning models can be traced back [158] where a Deep Belief Network
(DBN) was presented with a training algorithm based on Restricted Boltzmann Machines (RBMs) [159].
This was followed by a dimensional reduction technique by [160]. The parameters were learnt
with an unsupervised training process which were then fine-tuned in a supervised approach using
back-propagation.

This inspired great interest in deep learning models particularly on different applications
such as human action recognition, image classification, object recognition, and speech recognition.
Unsupervised learning based methods have been proposed by, e.g., [161], to automatically learn
features from video data for action recognition. An independent subspace analysis algorithm was
used to learn space-time features and combined with convolution and stacking based deep learning
techniques for action representation.

In [162], the researchers proposed to train DBNs with RBMs for human action recognition.
The experimental results on two public datasets demonstrated the impressive performance of the
proposed method over hand-crafted feature based approaches.

An unsupervised deep learning based model was proposed by [163] to continuously learn from
unlabelled video streams. In addition, DBNs based methods were used by [164] to learn features from
an unconstrained video stream for human action recognition.

Generative or unsupervised learning based models have played a substantial role in inspiring
researchers’ interest in the deep learning field. Nevertheless, the great development of the Convolution
Neural Networks (CNNs) based supervised learning methods for object recognition has somewhat
obscured the unsupervised learning based approaches; see, e.g., [165].

5.2. Supervised (Descriminative) Models

In line with the recent literature surveys for human action recognition, the most common technique
used in supervised learning based models is Convolution Neural Networks (CNN)s. These were first
proposed by [166]. CNNs can be considered to be a type of the deep learning model which has shown
great performance in various recognition tasks such as pattern recognition, digit classification, image
classification, and human action recognition see, e.g., [165] and [167]. The efficient utilisation of CNNs
in image classification [165] opened a new era to employ deep learning based methods for human
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action recognition. The key advantage of CNNs is their ability to learn straight from the raw data
such as RGB or depth map data. Consequently, it is possible to obtain discriminative features which
can effectively describe the data and thus make the recognition process easier. Since this approach is
susceptible to overfitting, one should be careful in the training process. CNN includes regularisation
and has a significant requirement for a large amount of labeled data. These can help to prevent
overfitting. Recently, it was shown that deep learning based methods outperform many state-of-the-art
handcrafted features for image classification; see, e.g., [27,165,168].

Convolution Neural Networks (CNN)s have a hierarchical structure with multiple hidden layers
to help translate a data sample into a set of categories. Such models consist of a number of different
types of layers such as convolutional layers, pooling layers and fully connected layers. The temporal
domain is introduced as an additional dimension in the case of videos. Since CNNs were originally
designed for static image processing, it was not initially clear on how to incorporate motion information.
Therefore, most research at that time used CNNs on still images to model appearance information for
action recognition [165]. Thereafter, different ways were proposed to utilise motion information for
action recognition. An extension was presented by [169] where stacked video frames were used as an
input to a CNN for action recognition from video. However, the experimental results were worse than
hand-crafted feature based approaches. An investigation made by [32] about this issue and developed
the idea of having separate spatial and temporal CNN streams for action recognition.

Figure 1 illustrates the spatio-temporal CNN streams similar to [32] where the two streams are
implemented as independent CNNs. One stream was the spatial stream which recognised actions
from static images. The other stream was the temporal stream which recognised actions from stacked
video frames based on motion information of dense optical flow. The output of the two streams was
combined using a late fusion technique. The experiments showed improved performance for this
method compared to hand-crafted feature based approaches. However, this type of architecture has
additional hardware requirements to be suitable for a variety of applications.

Figure 1. Illustration of the spatio-temporal CNN streams as used by [32]. Here, the input data are
split into two streams, one for the individual apperance based raw frames. The other for the temporal
information corresponding to an optical flow stream. The two streams are fused at the end with class
score fusion.

