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ABSTRACT

Dynamic contrast-enhanced MRI (DCE-MRI) has been widely used in the diagnosis of 

breast cancer and as an aid in the management of this disease. Although DCE-MRI has a 

high sensitivity for the detection of malignant breast lesions, distinguishing malignant 

from benign lesions is more challenging for this method and may depend to some extent 

on how the images are analysed. Although clinical assessment of these images typically 

involves qualitative assessment by an expert, there is growing interest in the development 

of quantitative and automated methods to assist the expert assessment. This thesis 

involves the quantitative analysis of a particular empirical feature of the time evolution of 

the DCE-MRI signal known as the time-to-peak ( 7 ^ ) .  In particular, this thesis 

investigates die feasibility of applying measures sensitive to 7 ^  heterogeneity as 

indicators for malignancy in breast DCE-MRI.

Breast lesions in this study were automatically segmented by K-means clustering. Voxel- 

by-voxel 7'peak values were extracted using an empirical model. The / 1th percentile values 

(p = 10, 20...) of the 7’peak distribution within each lesion, as well as the fractional and 

absolute hot spot volumes were determined, where hot spot volume refers to the volume 

of tissue with 7 ^  less than a threshold value. Using the area under the receiver 

operating characteristic curve (AUC), these measures were tested as indicators for 

differentiating fibroadenomas from invasive lesions and from ductal carcinoma in situ, as 

well as for differentiating non-fibroadenoma benign lesions from these malignant lesions. 

For differentiating fibroadenomas from malignant lesions, low percentile values (p = 10) 

provided high diagnostic performance. At the optimal threshold (3 min), the hot spot 

volume provided high diagnostic performance. However, non-fibroadenoma benign 

lesions were quite difficult to distinguish from malignant lesions. This thesis 

demonstrates that quantitative analysis of the 7’peak distribution can be optimized for 

diagnostic performance providing indicators sensitive to intra-lesion r peak heterogeneity.

Keywords: breast cancer, dynamic contrast-enhanced MRI, lesion heterogeneity, time-to- 

peak distribution, lesion volume
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CHAPTER 1

Introduction

1.1 Motivation

Breast cancer is the most common cancer and the second most common cause of 

cancer deaths among Canadian women. In 2010, an estimated 23,200 Canadian women 

will be diagnosed with breast cancer and 5,300 women will die from this disease (1, 2). 

The number of breast cancer deaths has remained unchanged since 2009 (2). Based on the 

breast cancer incidence estimates, one in nine Canadian women is expected to develop 

breast cancer during their lifetime (by age 90) and one in 28 will die of this disorder.

The rate of detection of breast cancer has gradually increased since the early 1980s, 

largely due to the increased use of mammographic screening (3). However, the death rate 

from breast cancer declined in every age group after the mid 1980s and even more after 

the mid 1990s. This has mainly been attributed to both advances in treatments and 

improvements in breast cancer screening (2, 4). A large number of studies (3-11) have 

suggested that the decrease in breast cancer related mortality and morbidity that occurred 

in recent decades is due to early detection and accurate diagnosis. Imaging techniques 

including magnetic resonance imaging provide an important contribution to early breast 

cancer detection and diagnosis.

1.2 Breast Cancer

Breast cancer usually originates from the ducts and lobules (milk producing unit) of 

the breast tissue, but very rarely from the stroma (connective supporting tissue). 

Malignant breast tumors can be classified according to the site of origin and the status of 

invasiveness. Non-invasive breast cancer refers to cancer that is confined within the milk 

ducts and/or lobules of the breast. Although these cancers are considered to be non- 

invasive, they can progress to invasive cancers. More specifically, Ductal carcinoma in 

situ (DCIS) is a non-invasive cancer which is located within ducts and has not infiltrated
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through the duct walls. Lobular carcinoma in situ (LCIS) on the other hand, corresponds 

to cancer that originates in the lobules and remains at that site at the time of detection. 

Invasive breast cancer refers to cancer in which cancer cells have penetrated through the 

walls of the ducts and/or lobules into the surrounding normal breast tissue. Invasive 

breast cancer usually has a worse prognosis than non-invasive cancer because the cancer 

cells can further penetrate the wall of blood and/or lymphatic vessels and spread through 

die bloodstream or lymphatic system to distant organs leading to the development of 

metastatic cancers. Invasive cancer originating from the ducts, known as invasive ductal 

carcinoma (IDC), is the most common type of invasive breast cancer. Invasive lobular 

carcinoma (ILC) is invasive cancer originating from lobules.

Benign breast tumors consist of a heterogeneous group of tumors that may show a 

wide range of symptoms. Differing from malignant breast tumors, benign breast tumors 

do not invade other tissue or metastasize to other organs. These tumors do not normally 

lead to mortality but may cause pain or discomfort for patients. Also the presence of 

certain benign tumors may be associated with an increased risk of breast cancer (12, 13). 

Various types of benign breast tumors occur. The types that are included in the study 

presented in Chapter 2 are fibroadenomas, fibrocystic changes, apocrine metaplasia, 

radial scars, intraductal papillomas, complex papillary lesions, fibrosis and fat necrosis. 

These tumors can also be categorized based on the sites where they occur. Benign lesions 

that originate from lobules include fibroadenomas and apocrine metaplasia; those that 

originate from ducts include radial scars, intraductal papillomas, and complex papillary 

lesions; and those that originate from other breast tissue (e.g., stroma or adipose tissue) 

include fibrosis and fat necrosis. Fibroadenomas are the most common benign solid 

tumors that arise in the lobules. They are composed of fibrous stromal tissue and 

characterized by proliferation of the stroma, which leads to distortion of ductal system 

within the breast. Although the word “scar” occurs in “radial scar” this benign lesion is 

not scar tissue related to trauma or surgery. Papillary lesions of the breast include a broad 

range of lesions which are characterized by a fibrovascular core covered by epithelial 

fronds (protrusions) composed of two layers of epithelial cells. Intraductal papillomas are 

papillary lesions within a dilated duct or ducts. Fibrosis is characterized by the
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proliferation of stroma which results in a localized area of fibrous tissue associated with 

hypoplasia of ducts and lobules (14). (Hypoplasia refers to a decrease in the number of 

cells relative that in the corresponding normal tissue.) Fat necrosis of the breast results 

from a benign inflammatory process of adipose tissue related to breast trauma or surgery. 

