307 research outputs found

    Quantitative Analysis of Dynamic Contrast-Enhanced Magnetic Resonance Breast Images: Optimization of the Time-to-Peak as a Diagnostic Indicator

    Get PDF
    Dynamic contrast-enhanced MRI (DCE-MRI) has been widely used in the diagnosis of breast cancer and as an aid in the management of this disease. Although DCE-MRI has a high sensitivity for the detection of malignant breast lesions, distinguishing malignant from benign lesions is more challenging for this method and may depend to some extent on how the images are analysed. Although clinical assessment of these images typically involves qualitative assessment by an expert, there is growing interest in the development of quantitative and automated methods to assist the expert assessment. This thesis involves the quantitative analysis of a particular empirical feature of the time evolution of the DCE-MRI signal known as the time-to-peak ( 7 ^ ) . In particular, this thesis investigates die feasibility of applying measures sensitive to 7 ^ heterogeneity as indicators for malignancy in breast DCE-MRI. Breast lesions in this study were automatically segmented by K-means clustering. Voxel- by-voxel 7\u27peak values were extracted using an empirical model. The / 1th percentile values (p = 10, 20...) of the 7’peak distribution within each lesion, as well as the fractional and absolute hot spot volumes were determined, where hot spot volume refers to the volume of tissue with 7 ^ less than a threshold value. Using the area under the receiver operating characteristic curve (AUC), these measures were tested as indicators for differentiating fibroadenomas from invasive lesions and from ductal carcinoma in situ, as well as for differentiating non-fibroadenoma benign lesions from these malignant lesions. For differentiating fibroadenomas from malignant lesions, low percentile values (p = 10) provided high diagnostic performance. At the optimal threshold (3 min), the hot spot volume provided high diagnostic performance. However, non-fibroadenoma benign lesions were quite difficult to distinguish from malignant lesions. This thesis demonstrates that quantitative analysis of the 7’peak distribution can be optimized for diagnostic performance providing indicators sensitive to intra-lesion r peak heterogeneity

    Breast dynamic contrast-enhanced-magnetic resonance imaging and radiomics: State of art

    Get PDF
    Breast cancer represents the most common malignancy in women, being one of the most frequent cause of cancer-related mortality. Ultrasound, mammography, and magnetic resonance imaging (MRI) play a pivotal role in the diagnosis of breast lesions, with different levels of accuracy. Particularly, dynamic contrast-enhanced MRI has shown high diagnostic value in detecting multifocal, multicentric, or contralateral breast cancers. Radiomics is emerging as a promising tool for quantitative tumor evaluation, allowing the extraction of additional quantitative data from radiological imaging acquired with different modalities. Radiomics analysis may provide novel information through the quantification of lesions heterogeneity, that may be relevant in clinical practice for the characterization of breast lesions, prediction of tumor response to systemic therapies and evaluation of prognosis in patients with breast cancers. Several published studies have explored the value of radiomics with good-to-excellent diagnostic and prognostic performances for the evaluation of breast lesions. Particularly, the integrations of radiomics data with other clinical and histopathological parameters have demonstrated to improve the prediction of tumor aggressiveness with high accuracy and provided precise models that will help to guide clinical decisions and patients management. The purpose of this article in to describe the current application of radiomics in breast dynamic contrast-enhanced MRI

    Emerging Techniques in Breast MRI

    Get PDF
    As indicated throughout this chapter, there is a constant effort to move to more sensitive, specific, and quantitative methods for characterizing breast tissue via magnetic resonance imaging (MRI). In the present chapter, we focus on six emerging techniques that seek to quantitatively interrogate the physiological and biochemical properties of the breast. At the physiological scale, we present an overview of ultrafast dynamic contrast-enhanced MRI and magnetic resonance elastography which provide remarkable insights into the vascular and mechanical properties of tissue, respectively. Moving to the biochemical scale, magnetization transfer, chemical exchange saturation transfer, and spectroscopy (both “conventional” and hyperpolarized) methods all provide unique, noninvasive, insights into tumor metabolism. Given the breadth and depth of information that can be obtained in a single MRI session, methods of data synthesis and interpretation must also be developed. Thus, we conclude the chapter with an introduction to two very different, though complementary, methods of data analysis: (1) radiomics and habitat imaging, and (2) mechanism-based mathematical modeling