A lot of research on action recognition is based on works that have previously achieved relatively
good performance in image classification problems. Recent works extended what was implemented
in two dimensions to 3D to include the temporal domain. Most CNN models proposed for action
recognition have been limited to deal with 2D input data. Nonetheless, some applications may include
3D data that requires a specialised deep learning model. To this end, 3D Convolution Neural Networks
(3D-CNNs) based models were presented by [40] for surveillance tasks at airports. Spatio-temporal
features were automatically utilised by employing 3D convolutions in the convolutional layers
with respect to spatial and temporal dimensions. The experimental results demonstrated superior
performance for this method in comparison to other state-of-the-art methods.

In general, there has been much success with 2D and 3D CNN in e.g., image classification,
object recognition, speech recognition and action recognition. Nonetheless, some issues still need
to be considered such as the immense amount of image or video data needed for training purposes.
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Collecting and annotating large amounts of image or video data are quite exhausting and requires a
substantial amount of time. Fortunately, the availability of rich and relatively large action recognition
datasets has provided a great support for designing such models in terms of their training and
evaluation. A factorised 3D-CNN was proposed by [170] for human action recognition. The 3D-CNN
was factorised into a standard 2D-CNN for spatial information at the lower layers and a 1D-CNN
for the temporal information at the higher layers. This factorisation was to reduce the number of
learning parameters and consequently reduce the computational complexity. Two benchmark datasets
were used to evalauate the proposed method: UCF101 and HMDB51. The results showed comparable
performance with state-of-the-art methods. Another spatio-temporal 3D-CNN approach was proposed
by [171] for human action recognition. The authors used four public datasets to evaluate the proposed
method. The 3D-CNN achieved improved performance with spatio-temporal features compared
to a 2D-CNN. The authors also found that a small filter size such as the one used in their method
i.e., 3 × 3 × 3 was the best choice for spatio-temporal features. Overall, the experimental results
demonstrated competitive performance for the proposed method with a linear classifier.

Some research works have combined supervised and unsupervised learning models for action
recognition. A Slow Feature Analysis (SFA) based method has used by [172] to extract slowly varying
features from an input in an unsupervised manner. These were combined with a 3D-CNN for action
recognition. This work achieved competitive performance compared to state-of-the-art approaches.
Three standard action recognition datasets were used: KTH [98], UCF sports [85] and Hollywood2 [99]
datasets.

In [173], a hierarchical framework combining 3D CNN and hidden Markov model (HMM) was
proposed. This was used to recognise and segment continuous actions simultaneously. 3D CNN was
used to learn a powerful high level features directly from raw data, and use it to extract effective and
robust action features. The statistical dependencies over adjacent sub-actions was then modeled by
HMM to infer actions sequences. The KTH and Weizmann dataset were used to evaluate the proposed
method. The experimental results showed improved performance of the proposed method over some
state-of-the-art approaches.

For efficient learning of spatio-temporal features in video action recognition, a hybrid CNN
was introduced in [174] used a fusion convolutional architecture. 2D and 3D CNN was fused to
present temporal encoding with fewer parameters. Three models are used to build the proposed
model (semi-CNN) including: VGG-16, ResNets and DenseNets. The UCF-101 dataset was used in the
evaluation to compare the performance of each model with its corresponding 3D models. Figure 2
shows the performance of the used models over 50 epochs.

Figure 2. The performance of action recognition models as mentioned in [174]. Including: (a)
Semi-CNN model based on VGG16 architecture (b) Semi-CNN model based on ResNet34 architecture
(c) Semi-CNN model based on DenseNet121 architecture.
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Another way to model motion information in video was proposed by [39] for action recognition
using Recurrent Neural Networks (RNN)s. CNN discriminative features were computed for each
video frame and then they were fed into an RNN model. The key advantage of an RNN architecture is
its ability to deal with sequential inputs as a single copy of the network is created for each sequence.
In the RNN hidden layers, connections between neurons are found between each replica where the
same weights are shared by each replica and with the others. The authors highlighted that local
motion information can be obtained from video by optical flow through CNNs. On the other hand,
global motion information can be modeled through the use of the RNN. RNN based supervised
learning was used by [175] across five parts (right arm, left arm, right leg, left leg, trunk) of skeleton
information. These were used as inputs to five separate sub-nets for action recognition. The outcomes
of these sub-nets were then hierarchically fused to form the inputs to the higher layers. Thereafter, the
final representation was fed into a single-layer perceptron to get the final decision. Three datasets were
used to evaluate the proposed method including: MSR Action3D [74], Berkeley Multimodal Human
Action (Berkeley Mhad) [176], and Motion Capture HDM05 [177] datasets. The results demonstrated
state-of-the-art performance. However, RNN is not capable of processing very long sequences and
it can not be stacked into very deep models. In addition, it lacks the capability of keeping track of
long-term dependencies; which makes training of an RNN difficult.