The fat necrosis lesion consists of oily debris, fibrous connective tissue, foamy 

macrophages and giant cells. Fibrocystic changes represent the most frequent benign 

breast disorders and include a large range of breast tissue changes. They can arise from 

the ducts (e.g., ductal hyperplasia) or from the lobules (e.g., adenosis, sclerosing adenosis 

and apocrine metaplasia). Apocrine metaplasia, one type of fibrocystic changes, refers to 

the presence of breast tissue epithelial cells which resemble the cells of apocrine glands.

During the development of a tumor, the formation of networks of new microvessels 

known as neoangeogenesis plays an important role for supplying nutrients and oxygen for 

tumor growth. The angiogenic factors released by tumor cells interact with endothelial 

cells in the neighbouring vessels and stimulate the generation of new microvessels, 

resulting in high tumor microvessel density and an increase in perfusion (15). In addition, 

the pores in the basement membrane of the newly formed vessels are more open than in 

normal vessels, resulting in high permeability of these vessels to large molecules in the 

blood plasma. Blood perfusion and microvessel permeability are therefore considered 

physiological correlates to the changes in tumor vessels that are associated with tumor 

neoangiogenesis. Neoangiogenesis can occur in both malignant breast tumors (i.e., breast 

cancer) where the growth of tumor cells appears to be invasive, and benign breast tumors, 

which are considered non-cancerous and non-invasive (16).

1.3 Diagnostic Imaging in Breast Cancer

Early and accurate diagnosis of breast cancer has been positively linked to a 

decrease in the mortality and morbidity of the illness. Imaging techniques involved in 

clinical breast cancer diagnosis normally include X-ray mammography, ultrasound, and 

magnetic resonance imaging. Other imaging techniques such as positron emission 

tomography and scintigraphy are also used as complementary tools in selected cases (11).
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1.3.1 X-ray Mammography in Breast Cancer

X-ray mammography is the conventional technique for breast screening in clinical 

practice. In X-ray mammography, the breast is compressed using mammography plates in 

order to even out the thickness of the breast tissue. The compressed breast is then 

exposed to a low dose of X-rays, from which a two-dimensional (2D) diagnostic image is 

formed either on X-ray film or solid-state detectors that convert X-rays into electrical 

signals. Screening mammography has been shown to be an effective method for detecting 

breast cancer. Studies (5, 17) have indicated that women aged 50 to 69 years who 

received mammography screening had a lower breast cancer mortality rate by 20% to 

35% at a 14 year follow-up compared to those who were not screened. For women aged 

40 to 49 years the reduction in mortality was slightly less. Although X-ray 

mammography is used routinely for breast cancer screening, some limitations exist. The 

limited sensitivity of X-ray mammography (i.e., high ‘false negative’ rate) is largely due 

to the presence of dense breast tissue (especially for younger women) which may obscure 

the cancer as well as the overlap of cancerous tissue and normal breast tissue in a two 

dimensional image (5, 18). From the results of seven population-based community 

screening programs in the United States on 463,372 screening mammograms from 1996 

to 1998, the sensitivity ranged from 0.63 in women with extremely dense breasts to 0.87 
in women with almost entirely fatty breast. Also the sensitivity ranged from 0.69 in 

women aged 40 through 44 years to 0.83 in women aged 80 through 89 years (18). The 

use of ionizing radiation is also a disadvantage of X-ray mammography.

1.3.2 Ultrasound in Breast Cancer

Ultrasound (US) uses high frequency sound waves to detect breast tumors. 

Compared to X-ray mammography, US has the advantage of not involving ionizing 

radiation. Compared to MRI, ultrasound has the advantage of being more widely 

available, less expensive and without contrast agent induced complications (6). In 

addition, US has the ability to provide real-time image guidance for needle core biopsy 

procedures (7). Breast abnormalities identified on mammography or other image

4



modalities can be classified as solid or fluid filled using US (6, 7). However, the 

drawbacks of US include the limited ability for evaluating microcalcifications and higher 

false positive rates than X-ray mammography (6, 7, 19-21). Also since the US procedure 

is to a large extent under manual control, the diagnostic performance may to some extent 

vary between ultrasonographers. A recent study found that including US with 

mammography for screening yielded a higher detection rate for high-risk women and 

women with dense breasts than using mammography alone, but substantially increased 

the number of false positives (22).

1.3.3 Magnetic Resonance Imaging in Breast Cancer

Magnetic resonance imaging (MRI) is frequently utilized in the diagnosis of 

breast cancer and has been also used for other applications including breast cancer 

screening, imaging guided breast biopsy, monitoring cancer response to chemotherapy 

and/or radiation therapy and for surgical planning (8, 11). One of the most commonly 

used breast MRI methods is dynamic contrast-enhanced MRI (DCE-MRI). This method 

involves the intravenous injection of a contrast agent and the acquisition of magnetic 

resonance images over several minutes following the injection allowing the observation 

of changes in the magnetic resonance (MR) signal as a function of time. Numerous 
studies have shown the high diagnostic sensitivity of DCE-MRI for detecting malignant 

breast tumors. However, the specificity varies and remains a challenge. Peters et al. (23) 
performed a meta-analysis study to investigate the diagnostic performance of contrast- 

enhanced MRI for differentiating malignant from benign breast lesions. In their study, the 

diagnostic sensitivity and specificity values of 44 eligible previous studies from 1985 to 

2005 were analyzed. The average sensitivity was found to be 0.90 with 95% confidence 

interval of 0.88 to 0.92, and the average specificity was 0.72 with 95% confidence 

interval of 0.67 to 0.77. This study demonstrated that diagnostic specificity remains a 

challenge for the application of DCE-MRI for breast cancer diagnosis. The current 

consensus is MRI is excellent for detecting multifocal/multicentric breast tumors and 

determining tumor extent (11,24-26).
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1.4 Principles of Magnetic Resonance Imaging

Magnetic Resonance Imaging is an imaging technique that can provide strong 

contrast between soft tissues and hence it is often employed for visualization of 

anatomical structures within soft tissue. This imaging modality is now widely used in 

neurological, cardiovascular and oncological applications. MRI is a relatively new 

technology compared with ionizing radiation based techniques such as X-ray image and 

X-ray computed tomography (CT). The first MR image was published in 1973 and the 

first studies of humans were published in 1977. MR images are constructed from the 

nuclear magnetic resonance signals from water (and fat) protons in tissue.