    Quantifying Tumor Vascular Heterogeneity with Dynamic Contrast-Enhanced Magnetic Resonance Imaging: A Review

    Get PDF
    Tumor microvasculature possesses a high degree of heterogeneity in its structure and function. These features have been demonstrated to be important for disease diagnosis, response assessment, and treatment planning. The exploratory efforts of quantifying tumor vascular heterogeneity with DCE-MRI have led to promising results in a number of studies. However, the methodological implementation in those studies has been highly variable, leading to multiple challenges in data quality and comparability. This paper reviews several heterogeneity quantification methods, with an emphasis on their applications on DCE-MRI pharmacokinetic parametric maps. Important methodological and technological issues in experimental design, data acquisition, and analysis are also discussed, with the current opportunities and efforts for standardization highlighted

    Computer-aided detection and diagnosis of breast cancer in 2D and 3D medical imaging through multifractal analysis

    Get PDF
    This Thesis describes the research work performed in the scope of a doctoral research program and presents its conclusions and contributions. The research activities were carried on in the industry with Siemens S.A. Healthcare Sector, in integration with a research team. Siemens S.A. Healthcare Sector is one of the world biggest suppliers of products, services and complete solutions in the medical sector. The company offers a wide selection of diagnostic and therapeutic equipment and information systems. Siemens products for medical imaging and in vivo diagnostics include: ultrasound, computer tomography, mammography, digital breast tomosynthesis, magnetic resonance, equipment to angiography and coronary angiography, nuclear imaging, and many others. Siemens has a vast experience in Healthcare and at the beginning of this project it was strategically interested in solutions to improve the detection of Breast Cancer, to increase its competitiveness in the sector. The company owns several patents related with self-similarity analysis, which formed the background of this Thesis. Furthermore, Siemens intended to explore commercially the computer- aided automatic detection and diagnosis eld for portfolio integration. Therefore, with the high knowledge acquired by University of Beira Interior in this area together with this Thesis, will allow Siemens to apply the most recent scienti c progress in the detection of the breast cancer, and it is foreseeable that together we can develop a new technology with high potential. The project resulted in the submission of two invention disclosures for evaluation in Siemens A.G., two articles published in peer-reviewed journals indexed in ISI Science Citation Index, two other articles submitted in peer-reviewed journals, and several international conference papers. This work on computer-aided-diagnosis in breast led to innovative software and novel processes of research and development, for which the project received the Siemens Innovation Award in 2012. It was very rewarding to carry on such technological and innovative project in a socially sensitive area as Breast Cancer.No cancro da mama a deteção precoce e o diagnóstico correto são de extrema importância na prescrição terapêutica e caz e e ciente, que potencie o aumento da taxa de sobrevivência à doença. A teoria multifractal foi inicialmente introduzida no contexto da análise de sinal e a sua utilidade foi demonstrada na descrição de comportamentos siológicos de bio-sinais e até na deteção e predição de patologias. Nesta Tese, três métodos multifractais foram estendidos para imagens bi-dimensionais (2D) e comparados na deteção de microcalci cações em mamogramas. Um destes métodos foi também adaptado para a classi cação de massas da mama, em cortes transversais 2D obtidos por ressonância magnética (RM) de mama, em grupos de massas provavelmente benignas e com suspeição de malignidade. Um novo método de análise multifractal usando a lacunaridade tri-dimensional (3D) foi proposto para classi cação de massas da mama em imagens volumétricas 3D de RM de mama. A análise multifractal revelou diferenças na complexidade subjacente às localizações das microcalci cações em relação aos tecidos normais, permitindo uma boa exatidão da sua deteção em mamogramas. Adicionalmente, foram extraídas por análise multifractal características dos tecidos que permitiram identi car os casos tipicamente recomendados para biópsia em imagens 2D de RM de mama. A análise multifractal 3D foi e caz na classi cação de lesões mamárias benignas e malignas em imagens 3D de RM de mama. Este método foi mais exato para esta classi cação do que o método 2D ou o método padrão de análise de contraste cinético tumoral. Em conclusão, a análise multifractal fornece informação útil para deteção auxiliada por computador em mamogra a e diagnóstico auxiliado por computador em imagens 2D e 3D de RM de mama, tendo o potencial de complementar a interpretação dos radiologistas