New recurrent modules that improved long-range learning, Long Short-Term Memory (LSTM),
has firstly proposed by [178]. LSTM units have hidden state augmented with nonlinear mechanisms,
in which simple learned gating functions are utilised to enable state propagation with either no
modification, update or reset. LSTMs have a significant impact on vision problems as these models are
straightforward to fine-tune end-to-end. Moreover, LSTMs have the ability to deal with sequential
data and are not limited to fixed length inputs or outputs. This helps to simply model a sequential
data of varying lengths, such as text or video [179].

LSTMs have recently been introduced to be efficient to large-scale learning of speech
recognition [180] and language translation models [181]. LSTM was also proposed for action
recognition by [179]. A hybrid deep learning architecture was proposed using a long-term recurrent
CNN (LRCN). Raw data and optical flow information were used as input to this unique system.
The proposed methods were evaluated using a UCF101 dataset and showed an improvement in the
performance in comparison with the baseline architecture.

Deep learning based approaches have achieved relatively high recognition performance. This is
on the same level or better than hand-crafted features based methods. Some researchers have also
proposed using multiple deep learning models alongside hand-crafted features to achieve even better
results such as [32,117,182].

5.3. Multiple Modality Based Methods

A new insight is provided into human action recognition by using deep learning methods to
extract action features from RGB, depth, and/or skeleton information. Different feature learning can
be utilised [117,171,183] from deep networks such as appearance, optical flow, depth and/or skeleton
sequences. It is very often that different modalities are provided with respect to the same dataset
such as RGB, depth, and skeleton information or at least two of them. Therefore, a lot of research has
been proposed to utilise combinations of different modalities or their hand-crafted features. They then
merge them using fusion based strategies. A separate framework architecture is often employed for
each modality; then, classification scores are often obtained for each one.

Some research has highlighted that significant improvements in performance of an action
recognition system can be achieved by utilising hand-crafted features within CNN based deep learning
models. A CNN model based on multiple sources of information was proposed by [184] to process
spatially varying soft-gating. A fusion technique was then used to combine the multiple CNN models
that were trained on various sources. A Stratified Pooling based CNN (SPCNN) was proposed by [185]
to handle the issue of different feature levels of each frame in video data. To come up with video based
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features, the authors fine-tuned a pre-trained CNN model on target datasets. Frame-level features were
extracted, then principal component analysis was used for dimensionality reduction. Stratified pooling
of frame-level features was then used to convert them into video-level features, and finally fed them
into an SVM classifier for classification. The method was evaluated on HMDB51 [27] and UCF101 [186]
datasets. The experiments showed that the proposed method outperformed the state-of-the-art.

An extension of this two stream network approach was proposed in [117] using dense trajectories
for more effective learning of motion information.

A general residual network architecture for human activity recognition was presented in [187]
using cross-stream residual connections in the form of multiplicative interaction between appearance
and motion streams. The motion information was exploited using stacked inputs of horizontal and
vertical optical flow.

A fusion study was presented in [182] for human activity recognition using two streams of the
pre-trained Visual Geometry Group (VGG) network model to compute spatio-temporal information
combining RGB and stacked optical flow data. Various fusion mechanisms at different positions of the
two streams were evaluated to determine the best possible recognition performance.

Some research studies have paid particular attention to auxiliary information which can improve
the performance of action recognition. In some studies, audio has been combined with the video
to detect the actions such as [188], where a combination of Hidden Markov Models (HMM) with
audio were used to determine the actions. The main disadvantage of using audio recordings is the
surrounding noise that can affect the results.