1.4.1 Magnetic Resonance (MR) Signal

The main magnet of the MRI system produces a powerful static magnetic field 

(usually called the B0 field) which, for modem clinical MRI systems, is typically 1.5 

Tesla or greater. When a proton containing material such as tissue is placed within this 

large magnetic field, there is a slight tendency for proton magnetic moments to align 

along the direction of the magnetic field, thus forming a net magnetization associated 

with these protons. This magnetization, known as the thermal equilibrium magnetization, 

only has a component along the direction of the static magnetic field, defined as the z- 

direction (i.e., the x- and y- components equal to zero). The magnetization associated with 

the protons of water (and fat) will contribute to the MRI signal. In order to generate this 

signal, a radio frequency (rf) transmitter (or coil) will be briefly turned on to produce a 

radio frequency magnetic field (called the Bj field) at, or close to, the frequency at which 

the proton magnetic moments can absorb energy, allowing the magnetization to be 

manipulated. This frequency, known as the Larmor frequency, depends on field strength 

and nuclear species (in this case protons). While the Bi magnetic field is on, the proton 

magnetization rotates away from the direction of the static magnetic field through a 

particular angle known as the flip angle (FA). The amplitude and duration of the radio 

frequency magnetic field controls the flip angle. Once the magnetization is no longer 

parallel to the static magnetic field it starts to precess at the Larmor frequency about the
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static magnetic field direction. After the transmitter is turned off, the magnetization 

continues to precess at the Larmor frequency. During this process, the signal produced by 

the precession of the magnetization is detected by a radio frequency receiver coil. The 

evolution of the magnetization, and hence the signal generated, also depends on two MRI 

parameters known as the 7j and T2 relaxation times. T\ is the time constant describing the 
exponential re-growth of longitudinal magnetization (z-component) towards its thermal 

equilibrium value. Similarly, T2 is defined to characterize the decay of the transverse 

magnetization (combination of x- and y-components) to their thermal equilibrium values 

(both equal to zero).

The creation of an image using MR signals requires the application of magnetic 

field gradients to spatially encode information regarding the position where the signal 

components arise from. There are three principle methods of spatial encoding known as 

frequency encoding, phase encoding and slice selection. Typical imaging acquisitions use 

either all three (one for each direction in space) or only the first two. Both frequency 

encoding and phase encoding use the principle that the magnetization precesses at a 

frequency that is dependent on the strength of the magnetic field at the position in space 

where this magnetization is located. Thus, when the magnetic field gradient is applied, 

the magnetization at different positions along the gradient direction accumulate different 

amounts of phase during a given elapsed time. In the case of phase encoding, the 

magnetic field gradient is switched on shortly after the rf excitation pulse and prior to the 

signal readout, and then turned off during signal acquisition. This encodes position- 

dependent phase into the signal. The strength of phase encoding gradient field changes by 

a certain increment with each acquired signal. The frequency encoding gradient, on the 

other hand, is switched on just prior to the signal acquisition and remains on during the 

signal acquisition, encoding position-dependent frequency into the signal. The signal 

amplitudes acquired as a function of phase encoding step and frequency encoding time 

point are used to fill in data points in a space known as k-space. The spatial 

reconstruction of MR image can be obtained by calculating the Fourier Transform of the 

k-space data. Finally, slice selection involves the use of a designed slice selective rf pulse 

having specific frequency bandwidth. When slice selection gradient field is applied, only
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proton magnetic moments within a particular slice corresponding to the frequency 

bandwidth range centered at the Larmor frequency can absorb energy, and thus be 

manipulated.

In breast MRI, the image must cover the whole breast. There are two different 

approaches for obtaining such a three-dimensional (3D) block of image data. One method, 

known as multi-slice imaging involves acquiring a series of 2D slices covering the whole 

breast volume. With multi-slice imaging, spatial encoding is accomplished by frequency 

encoding in one direction, phase encoding in the second direction and slice-selection in 

the third direction. Although multi-slice imaging does acquire images over a 3D volume 

it is not generally referred to as 3D imaging in the MRI literature. The second method, 

which is referred to as 3D MRI, is performed by replacing slice selection by phase 

encoding, i.e., two directions are spatially encoded by phase encoding. With 3D MRI, all 

three directions are spatially encoded by Fourier-based methods (frequency or phase 

encoding).

For breast imaging, 3D MRI has several advantages over multi-slice MRI. First, 

the 3D acquisition typically results in a higher signal to noise ratio (SNR) than that of 

multi-slice MRI. Therefore, thinner slices with reasonable SNR can be obtained with the 

3D MRI method and, in particular, the image voxels can be isotropic, f  e., have the same 

size in each dimension. Second, in multi-slice imaging it is often necessary to leave a 

small gap (typically approximately 30% of the slice width) between slices to prevent the 

signal from neighbouring slices from interfering with each other. Although this problem 

can be avoided by acquiring two sets of interleaved slices, this requires doubling the 

imaging time. Thirdly, multi-slice imaging is limited by imperfect slice selection profiles 

and, hence, the flip angle will vary across each slice.

