340 research outputs found

    DH-PTAM: A Deep Hybrid Stereo Events-Frames Parallel Tracking And Mapping System

    Full text link
    This paper presents a robust approach for a visual parallel tracking and mapping (PTAM) system that excels in challenging environments. Our proposed method combines the strengths of heterogeneous multi-modal visual sensors, including stereo event-based and frame-based sensors, in a unified reference frame through a novel spatio-temporal synchronization of stereo visual frames and stereo event streams. We employ deep learning-based feature extraction and description for estimation to enhance robustness further. We also introduce an end-to-end parallel tracking and mapping optimization layer complemented by a simple loop-closure algorithm for efficient SLAM behavior. Through comprehensive experiments on both small-scale and large-scale real-world sequences of VECtor and TUM-VIE benchmarks, our proposed method (DH-PTAM) demonstrates superior performance compared to state-of-the-art methods in terms of robustness and accuracy in adverse conditions. Our implementation's research-based Python API is publicly available on GitHub for further research and development: https://github.com/AbanobSoliman/DH-PTAM.Comment: Submitted for publication in IEEE RA-

    Towards Collaborative Simultaneous Localization and Mapping: a Survey of the Current Research Landscape

    Get PDF
    Motivated by the tremendous progress we witnessed in recent years, this paper presents a survey of the scientific literature on the topic of Collaborative Simultaneous Localization and Mapping (C-SLAM), also known as multi-robot SLAM. With fleets of self-driving cars on the horizon and the rise of multi-robot systems in industrial applications, we believe that Collaborative SLAM will soon become a cornerstone of future robotic applications. In this survey, we introduce the basic concepts of C-SLAM and present a thorough literature review. We also outline the major challenges and limitations of C-SLAM in terms of robustness, communication, and resource management. We conclude by exploring the area's current trends and promising research avenues.Comment: 44 pages, 3 figure

    Photometric LiDAR and RGB-D Bundle Adjustment

    Full text link
    The joint optimization of the sensor trajectory and 3D map is a crucial characteristic of Simultaneous Localization and Mapping (SLAM) systems. To achieve this, the gold standard is Bundle Adjustment (BA). Modern 3D LiDARs now retain higher resolutions that enable the creation of point cloud images resembling those taken by conventional cameras. Nevertheless, the typical effective global refinement techniques employed for RGB-D sensors are not widely applied to LiDARs. This paper presents a novel BA photometric strategy that accounts for both RGB-D and LiDAR in the same way. Our work can be used on top of any SLAM/GNSS estimate to improve and refine the initial trajectory. We conducted different experiments using these two depth sensors on public benchmarks. Our results show that our system performs on par or better compared to other state-of-the-art ad-hoc SLAM/BA strategies, free from data association and without making assumptions about the environment. In addition, we present the benefit of jointly using RGB-D and LiDAR within our unified method. We finally release an open-source CUDA/C++ implementation.Comment: 11 pages, 9 figure

    Cooperative UAV–UGV autonomous power pylon inspection: an investigation of cooperative outdoor vehicle positioning architecture

    Get PDF
    Realizing autonomous inspection, such as that of power distribution lines, through unmanned aerial vehicle (UAV) systems is a key research domain in robotics. In particular, the use of autonomous and semi-autonomous vehicles to execute the tasks of an inspection process can enhance the efficacy and safety of the operation; however, many technical problems, such as those pertaining to the precise positioning and path following of the vehicles, robust obstacle detection, and intelligent control, must be addressed. In this study, an innovative architecture involving an unmanned aircraft vehicle (UAV) and an unmanned ground vehicle (UGV) was examined for detailed inspections of power lines. In the proposed strategy, each vehicle provides its position information to the other, which ensures a safe inspection process. The results of real-world experiments indicate a satisfactory performance, thereby demonstrating the feasibility of the proposed approach.This research was funded by National Counsel of Technological and Scientific Development of Brazil (CNPq). The authors thank the National Counsel of Technological and Scientific Development of Brazil (CNPq); Coordination for the Improvement of Higher Level People (CAPES); and the Brazilian Ministry of Science, Technology, Innovation, and Communication (MCTIC). The authors would also like express their deepest gratitude to Control Robotics for sharing the Pioneer P3 robot for the experiments. Thanks to Leticia Cantieri for editing the experiment video.info:eu-repo/semantics/publishedVersio

    Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles

    Get PDF
    Micro aerial vehicles (MAVs) are ideal platforms for surveillance and search and rescue in confined indoor and outdoor environments due to their small size, superior mobility, and hover capability. In such missions, it is essential that the MAV is capable of autonomous flight to minimize operator workload. Despite recent successes in commercialization of GPS-based autonomous MAVs, autonomous navigation in complex and possibly GPS-denied environments gives rise to challenging engineering problems that require an integrated approach to perception, estimation, planning, control, and high level situational awareness. Among these, state estimation is the first and most critical component for autonomous flight, especially because of the inherently fast dynamics of MAVs and the possibly unknown environmental conditions. In this thesis, we present methodologies and system designs, with a focus on state estimation, that enable a light-weight off-the-shelf quadrotor MAV to autonomously navigate complex unknown indoor and outdoor environments using only onboard sensing and computation. We start by developing laser and vision-based state estimation methodologies for indoor autonomous flight. We then investigate fusion from heterogeneous sensors to improve robustness and enable operations in complex indoor and outdoor environments. We further propose estimation algorithms for on-the-fly initialization and online failure recovery. Finally, we present planning, control, and environment coverage strategies for integrated high-level autonomy behaviors. Extensive online experimental results are presented throughout the thesis. We conclude by proposing future research opportunities

    Enhancing 3D Autonomous Navigation Through Obstacle Fields: Homogeneous Localisation and Mapping, with Obstacle-Aware Trajectory Optimisation

    Get PDF
    Small flying robots have numerous potential applications, from quadrotors for search and rescue, infrastructure inspection and package delivery to free-flying satellites for assistance activities inside a space station. To enable these applications, a key challenge is autonomous navigation in 3D, near obstacles on a power, mass and computation constrained platform. This challenge requires a robot to perform localisation, mapping, dynamics-aware trajectory planning and control. The current state-of-the-art uses separate algorithms for each component. Here, the aim is for a more homogeneous approach in the search for improved efficiencies and capabilities. First, an algorithm is described to perform Simultaneous Localisation And Mapping (SLAM) with physical, 3D map representation that can also be used to represent obstacles for trajectory planning: Non-Uniform Rational B-Spline (NURBS) surfaces. Termed NURBSLAM, this algorithm is shown to combine the typically separate tasks of localisation and obstacle mapping. Second, a trajectory optimisation algorithm is presented that produces dynamically-optimal trajectories with direct consideration of obstacles, providing a middle ground between path planners and trajectory smoothers. Called the Admissible Subspace TRajectory Optimiser (ASTRO), the algorithm can produce trajectories that are easier to track than the state-of-the-art for flight near obstacles, as shown in flight tests with quadrotors. For quadrotors to track trajectories, a critical component is the differential flatness transformation that links position and attitude controllers. Existing singularities in this transformation are analysed, solutions are proposed and are then demonstrated in flight tests. Finally, a combined system of NURBSLAM and ASTRO are brought together and tested against the state-of-the-art in a novel simulation environment to prove the concept that a single 3D representation can be used for localisation, mapping, and planning