All of the above approaches suffer from a shortage of long-term temporal information.
For example, the number of frames used in the optical flow stacking ranged between 7 and 15 frames,
such as 7, 10, and 15 frames as used in [40,169,184], respectively. Often, people will perform the same
action over different periods of time depending on many factors and particularly for different people.
Consequently, multi-resolution hand-crafted features computed over different periods of time are
used by [189] in order to avoid this problem. Furthermore, different weight phases are applied using
a time-variant approach in the computation process of the DMMs to enable adaptation to different
important regions of an action. Different fusion techniques are employed to merge spatial and motion
information for best action recognition. Figure 3 illustrates the impact of different window frame
lengths on the performance of action recognition systems.

Figure 3. Action recognition accuracy versus different window frame lengths that was proposed
in [189].



J. Imaging 2020, 6, 46 18 of 32

5.4. Pose Estimation and Multi-View Action Recognition

Another considerable challenge in human action recognition is view variance. The same action
can be viewed from different angles and thus looks excessively different. This issue was taken into
account by [190]. Training data were generated by fitting a synthetic 3D human model to real motion
information. Poses were then extracted from different view-points. A CNN based model was found to
outperform a hand-crafted feature based approach for multi-view action recognition.

Dynamic image information was extracted by [191] from synthesised multi-view depth videos.
Multi-view dynamic images were constructed from the synthesised data. A CNN model was then
proposed to perform feature learning from the multi-view dynamic images. Multiple batches of motion
history images (MB-MHIs) have been constructed by [192]. This information is then used to compute
two descriptors by using: a deep residual network (ResNet) and histogram of oriented gradients
(HOG). Later, an orthogonal matching pursuit approach was used to obtain the sparse codes of feature
descriptions. A final view-invariant feature representation was formed and used to train SVM classifier
for action recognition. MuHAVi-MAS [193] and MuHAVi-uncut [194] datasets are used to evaluate
the proposed approach. Figure 4 illustrates the accuracy variations of the recognition model over
different components.

Figure 4. The accuracy variations with the number of frames and number of batches as mentioned
in [192].

A CNN model obtained from ImageNet was used by [195] to learn from multi-view DMM
features for action recognition when video was projected onto different view-points within the 3D
space. Different temporal scales were then used from the synthesised data to constitute a range of
spatio-temporal pattern for each action. Finally, three fine-tuned models were employed independently
for each DMM map. However, some actions including object interactions can be very difficult to
be recognise from the raw depth data alone. This helps to justify the inclusion of RGB data for the
recognition of such actions.

In [196], Multi-View Regional Adaptive Multi temporal-resolution DMMs (MV-RAMDMM)
and Multi temporal-resolution RGB information is learnt with multiple 3D-CNNs stream for action
recognition. The Adaptive Multi-resolution DMM is applied across multiple views to extract view and
time invariant action information. It is adapted based on human movement to be used eventually in the
deep learning model for action recognition. In addition, multi temporal raw appearance information
is used to exploit various spatio-temporal features of the RGB scenes. This helps to capture more
specific information which might be difficult to obtain purely from depth sequences. For instance,
object-interaction information is more apparent in RGB space.

In a different way, semantic features based on pose can be seen to be very important cues that
can describe the category of an action. Human joint information was utilised by [197] to compute
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the temporal variation between joints during actions. Time-variant functions were used to confirm
the pose related with each action and considered for feature extraction. The feature representation
for action recognition was constructed using the temporal variation of values associated with these
time functions. Then, CNNs were trained to recognize human actions from the local patterns in
the feature representation. The Berkeley MHAD dataset [176] was used to evaluate the proposed
method and the results demonstrated the effectiveness of this approach. Similar to [197], a Pose-based
Convolutional Neural Network descriptor (P-CNN) for action recognition was proposed by [198].
Descriptor aggregated motion and appearance information were used with respect to tracks of human
body parts. This utilised skeleton information along with RGB raw data. JHMDB [199] and MPII [200]
cooking datasets were used to evaluate the proposed method. However, it can be difficult to accurately
capture skeleton information of a person in different environment conditions. This might be due to the
need of accurate body-parts detection to precisely estimate skeleton information.

Some common datasets of human action recognition are introduced in Table 2. In addition,
an extensive comparison between deep learning based models and hand-crafted based models are
presented in Table 3 for human action recognition.

Table 2. Common dataset of human action recognition.