1.4.2 3D Spoiled Gradient Echo Sequence

In clinical practice, the 3D low flip angle spoiled gradient echo (SPGR) sequence 

is widely used for collecting breast images. This sequence consists of a series of rf pulses
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applied to the magnetization. Between each rf pulse, the longitudinal magnetization does 

not recover fully to its thermal equilibrium value. The SPGR sequence employs a 

technique known as rf spoiling that affects the signal in such a way as to approximately 

emulate a signal in which the transverse magnetization just prior to each rf pulse has been 

destroyed. After a sufficient number of cycles that depend on the FA and repetition time 

of rf pulses (77?), this process reaches a steady state where the magnetization has an 

identical behaviour during each rf cycle. When the magnetization has achieved steady 

state, the signal equation for the spoiled gradient echo sequence is given as:

TR
- I f  1 — e A

S = G * p * e T2 * sin(0) * ------------------- ,
1 — cos(0) * e A

where S  is the MR signal at steady state, G is a proportionality coefficient depending on 

the receiver gain, p is the proton density, 6 is the flip angle in radians, TE is the Time of 

Echo, T2* is a time constant describing the signal decay as a function of TE. (This decay is 

due to both transverse relaxation and intra-voxel dephasing of the magnetization caused 

by various factors, e.g., external magnetic field inhomogeneity.) Under the condition of 

short TE, TE/T2 can be quite small, in which case the MR signal is largely dependent on 

the longitudinal relaxation time constant T\. \

The data analyzed for this thesis (detailed in Chapter 2), had been acquired 

(clinically) using the 3D spoiled gradient echo sequence specifically known as volume 

interpolated breath hold imaging (VIBE). This sequence included fat suppression using a 

technique known as Spectral Adiabatic Inversion Recovery (SPAIR), which uses a 

spectrally selective adiabatic pulse to null the longitudinal magnetization from fat, by first 

inverting this magnetization and then acquiring the most “important” signals after a delay 

time set to allow this magnetization to reach zero. In the VIBE sequence, this inversion 

pulse is applied several times during the 3D acquisition. In our implementation, one 

inversion was applied prior to a group of 80 signals (80 k-space lines) and the delay had 

been set to null the fat magnetization for die signals within that group which were closest
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to the k-space center. For the images acquired, the frequency encoding direction was 

posterior-anterior to avoid cardiac motion related ghosting from degrading the image 

within the breast regions. Also, the sequence employed a slab-selective excitation to 

eliminate any possible interfering image signal from superior or inferior to the breast 

tissue (i.e., due to aliasing in the superior inferior phase encode direction).

1.4.3 Dynamic Contrast-Enhanced MRI

For dynamic contrast-enhanced MRI, a contrast agent is injected intravenously 

and its uptake by the breast tissue is tracked with repeated 7j-weighted imaging, typically 

using 3D SPGR. In a clinical setting, one 3D image is usually acquired within 

approximately one min, and there is no delay between successive acquisitions. Thus, the 

typical time resolution is approximately one min. The MRI signal changes over time 
reflect changes in contrast agent tissue concentration, since the contrast agent shortens the 

T\ relaxation time of surrounding water protons. Due to the development of abnormal 

microvasculature (neoangiogenesis, as described in section 1.2) which is very “leaky” to 

the contrast agent, signal increase, known as enhancement, occurs within breast tumors. 

The enhancement changes as a function of time after the contrast agent injection. The 

contrast agent, which leaks out of the capillaries temporarily resides in the extravascular 

extracellular spaces, but does not enter the intracellular spaces (see Figdre 1-1).
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Figure 1-1. Diffusion of a contrast agent into tissue. The contrast agent is 

distributed in vascular plasma and extravascular extracellular space.

A contrast agent, which is widely used in breast DCE-MRI, is gadopentetate 

dimeglumine (Gd-DTPA). This agent is a paramagnetic complex containing a gadolinium 

ion with a chelating agent, diethylenetriamine penta-acetic acid. The dipole-dipole 

interaction between the unpaired electrons of the paramagnetic ions and the protons of the 

water shortens the T\ relaxation time of the protons, leading to a signal increase in T\ 

weighted images. The expected relaxation rate R\ (l/7 \) in the presence of contrast agent 

has a linear relationship with the concentration of Gd-DTPA as given below:

^ 1  =  Rio +  A  * C Gd_ DTPA ,
where R\ois the longitudinal relaxation rate of water protons within the tissue in the 

absence of Gd-DTPA, Cgci-dtpa is the concentration of Gd-DTPA, and A is the relaxivity. 

The application of this equation to the average signal from a given voxel assumes that 

there is fast exchange between different tissue compartments, in particular, the largest
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spaces which are the extravascular extracellular space and intracellular spaces (27, 28). 

However, the debate still exists about the validity of the fast exchange assumption in both 

normal and abnormal tissue (29-32).

1.5 Analysis of Signal Kinetics in DCE-MR Images

Analysis of the kinetics of signal evolution curves in DCE-MRI has been utilized 

extensively to provide diagnostic information with respect to breast lesion malignancy. 

As first described by Kaiser & Zeitler (33), malignant breast lesions tend to enhance 

faster and stronger than benign lesions, and differences in enhancement patterns are most 

pronounced in the early post-contrast period. Numerous studies have focused on utilizing 

kinetic features as diagnostic predictors for differentiating benign from malignant breast 

lesions. Kuhl et al. (34) provided a classification method using three types of kinetic 

curves, including the persistent or steady enhancement (type I), plateau (type II) and 

washout curves (type III). Using this classification they were able to distinguish benign 

from malignant tumors with a sensitivity of 91% and a specificity of 83% (34). Furman- 

Haran and Degani (35-37) produced a color-coded parametric map using the contrast 

enhancement patterns obtained using signals acquired at only three-time-points (3 TP) 

following contrast injection. The wash-in phase defined by the signal intensity difference 

in the first two time points was coded by color intensity, and the washout phase as the 

change of enhancement between the last two time points was coded by color hue. Hauth 

et al. (38) compared the 3 TP results with the results of region-of-interest (ROI) method 
for diagnosis of breast lesions in the dataset of 40 women. The 3 TP method had the 

advantage of displaying the heterogeneity of the contrast enhancement pattern observed 

in malignant lesions and foregoing time-consuming and subjective manual ROI 

placement.