    Cooperative simultaneous localization and mapping framework

    Get PDF
    This research work is a contribution to develop a framework for cooperative simultaneous localization and mapping with multiple heterogeneous mobile robots. The presented research work contributes in two aspects of a team of heterogeneous mobile robots for cooperative map building. First it provides a mathematical framework for cooperative localization and geometric features based map building. Secondly it proposes a software framework for controlling, configuring and managing a team of heterogeneous mobile robots. Since mapping and pose estimation are very closely related to each other, therefore, two novel sensor data fusion techniques are also presented, furthermore, various state of the art localization and mapping techniques and mobile robot software frameworks are discussed for an overview of the current development in this research area. The mathematical cooperative SLAM formulation probabilistically solves the problem of estimating the robots state and the environment features using Kalman filter. The software framework is an effort toward the ongoing standardization process of the cooperative mobile robotics systems. To enhance the efficiency of a cooperative mobile robot system the proposed software framework addresses various issues such as different communication protocol structure for mobile robots, different sets of sensors for mobile robots, sensor data organization from different robots, monitoring and controlling robots from a single interface. The present work can be applied to number of applications in various domains where a priori map of the environment is not available and it is not possible to use global positioning devices to find the accurate position of the mobile robot. Therefore the mobile robot(s) has to rely on building the map of its environment and using the same map to find its position and orientation relative to the environment. The exemplary areas for applying the proposed SLAM technique are Indoor environments such as warehouse management, factory floors for parts assembly line, mapping abandoned tunnels, disaster struck environment which are missing maps, under see pipeline inspection, ocean surveying, military applications, planet exploration and many others. These applications are some of many and are only limited by the imagination.Diese Forschungsarbeit ist ein Beitrag zur Entwicklung eines Framework fĂŒr kooperatives SLAM mit heterogenen, mobilen Robotern. Die prĂ€sentierte Forschungsarbeit trĂ€gt in zwei Aspekten in einem Team von heterogenen, mobilen Robotern bei. Erstens stellt es einen mathematischen Framework fĂŒr kooperative Lokalisierung und geometrisch basierende Kartengenerierung bereit. Zweitens schlĂ€gt es einen Softwareframework zur Steuerung, Konfiguration und Management einer Gruppe von heterogenen mobilen Robotern vor. Da Kartenerstellung und PoseschĂ€tzung miteinander stark verbunden sind, werden zwei neuartige Techniken zur Sensordatenfusion prĂ€sentiert. Weiterhin werden zum Stand der Technik verschiedene Techniken zur Lokalisierung und Kartengenerierung sowie Softwareframeworks fĂŒr die mobile Robotik diskutiert um einen Überblick ĂŒber die aktuelle Entwicklung in diesem Forschungsbereich zu geben. Die mathematische Formulierung des SLAM Problems löst das Problem der RoboterzustandsschĂ€tzung und der Umgebungmerkmale durch Benutzung eines Kalman filters. Der Softwareframework ist ein Beitrag zum anhaltenden Standardisierungsprozess von kooperativen, mobilen Robotern. Um die EffektivitĂ€t eines kooperativen mobilen Robotersystems zu verbessern enthĂ€lt der vorgeschlagene Softwareframework die Möglichkeit die Kommunikationsprotokolle flexibel zu Ă€ndern, mit verschiedenen Sensoren zu arbeiten sowie die Möglichkeit die Sensordaten verschieden zu organisieren und verschiedene Roboter von einem Interface aus zu steuern. Die prĂ€sentierte Arbeit kann in einer Vielzahl von Applikationen in verschiedenen DomĂ€nen benutzt werden, wo eine Karte der Umgebung nicht vorhanden ist und es nicht möglich ist GPS Daten zur prĂ€zisen Lokalisierung eines mobilen Roboters zu nutzen. Daher mĂŒssen die mobilen Roboter sich auf die selbsterstellte Karte verlassen und die selbe Karte zur Bestimmung von Position und Orientierung relativ zur Umgebung verwenden. Die exemplarischen Anwendungen der vorgeschlagenen SLAM Technik sind Innenraumumgebungen wie Lagermanagement, FabrikgebĂ€ude mit ProduktionsstĂ€tten, verlassene Tunnel, Katastrophengebiete ohne aktuelle Karte, Inspektion von Unterseepipelines, Ozeanvermessung, MilitĂ€ranwendungen, Planetenerforschung und viele andere. Diese Anwendungen sind einige von vielen und sind nur durch die Vorstellungskraft limitiert
    • 

    corecore