Datasets RGB Depth Skeleton Samples Classes

KTH [98] X 7 7 1707 12
Weizmann [201] X 7 7 4500 10
Hollywood2 [99] X 7 7 1707 12
HMDB51 [27] X 7 7 6766 51
Olympic Sports [202] X 7 7 783 16
UCF50 [203] X 7 7 6618 50
UCF101 [186] X 7 7 13,320 101
MSR-Action3D [74] 7 X X 567 20
MSR-Daily Activity [107] X X X 320 16
Northwestern-UCLA [204] X X X 1475 10
Berkeley-MHAD [205] X X X 861 27
UTD-MHAD [205] X X X 861 27
RGBD-HuDaAct [206] X X 7 1189 13
NTU RGB+D [207] X X X 56,880 60

Table 3. Comparison of deep learning based models and hand-crafted based models for human action
recognition [208–211].

Characteristics Deep Learning Based Models Hand-Crafted Feature Based Models

Feature extraction
and Representation

Ability to learn features directly from raw
data

Pre-process algorithms and /or detectors are
needed to discover the most efficient patterns
to improve recognition accuracy.

Generalisation and
Diversity

Automatically extract spatial, temporal
and scale, transition invariant features
from raw data

Use feature selection and dimensionality
reduction methods which are not very
generalisable.

Data preparation
Data pre-processing and normalisation
is not mandatory in deep learning based
models to achieve high performance

Usually require comprehensive data
pre-processing and normalisation to achieve
significant performance.

Inter-class and
Intra-class

Hierarchical and translational invariant
features are obtained from such models
to solve this problem

Inefficient in managing such kind of problems.

Training and
Computation time

Huge amount of data required for
training purposes to avoid over-fitting
and high computation powerful system
with Graphical Processing Unit (GPU) to
speed up training

Require less data for training purposes with
less computation time and memory usage.
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Furthermore, some recent works based on deep learning models for human action recognition are
included in Table 4.

Table 4. State-of-the-art methods of deep learning based models with different datasets for human
action recognition.

Paper Year Method Class of Architecture Dataset Accuracy

[212] 2012 ASD features SFA KTH 93.5
[40] 2013 Spatio-temporal 3D CNN KTH 90.2
[163] 2014 STIP features Sparse auto-encoder KTH 96.6
[32] 2014 Two-stream CNN HDMB-51 59.4
[172] 2014 DL-SFA SFA Hollywood2 48.1
[32] 2014 Two-stream CNN UCF-101 88.0
[213] 2015 convolutional temporal feature CNN-LSTM UCF-101 88.6
[117] 2015 TDD Descriptor CNN UCF-101 91.5
[170] 2015 Spatio-Temporal CNN UCF-101 88.1
[171] 2015 Spatio-temporal 3D CNN UCF-101 90.4
[175] 2015 Hierarchical model RNN MSR Action3D 94.49
[214] 2015 Differential RNN MSR Action3D 92.03
[215] 2015 static and motion features CNN UCF Sports 91.9
[117] 2015 TDD Descriptor CNN HDMB-51 65.9
[170] 2015 Spatio-Temporal CNN HDMB-51 59.1
[216] 2016 Spatio-temporal LSTM-CNN HDMB-51 55.3
[184] 2016 Deep Network CNN UCF-101 89.1
[216] 2016 Spatio-temporal LSTM-CNN UCF-101 86.9
[184] 2016 Deep model CNN HDMB-51 54.9
[173] 2016 3D CNN + HMM CNN KTH 89.20
[179] 2016 LRCN CNN + LSTM UCF-101 82.34
[185] 2017 SP-CNN CNN HDMB-51 74.7
[217] 2017 Rank pooling CNN HDMB-51 65.8
[217] 2017 Rank pooling CNN Hollywood2 75.2
[185] 2017 SP-CNN CNN UCF-101 91.6
[218] 2018 DynamicMaps CNN NTU RGB+D 87.08
[219] 2018 Cooperative model CNN NTU RGB+D 86.42
[191] 2019 Depth Dynamic Images CNN UWA3DII 68.10
[189] 2019 FWMDMM CNN MSR Daily Activity 92.90