Quantitative methods for analyzing signal kinetics include both empirical methods 
and pharmacokinetic models. The latter describe the underlying physiology of contrast 

agent exchange between vascular plasma and extravascular extracellular space. However, 

these models may be challenging to apply for clinical imaging, due to the requirement for
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measurements of the arterial input function and the native T\ value before contrast agent 

injection. In addition, the high temporal resolution required by these models may be 

difficult to obtain along with high spatial resolution and breast coverage required for 

clinical imaging. In contrast to pharmacokinetic parameters, quantitative empirical kinetic 

features may be more compatible with these practical requirements of clinical DCE-MRI.

1.5.1 Overview of Empirical Kinetic Features

Several empirical descriptive features have been introduced to describe DCE-MRI 

curve patterns. These include features characterizing signal enhancement at the early 

stage (wash-in phase) such as percentage enhancement ratio (PE) (33) and uptake rate 

(39), as well as those describing signal decay (wash-out phase) such as signal 

enhancement ratio (SER) (40) and washout rate (39). The PE, for example, is simply the 

enhancement of a given early post-contrast image signal (Si) relative to that of the pre

contrast image signal (So), i.e., PE = (Si -  So)/So. In addition to these two signals, the 

SER also utilizes the signal (S2) at second post-contrast time point to describe the degree 

of washout (SER = (Si -  So)/(S2 - So)). One limitation of these empirical features is that 
their values may be sensitive to the time points chosen by the user. In addition, since the 

values of these empirical features are calculated directly from signal intensity values, they 
are also dependent on imaging timing parameters (e.g., TE, TR and FA), making 

comparisons between studies with different protocols difficult.

The empirical feature, which is the focus of this thesis, is known as the time-to- 

peak (Tpeak) (39,41). It is defined as the time duration from the contrast agent injection to 

the maximal MR signal for a given voxel. One advantage of the r peak is that at least in 

theory it should be independent of imaging timing parameters as the highest MR signal is 

expected to occur at the time at which the shortest T\ for a given voxel occurs. Also Tpeak 

is a fundamental parameter describing the signal evolution and does not require the 

choice of specific time points.
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1.5.2 The Time-to-peak as an Empirical Kinetic Feature

A few reports have investigated 7 ^  as a diagnostic indicator of malignancy. 

Ikeda et al. (39) identified useful features for differentiating malignant and benign breast 

lesions using logistic regression analysis. Two of the kinetic features, washout ratio and 

Tpeak, were found to be the most reliable indicators for lesion malignancy. The resulting 

logistic regression model incorporating washout ratio and 7 ^  yielded a diagnostic 

accuracy of 91%. In a study by Szabo et al. (41) an assessment and comparison of the 

values of kinetic and morphological features in differentiating malignant from benign 

breast lesions were performed. Their results from 79 lesions indicated that Tpeak was the 

most independent kinetic feature for distinguishing benign versus malignant lesions. 

Most recently, Chen et al. (42, 43) proposed an automatic fuzzy C-means clustering 

algorithm for breast lesion segmentation and lesion sub-region classification. Four kinetic 

features including maximum contrast enhancement, r peak, uptake rate and washout rate 

were extracted from characteristic curves of the lesion. The results indicated significant 

differences between benign and malignant lesions only for r peak.

Two of the previous reports discussed above (39, 41) in which 7 ^  was 

investigated as a diagnostic indicator were based on analysing signals from manually 
determined regions of interest (ROI). That is the 7 ^  values were determined from the 

average curve across all the voxels within the ROI. Since the position and size of the ROI 

selected was determined manually, one would expect that the values obtained might be 

sensitive to the individual preference and experience of the observer. Mussurakis et. al. 

(44-46) and Liney et. al. (47) in their studies demonstrated that the inter- and intra

observer variation caused by manual ROI selection can lead to varying diagnostic 

performance in breast DCE-MRI analysis.

This thesis will present a whole lesion voxel-by-voxel analysis of 7 ^ .  Measures 

of the 7’peak from the whole lesions should be free of the inter- and intra-observer variation 

problem. With this analysis, individual 7’peak values are extracted for each voxel within 

the lesion and statistics about the 7’peak distribution and other measures related to the intra



lesion variation of Tpe!& values are analyzed. Other primary advantages of voxel-by-voxel 

analysis include the ability to investigate lesion heterogeneity. Previous reports using 

other DCE-MRI measures have demonstrated that intra-tumor heterogeneity can serve as 

indicators in the diagnosis of breast tumors (48-51).

The benign breast lesions analyzed in the previous studies involving 7 ^  were 

mixtures of different histopathological types. In general very few reports have assessed 

the specific challenges of differentiating different types of benign lesions from malignant 

lesions. The analysis presented in Chapter 2 will also extend previous work by 

considering lesion sub-types in the context of classifying malignant from benign lesions.

1.6 Specific Techniques for Image Analysis in this Thesis

The development of computer-assisted techniques for automatic processing of 
image data should help improve the diagnostic performance and reproducibility of breast 

DCE-MR image analysis. Such a system can take advantage of powerful computer 

calculations for segmenting suspicious tissue areas and extracting features for lesion 

classification analysis. Several studies (24, 25, 52) have reported improvements in 
diagnostic specificity obtained with computer-assisted methods. Below is an introduction 

to the computer-assisted image processing techniques used in this thesis for breast lesion 

segmentation, including kinetic feature (rpeak) extraction and histogram analysis.

1.6.1 Lesion Segmentation

Lesion segmentation refers to the procedure for delineating suspicious tissue areas 

within medical images. This can be performed manually (i.e., by drawing a region of 

interest) or with automated (or semi-automated) computer-assisted methods. Most 
recently, Lee et al. (53) proposed a K-means clustering-based automatic segmentation 

method for analyzing breast DCE-MR images.