    Advanced perfusion quantification methods for dynamic PET and MRI data modelling

    Get PDF
    The functionality of tissues is guaranteed by the capillaries, which supply the microvascular network providing a considerable surface area for exchanges between blood and tissues. Microcirculation is affected by any pathological condition and any change in the blood supply can be used as a biomarker for the diagnosis of lesions and the optimization of the treatment. Nowadays, a number of techniques for the study of perfusion in vivo and in vitro are available. Among the several imaging modalities developed for the study of microcirculation, the analysis of the tissue kinetics of intravenously injected contrast agents or tracers is the most widely used technique. Tissue kinetics can be studied using different modalities: the positive enhancement of the signal in the computed tomography and in the ultrasound dynamic contrast enhancement imaging; T1-weighted MRI or the negative enhancement of T2* weighted MRI signal for the dynamic susceptibility contrast imaging or, finally, the uptake of radiolabelled tracers in dynamic PET imaging. Here we will focus on the perfusion quantification of dynamic PET and MRI data. The kinetics of the contrast agent (or the tracer) can be analysed visually, to define qualitative criteria but, traditionally, quantitative physiological parameters are extracted with the implementation of mathematical models. Serial measurements of the concentration of the tracer (or of the contrast agent) in the tissue of interest, together with the knowledge of an arterial input function, are necessary for the calculation of blood flow or perfusion rates from the wash-in and/or wash-out kinetic rate constants. The results depend on the acquisition conditions (type of imaging device, imaging mode, frequency and total duration of the acquisition), the type of contrast agent or tracer used, the data pre-processing (motion correction, attenuation correction, correction of the signal into concentration) and the data analysis method. As for the MRI, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a non-invasive imaging technique that can be used to measure properties of tissue microvasculature. It is sensitive to differences in blood volume and vascular permeability that can be associated with tumour angiogenesis. DCE-MRI has been investigated for a range of clinical oncologic applications (breast, prostate, cervix, liver, lung, and rectum) including cancer detection, diagnosis, staging, and assessment of treatment response. Tumour microvascular measurements by DCE-MRI have been found to correlate with prognostic factors (such as tumour grade, microvessel density, and vascular endothelial growth factor expression) and with recurrence and survival outcomes. Furthermore, DCE-MRI changes measured during treatment have been shown to correlate with outcome, suggesting a role as a predictive marker. The accuracy of DCE-MRI relies on the ability to model the pharmacokinetics of an injected contrast agent using the signal intensity changes on sequential magnetic resonance images. DCE-MRI data are usually quantified with the application of the pharmacokinetic two-compartment Tofts model (also known as the standard model), which represents the system with the plasma and tissue (extravascular extracellular space) compartments and with the contrast reagent exchange rates between them. This model assumes a negligible contribution from the vascular space and considers the system in, what-is-known as, the fast exchange limit, assuming infinitely fast transcytolemmal water exchange kinetics. In general, the number, as well as any assumption about the compartments, depends on the properties of the contrast agent used (mainly gadolinium) together with the tissue physiology or pathology studied. For this reason, the choice of the model is crucial in the analysis of DCE-MRI data. The value of PET in clinical oncology has been demonstrated with studies in a variety of cancers including colorectal carcinomas, lung tumours, head and neck tumours, primary and metastatic brain tumours, breast carcinoma, lymphoma, melanoma, bone cancers, and other soft-tissue cancers. PET studies of tumours can be performed for several reasons including the quantification of tumour perfusion, the evaluation of tumour metabolism, the tracing of radiolabelled cytostatic agents. In particular, the kinetic analysis of PET imaging has showed, in the past few years, an increasing value in tumour diagnosis, as well as in tumour therapy, through providing additional indicative parameters. Many authors have showed the benefit of