CNN NUCLA 69.10
[192] 2020 MB-MHI ResNet MUHaVi 83.8
[196] 2020 MV-RAMDMM 3DCNN MSR Daily Activity 87.50

3DCNN NUCLA 86.20
[174] 2020 Semi-CNN ResNet UCF-101 89.00

Semi-CNN VGG-16 UCF-101 82.58
Semi-CNN DenseNet UCF-101 77.72

6. Conclusions

In this paper, we have presented human action recognition methods and introduced a
comprehensive overview of recent approaches to human action recognition research. This included a
hand-crafted representation based method, deep learning based methods, human–object interaction
and multiview action recognition. The conclusions of this study on human action recognition can
focus on the following:

• data selection: suitable data to capture the action may help to improve performance of
action recognition.

• approach of recognition: deep learning based methods achieved superior performance.
• multiple-modal: current research highlighted that multi-modal fusion can efficiently improve

the performance.
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This paper has presented the most relevant and outstanding computer vision based methods
for human action recognition. A variety of hand-crafted methods and deep learning models have
been summarised along with various advantages and disadvantages for each approach. Hand-crafted
feature based methods are categorised into holistic and local feature based methods. Holistic feature
based methods have been summarised along with their limitations. These methods assume a static
background. In other words, the camera must be stable and videos are supposed to have been
captured in a constrained condition for a holistic representation. Otherwise, these methods need
extra pre-processing steps such as people detection to be able to recognise human actions. This is
particularly true in the presence of cluttered or a complex background or if the camera moves whilst
action sequences are captured. Next, local feature based methods and different types of descriptors
were also described in this paper. It is shown that local feature based methods more often achieve
state-of-the-art results compared to other approaches. In addition, such kinds of methods require
reduced computational complexity to recognise human actions compared to more complicated models.
The main advantage of local feature based methods is their flexibility. They can be applied to video data
without complex requirements such as human localisation or body parts detection, which is not feasible
for many types of videos. However, in some cases, it is very difficult to address action variations
using local representation based methods, which, in turn, fails to precisely recognise human actions.
Therefore, using hand-crafted representations by taking advantage of combining both local and holistic
based methods may help. Different issues are tackled benefiting from shape and motion information,
and local feature representation of an action. This information alongside local representation strategies
are considered as the key roles for recognising different actions and improving the performance of the
recognition system.

A new direction has been proposed to enhance the action recognition performance using deep
learning technology. Deep learning is summarised in this paper and classified into two categories
including: supervised and unsupervised models. However, supervised models are considered in
this work due to their vast ability and high effectiveness in implementing recognition systems. It has
achieved competitive performance in comparison with traditional approaches in many applications
of computer vision. The most important characteristic of deep learning models is the ability to learn
features from raw data. This has somewhat reduced the need for hand-crafted feature detectors
and descriptors.

One of the most popular supervised models is the Convolution Neural Network (CNN), which is
currently being used in most of the existing deep learning based methods. However, deep learning
based methods still have some limitations that need to be considered. One of these limitations is
the need for huge amounts of data for training the models. In addition, there is a high-complexity
hardware requirement to enable computation in a plausible amount of time. Therefore, transfer
learning approaches are adopted in different works to benefit from pre-trained models to speed up the
training processes. This also helps to improve the performance of the action recognition system with
reasonable hardware requirements.

Two common types of deep learning techniques were used for either spatial or spatio-temporal
feature extraction and representation. This can include CNN, 3D CNN, LSTM, etc. Some research
has highlighted that significant improvements in performance of an action recognition system can be
achieved by utilising multi-modalities structure based methods. This could include RGB sequences,
hand-designed features, depth sequences and/or skeleton sequences.

Many researchers have highlighted the importance of temporal information that can be exploited
to provide more discriminative features for action recognition. This information was processed early
with an independent 2D-CNN stream.

Spatio-temporal features have also been learnt directly with the use of 3D-CNN or LSTM models.
These have been summarised in this review in which temporal domain has been considered in the
learning process. Multi-modalities structure may add great improvements to the recognition system
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within a deep learning model. Toward this aim, different action recognition systems were presented
within different temporal batches involving a deep learning model.
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