K-means clustering is a classification technique used in the pattern recognition 

field. One advantage of K-means clustering is that it can be applied to multi-dimensional
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data where each data point can be represented by a point in a ¿/-dimensional space (i.e., 

each data point has d  components). Before describing how K-means clustering is applied 

to segmentation, its general principles will be outlined. The purpose of K-means 
clustering is to separate one dataset with multiple data points into k clusters such as to 

minimize the intra-cluster variation and maximize the inter-cluster variation. More 

specifically, suppose one dataset Xhas N  data points, each of which is represented by x, (i 

=  1,2, and the centroid of each cluster is represented by v¡ (J = 1,2, ..., k). Then

the goal of the clustering algorithm is to iteratively try to minimize the least squares 

within-group square error function F :

k N

F = 'Y JY J Ui j \\xt -  v j\\2 , 
j=i i = i

where || || denotes the Euclidean distance and uy is the membership value that has a value 

of 1 if x¿ belongs to / h cluster, or a value of 0 if x¡ doesn’t. The centroid (y,) for f '  cluster 

is the average value of the data points in this cluster, then given as:

E f = i Utj-Xith > J  1,2, , k .
Zi=iu ij

In the application of K-means clustering for the segmentation of DCE-MRI data 

the following correspondence can be made to the generalized data discussed above. For 

each voxel (i.e., x¡,i=  1,2, ..., N) in the image there is a series of MR signals, one from 

each of the post-contrast images (seven images in our implementation). This series of 

signals will be referred to in the paragraph below as a “signal curve” even though it is a 

set of seven discrete signal values. The N  voxels correspond to N  data points (i.e., x¡, i = 

1,2,. .. ,  N) and the data points exist within a ¿/-dimensional space, where d  is the number 

of post contrast images (d = 1 in our implementation). The goal is to separate these N d- 

dimensional data points (voxel signals) into k clusters. In the present, case k = 2 was 

chosen, where the two clusters correspond to normal and abnormal tissue.
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An example of breast lesion segmentation using K-means clustering as 

implemented for the analysis presented in Chapter 2 is shown in Figure 1-2. Prior to 

performing the K-means clustering a radiologist was required to draw a 3D rectangular 

box enclosing the suspicious breast lesion. The yellow box in Figure 1-2 is a 2D slice 

from this box. Then the coordinates of the box were passed to the lesion segmentation 

tool incorporating the K-means clustering algorithm. Using this segmentation tool the 

tissue within the box was classified into two clusters (i.e., k = 2), one representing 

“normal tissue” and the other abnormal tissue. Further details about the K-means 

clustering procedure applied in Chapter 2 are given as follows:

i) The pre-contrast image was subtracted from seven post-contrast images, ii) For 

each of the two clusters (j = 1, 2), one signal curve was randomly chosen from all signal 

curves as the initial guess for vj. iii) Each signal curve (x„ = 1, 2, ..., was assigned to 

the cluster with the centroid (v7) that was closest to it, i.e., based on the Euclidean 

distance in the ¿/-dimensional space, iv) After the assignment of all the signal curves into 

two clusters, the centroids of these two clusters were recalculated to find new cluster 

centroids using above equation, v) Steps iii) and iv) were repeated until the algorithm 

converges near a minimal value of least squares within-group error function, F.

A B
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Figure 1-2. One example of lesion segmentation using the K-means clustering 

method from the data used for Chapter 2. Part A and B illustrate the lesions and 

neighbouring tissue regions within one slice of a pre-contrast and a first post

contrast image, respectively. The yellow rectangle is a 2D cut from the 3D box 

outlined by a radiologist. Part C illustrates a series of slices within the full 3D box 

on the first post-contrast image showing the areas with signal enhancement. Part 

D is a series of slices of the binary mask within the box after the classification by 

K-means clustering, in which white represents the lesion voxels, and black 

represents normal tissue. Part E is a three dimensional rendering of the segmented 

lesion. Part F, G and H are the signal curves for all the voxels within the box, the 

segmented lesion and the normal tissue region, respectively.

1.6.2 Curve Fitting with an Empirical Model

Curve fitting refers to a process of mathematically constructing a curve that best 

represents a series of data points. The shape of the curve is defined by a set of parameters 

and the values of the parameters are optimised using nonlinear optimization methods to 

provide the best fit to the data. Certain kinetic features of the curve can be calculated 

from the optimized parameter values.

Curve fitting methods can be used with empirical mathematical models as well as 

certain pharmacokinetic models that are described by analytic equations. Several previous 

studies (54-56) have employed empirical mathematical models for curve fitting of the 

signal values obtained at the acquisition time points following contrast injection. In one
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report, Gal et al. (55) presented an evaluation of the goodness-of-fit for three 

pharmacokinetic models including those reported by Tofts and Kermode (57), Brix (58) 

and Hayton (59) as well as a simple three parameter empirical model. Voxel-by-voxel 

curve fitting was performed and the goodness of fit was evaluated for the whole breast 

and for enhanced regions outlined by the reporting radiologist. The mean values of 

correlation coefficients (R2) and mean square errors (MSE) were calculated by averaging 

these values over all voxels within the whole breast or enhanced region. With the 

empirical model, higher R values and lower MSE values were obtained as compared to 

the three pharmacokinetic models tested, indicating better fits with the empirical model. 

The three-parameter empirical model proposed by Gal et al. (55) is given as:

_ if.
A S(t) = a * t  * eb , 

AS(t) =  5 ( t)  -  S0 ,

where t  is the time elapsed after the beginning of contrast agent administration; S (t) is 

signal intensity at time t; S0 is signal intensity before contrast agent administration; a, b, 

c are free parameters which can vary voxel-by-voxel. In this thesis, voxel-by-voxel curve 

fitting using this mathematical empirical model proposed by Gal et al. (55) was 

implemented. The value of r peak was calculated from the optimized values of the 

parameters using the following equation (55).

Tpeak=  ( h / c ) c .