kinetic analysis of anticancer drugs after labelling with radionuclide in measuring the specific therapeutic effect bringing to light the feasibility of applying the kinetic analysis to the dynamic acquisition. Quantification methods can involve visual analysis together with compartmental modelling and can be applied to a wide range of different tracers. The increased glycolysis in the most malignancies makes 18F-FDG-PET the most common diagnostic method used in tumour imaging. But, PET metabolic alteration in the target tissue can depend by many other factors. For example, most types of cancer are characterized by increased choline transport and by the overexpression of choline kinase in highly proliferating cells in response to enhanced demand of phosphatidylcholine (prostate, breast, lung, ovarian and colon cancers). This effect can be diagnosed with choline-based tracers as the 18Ffluoromethylcholine (18F-FCH), or the even more stable 18F-D4-Choline. Cellular proliferation is also imaged with 18F-fluorothymidine (FLT), which is trapped within the cytosol after being mono phosphorylated by thymidine kinase-1 (TK1), a principal enzyme in the salvage pathway of DNA synthesis. 18F-FLT has been found to be useful for noninvasive assessment of the proliferation rate of several types of cancer and showed high reproducibility and accuracy in breast and lung cancer tumours. The aim of this thesis is the perfusion quantification of dynamic PET and MRI data of patients with lung, brain, liver, prostate and breast lesions with the application of advanced models. This study covers a wide range of imaging methods and applications, presenting a novel combination of MRI-based perfusion measures with PET kinetic modelling parameters in oncology. It assesses the applicability and stability of perfusion quantification methods, which are not currently used in the routine clinical practice. The main achievements of this work include: 1) the assessment of the stability of perfusion quantification of D4-Choline and 18F-FLT dynamic PET data in lung and liver lesions, respectively (first applications in the literature); 2) the development of a model selection in the analysis of DCE-MRI data of primary brain tumours (first application of the extended shutter speed model); 3) the multiparametric analysis of PET and MRI derived perfusion measurements of primary brain tumour and breast cancer together with the integration of immuohistochemical markers in the prediction of breast cancer subtype (analysis of data acquired on the hybrid PET/MRI scanner). The thesis is structured as follows: - Chapter 1 is an introductive chapter on cancer biology. Basic concepts, including the causes of cancer, cancer hallmarks, available cancer treatments, are described in this first chapter. Furthermore, there are basic concepts of brain, breast, prostate and lung cancers (which are the lesions that have been analysed in this work). - Chapter 2 is about Positron Emission Tomography. After a brief introduction on the basics of PET imaging, together with data acquisition and reconstruction methods, the chapter focuses on PET in the clinical settings. In particular, it shows the quantification techniques of static and dynamic PET data and my results of the application of graphical methods, spectral analysis and compartmental models on dynamic 18F-FDG, 18F-FLT and 18F-D4- Choline PET data of patients with breast, lung cancer and hepatocellular carcinoma. - Chapter 3 is about Magnetic Resonance Imaging. After a brief introduction on the basics of MRI, the chapter focuses on the quantification of perfusion weighted MRI data. In particular, it shows the pharmacokinetic models for the quantification of dynamic contrast enhanced MRI data and my results of the application of the Tofts, the extended Tofts, the shutter speed and the extended shutter speed models on a dataset of patients with brain glioma. - Chapter 4 introduces the multiparametric imaging techniques, in particular the combined PET/CT and the hybrid PET/MRI systems. The last part of the chapter shows the applications of perfusion quantification techniques on a multiparametric study of breast tumour patients, who simultaneously underwent DCE-MRI and 18F-FDG PET on a hybrid PET/MRI scanner. Then the results of a predictive study on the same dataset of breast tumour patients integrated with immunohistochemical markers. Furthermore, the results of a multiparametric study on DCE-MRI and 18F-FCM brain data acquired both on a PET/CT scanner and on an MR scanner, separately. Finally, it will show the application of kinetic analysis in a radiomic study of patients with prostate cancer

