709 research outputs found

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    A Trust-Based Relay Selection Approach to the Multi-Hop Network Formation Problem in Cognitive Radio Networks

    Get PDF
    One of the major challenges for today’s wireless communications is to meet the growing demand for supporting an increasing diversity of wireless applications with limited spectrum resource. In cooperative communications and networking, users share resources and collaborate in a distributed approach, similar to entities of active social groups in self organizational communities. Users’ information may be shared by the user and also by the cooperative users, in distributed transmission. Cooperative communications and networking is a fairly new communication paradigm that promises significant capacity and multiplexing gain increase in wireless networks. This research will provide a cooperative relay selection framework that exploits the similarity of cognitive radio networks to social networks. It offers a multi-hop, reputation-based power control game for routing. In this dissertation, a social network model provides a humanistic approach to predicting relay selection and network analysis in cognitive radio networks

    The Cost of Knowing: An Economic Evaluation of Context Acquisition in DSA Systems

    Get PDF
    Much of the research in Dynamic Spectrum Access (DSA) has focused on the details of the enabling technologies. While this has been quite useful in establishing the technical feasibility of DSA systems, it has missed an important aspect of the overall DSA problem space: in order for operators, regulators and users to be interested in deploying DSA based networks, the expected costs should be in proportion to what the users are realistically willing to pay for services. Consequently, it is important to conduct cost estimates for different DSA approaches in parallel with the technical research.\ud \ud In this paper, we will explore how the cost experienced by primary and secondary users can influence their incentives for participation in DSA. To do this, we compare the costs and cost structures of four context awareness approaches from each of them. The costs we will consider are incremental capital costs over a basic software radio using four different context acquisition approaches (sensing, databases, sensor networks, and cooperative sharing). Since DSA is still a relatively new research field, there is a lot of uncertainty associated with incremental cost analyses. As a result, the cost analysis is parameterized to allow for explicit reasoning about the bounds of cost components

    An emergency communication system based on software-defined radio

    Get PDF
    Wireless telecommunications represent an important asset for Public Protection and Disaster Relief (PPDR) organizations as they improve the coordination and the distribution of information among first responders in the field. In large international disaster scenarios, many different PPDR organizations may participate to the response phase of disaster management. In this context, PPDR organizations may use different wireless communication technologies; such diversity may create interoperability barriers and degrade the coordination among first time responders. In this paper, we present the design, system integration and testing of a demonstration system based on Software Defined Radio (SDR) technology and Software Communication Architecture (SCA) to support PPDR operations with special focus on the provision of satellite communications. This paper describes the main components of the demonstration system, the integration activities as well as the testing scenarios, which were used to evaluate the technical feasibility. The paper also describes the main technical challenges in the implementation and integration of the demonstration system. Finally future developments for this technology and potential deployment challenges are presented.JRC.G.6-Digital Citizen Securit
    • …
    corecore