This model was chosen for the present thesis because of its simplicity and 

previously proven good performance in terms of goodness-of-fit for breast DCE-MRI 

data. Figure 1-3 illustrates the fitted curves for two voxels within a malignant tumor 

studied in Chapter 2.
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Figure 1-3. Curve fitting with the empirical model proposed by Gal et al. (55).

Part A is one slice of the first post-contrast image showing an invasive ductal 

carcinoma. Within this lesion, the red and green points in Part A are two separate 

voxels, from which corresponding MR signals (after subtraction from pre

contrast) are demonstrated as red and green x ’s in part B, respectively. The solid 

lines in part B are the fitted curves using the empirical model by Gal et al. (55) 

for these two voxels. Note that r peak values for these two voxels differ with a 

value of approximately 1.8 min for the red voxel and a value of approximately 

3.5 min for the green voxel.

1.6.3 Histogram Analysis

One simple way to characterize the intra-lesion r peak distribution involves 

percentile values of the distribution. This is illustrated by the example histograms for one 

benign lesion (fibroadenoma) and one malignant lesion (invasive ductal carcinoma) 

illustrated in Figure 1-4. The difference between these distributions is apparent from the 

figure. The histogram for the invasive ductal carcinoma lesion shows more voxels with 

shorter r peak values compared to the fibroadenoma lesion. To quantify these differences 

the percentile values (10th, 20th ... percentiles) can be determined. For example, the 10th 

percentile 7peak for the invasive ductal carcinoma (approximately 3 min) is approximately 

one min shorter than that of the fibroadenoma in this case.
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Figure 1-4. r peak distribution demonstrates the intra-lesion heterogeneity of breast 

lesions. Part A shows a portion of one slice of the first post-contrast image from a 

patient with a fibroadenoma enclosed within a yellow box. Part B is the 7 ^  map
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of this lesion at the same slice of Part A. The 7 ^  distribution for all lesion 
voxels within this benign lesion is shown in Part C. Part D shows a portion of one 
slice of the first post-contrast image from a patient with an invasive ductal 
carcinoma as enclosed within a yellow box. Corresponding 7 ^  map and 7 ^  
distribution are shown in Part E and F, respectively.

1.7 Evaluation of Diagnostic Performance

The classification of lesion malignancy can be determined from biopsy 

examination (Chapter 2), and the result can be used as a reference (gold standard) for 

evaluating the diagnostic performance of other measures, including DCE-MRI measures 

of kinetics. For instance, if a threshold value of the measure to be tested (e.g., DCE-MRI 

measure) is chosen, then each lesion can be classified as positive (malignant) or negative 

(benign) based on whether or not it is above the threshold. These outcomes, based on the 

measure to be tested, can then be related to the gold standard outcomes, and each case 

can be designated as true positive, false positive, true negative or false negative. True 

positive represents the case which is determined as positive by both gold standard and the 

measure to be tested. True negative represents the case which is determined as negative 

by both gold standard and the measure. A false positive has occurred when the measure 

to be tested produces a positive outcome, but the gold standard indicates a negative 

outcome, and a false negative is the opposite case. These definitions are summarized in 

Table 1-1 below.

Gold Standard
Positive (P) Negative (/V)

4J
True Positive False Positive

£ O
IS

(TP) (FP)
3t/>fU01
5 *3

00mz

False Negative 
(FN)

True Negative 
(TN)

Table 1-1. A 2 x 2 contingency table for comparing the outcomes from a gold 
standard and a measure to be tested in binary classification.
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The diagnostic sensitivity and specificity for the measure being tested, given a 

certain threshold value, is then defined as

sensitivity = ,

TNspecificity = — ,

where P and N  are the number of positive and negative outcomes based on the gold 

standard.

The diagnostic performance of a measure for positive versus negative 

classification (e.g., malignant versus benign) can be evaluated using the receiver 

operating characteristic (ROC) curve (60, 61), which is a graphical plot of sensitivity 

versus 1-specificity. A ROC curve is created by determining the sensitivity and 

specificity as a function of threshold, across a range of threshold values that spans all of 

the data values, and then plotting sensitivity versus 1-specificity. The area under the ROC 

curve (AUC) can be used to evaluate the diagnostic performance of this measure, with 

higher AUC values corresponding to better diagnostic performance. Figure 1-5 illustrates 

hypothetical ROC curves for two different measures. Based on visual inspection measure 

2 appears to have better diagnostic performance than measure 1 because its area under the 

curve (AUC) is larger. However, a formal comparison between two measures requires a 

specific statistical test (62).
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Figure 1-5. Hypothetical ROC curves for two measures. By changing the 
threshold value, sensitivity can be determined as a function of 1-specificity. The 
AUC value is the area under the ROC curve. In this example, measure 2 has a 
higher AUC value than measure 1.

1.8 Thesis Objectives

Although there has been a great deal of work on the development of quantitative 

kinetic feature analysis (both empirical and pharmacokinetic), much of this work has 

been based on the assessment of signals from manually derived regions of interest. Given 

the known heterogeneity of breast tumors, there is a need for further analyses aimed at 

obtaining kinetic information from entire lesions based on a voxel-by-voxel analysis. In 
addition, the literature on quantitative kinetic parameters contains very few reports that 

consider important differences between subgroups of malignant and benign tumors. As 

will evident from chapter 2, the distinction between fibroadenomas and other benign 

tumors is important from the point of view of assessing diagnostic performance.
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For this analysis I have chosen to focus on a single parameter known as the time-to- 

peak (section 1.5.1). As mentioned in section 1.5.1, a nice feature of the r peak is that, at 

least in theory, it should be independent of imaging timing parameters since the maximal 

signal is expected to occur at the time at which the shortest T\ for a given voxel occurs. 

Also, despite the fact that the 7 ^  is a fundamental parameter in DCE, very little 

information exists in the literature about this parameter especially regarding the intra

lesion variation. To the best of my knowledge, most information presently in the 

literature is based on ROI measurements and the number of these studies is small.