    The Impact of Motion Correction on Lesion Characterization in DCE Breast MR Images

    Get PDF
    ABSTRACT In the context of dynamic contrast enhanced breast MR imaging we analyzed the effect of motion compensating registration on the characterization of lesions. Two registration techniques were applied: 1) rigid registration and 2) elastic registration based on the Navier-Lamé equation. Interpreting voxels that exhibit a decline in image intensity after contrast injection (compared to the non-contrasted native image) as motion outliers, it can be shown that the rate of motion outliers can be largely reduced by both rigid and elastic registration. The performance of lesion features, including maximal signal enhancement ratio and variance of the signal enhancement ratio, was measured by area under the ROC curve as well as Cohen's κ and showed significant improvement for elastic registration, whereas features derived from rigidly registered images did not in general exhibit a significant improvement over the level of unregistered data

    Morphological quantitation software in breast MRI: application to neoadjuvant chemotherapy patients

    Get PDF
    The work in this thesis examines the use of texture analysis techniques and shape descriptors to analyse MR images of the breast and their application as a potential quantitative tool for prognostic indication.Textural information is undoubtedly very heavily used in a radiologist’s decision making process. However, subtle variations in texture are often missed, thus by quantitatively analysing MR images the textural properties that would otherwise be impossible to discern by simply visually inspecting the image can be obtained. Texture analysis is commonly used in image classification of aerial and satellite photography, studies have also focussed on utilising texture in MRI especially in the brain. Recent research has focussed on other organs such as the breast wherein lesion morphology is known to be an important diagnostic and prognostic indicator. Recent work suggests benefits in assessing lesion texture in dynamic contrast-enhanced (DCE) images, especially with regards to changes during the initial enhancement and subsequent washout phases. The commonest form of analysis is the spatial grey-level dependence matrix method, but there is no direct evidence concerning the most appropriate pixel separation and number of grey levels to utilise in the required co-occurrence matrix calculations. The aim of this work is to systematically assess the efficacy of DCE-MRI based textural analysis in predicting response to chemotherapy in a cohort of breast cancer patients. In addition an attempt was made to use shape parameters in order to assess tumour surface irregularity, and as a predictor of response to chemotherapy.In further work this study aimed to texture map DCE MR images of breast patients utilising the co-occurrence method but on a pixel by pixel basis in order to determine threshold values for normal, benign and malignant tissue and ultimately creating functionality within the in house developed software to highlight hotspots outlining areas of interest (possible lesions). Benign and normal data was taken from MRI screening data and malignant data from patients referred with known malignancies.This work has highlighted that textural differences between groups (based on response, nodal status, triple negative and biopsy grade groupings) are apparent and appear to be most evident 1-3 minutes post-contrast administration. Whilst the large number of statistical tests undertaken necessitates a degree of caution in interpreting the results, the fact that significant differences for certain texture parameters and groupings are consistently observed is encouraging.With regards to shape analysis this thesis has highlighted that some differences between groups were seen in shape descriptors but that shape may be limited as a prognostic indicator. Using textural analysis gave a higher proportion of significant differences whilst shape analysis results showed inconsistency across time points.With regards to the mapping this work successfully analysed the texture maps for each case and established lesion detection is possible. The study successfully highlighted hotspots in the breast patients data post texture mapping, and has demonstrated the relationship between sensitivity and false positive rate via hotspot thresholding
    corecore