This thesis involves the retrospective analysis of a large number of breast DCE 

magnetic resonance images from patients who received clinical MRI scans between Jan 

2005 and Jan 2007. The retrospective analysis was considered as an appropriate starting 

point for our new research program in breast MRI. This research involves whole-tumor 

voxel-by-voxel analyses of measures related to the intra-lesion distribution of the 7 ^ .  

This included percentile values of the distribution as well as a measure to be referred to 

as the hot spot volume, which is the volume of lesion tissue in which the 7,peak values for 

all voxels are less than a threshold value.

The specific objectives of this thesis are:
\

1) To assess the percentile values and hot spot volume as diagnostic indicators for 

the classification of (i) invasive maligant tumors from fibroadenomas (ii) 

invasive maligant tumors from non-fibroadenoma benign tumors (iii) DCIS 

lesions from fibroadenomas and (iv) DCIS lesions from non-fibroadenoma 

benign tumors.

2) To optimize these measures in terms of diagnostic performance.
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1.9 Thesis Outline

In addressing the thesis objective, Chapter 2 deals with the investigation of the 

feasibility of applying measures ( 7 ^  percentile and 7 ^  hot spot volume) sensitive to 

T̂ eak heterogeneity as indicators for malignancy in breast DCE-MRI. This chapter has 

been accepted for publication in Academic Radiology (Liu, F et al, 2011) and it contains 

an appendix that was included in the accepted manuscript. Chapter 3 provides a summary 

of the findings and a discussion of future work. Finally, two appendices are provided at 

the end of the thesis. Appendix I is one copy of the ethics approval by our Institutional 

Ethics Review Board. Appendix II contains my current curriculum vitae.
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CHAPTER 2

Optimization of Time-to-peak Analysis for 
Differentiating Malignant and Benign Breast Lesions 

with Dynamic Contrast-Enhanced MRI

2.1 Introduction

Dynamic contrast-enhanced MRI (DCE-MRI) is utilized extensively for the 

diagnosis of breast lesions (1, 2). Clinical DCE-MRI analysis typically involves visual 

inspection of the time evolution of the signal enhancement and morphology of the 

enhanced region (3, 4). However, there is growing interest in the development and 

assessment of quantitative methods to provide objective and improved diagnostic 

indicators (5-13).

Quantitative analysis applied to the time evolution (kinetics) of breast DCE-MRI 

includes both empirical measures (7-9, 14) as well as pharmacokinetic models (15-18). 

While the latter have the advantage of providing physiological parameters, these models 

can be challenging to apply. There is ongoing research to deal with complex issues 

involved in their application, such as how to obtain accurate and robust arterial input 

functions (19) as well as the level of model complexity and time resolution required (20). 

Empirical measures on the other hand are much simpler to apply. They can be applied to 

images that have been acquired in clinical scans using imaging parameters (e.g., high 

spatial resolution, full breast coverage) that are preferred for radiological assessment but 

may not be ideal for pharmacokinetic model analysis.

One very simple empirical parameter that has shown promise as a diagnostic 

indicator is the time-to-peak ( r peak) (7-9, 13, 14). This is the time duration from the 

contrast agent injection to the maximal MRI signal for a given voxel (8). A nice feature 

of the Tpeak is that, at least in theory, it should be independent of imaging timing
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parameters since the maximal signal is expected to occur at the time at which the shortest 

T\ for a given voxel occurs. Previous assessments of the 7 ^  in breast lesions have 

typically been obtained from signal enhancement curves averaged over a user-defined 

region of interest (ROI) (7-9, 14), although r peak measurement from signal curves 

automatically selected using fuzzy c-means clustering has also been done (13). Given the 

known heterogeneity of breast lesions, in terms of other MRI derived parameters (21-24) 

and in terms of vascularity (25, 26), we propose that an assessment of the 7 ^  

distribution based on voxel-by-voxel measurements should provide a means to further 

optimize the diagnostic performance and reproducibility of this measure.

The purpose of this work is to investigate the diagnostic performance of measures 

of the T’peaic distribution for differentiating benign breast lesions (fibroadenomas and other 

non-fibroadenoma benign lesions) from malignant lesions (ductal carcinoma in situ and 

invasive carcinomas). In addition, we will consider the diagnostic performance of a 

measure to be referred to as the hot spot volume, which is the volume of lesion tissue in 

which die 7peak values for all voxels are less than a threshold value. The diagnostic 

performances of these measures are also compared to that obtained using 7 ^  values 

from manually drawn regions of interest. An investigation of the relation of hot spot 

volume to the lesion volume is also presented. Finally, we discuss the relation of the 

measured T^ak values to the pharmacokinetic parameter kep (rate constant for transport 

from interstitial space to plasma) in the context of the model presented by Tofts and 

Kermode (27).

2.2 Materials and Methods

2.2.1 Patients and Lesions

This study was a retrospective analysis of consecutive breast MRI scans obtained 

at our institute between January, 2005 and January, 2007. During this time period our 

institute offered breast MRI mainly in a diagnostic setting to further characterize findings 

seen on other modalities. This included further staging of proven breast cancer, exclusion
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of multi focal/bilateral disease, the presence of multiple fibroadenomas and non 

conclusive findings seen on ultrasound.

Following approval from our Institutional Ethics Review Board, radiology reports 

and clinical charts for all patients (N = 221) who received a breast MRI exam including 

DCE between Jan. 1, 2005 and Jan. 1, 2007 were reviewed by a radiologist (A.K.). From 

this group, patients were included in this study only if the radiology report indicated 
positive DCE-MRI findings and the patient had received a breast biopsy or two years of 

clinical and imaging follow-up (N =109). From this group we excluded six patients for 

whom the areas of enhancement were likely physiological enhancement based on normal 

breast tissue on biopsy (N =3) or unexplained, probably benign areas of enhancement 

which remained stable on follow-up (N =3). Thus 103 patients remained in the study.

The histopathological types of the lesions studied are provided in Table 2-1. 

Histopathological type was determined from core biopsy results, except for seven of the 

fibroadenomas all of which had been described by the reporting radiologist as probably 

fibroadenomas based on features seen on breast ultrasound. In addition, the two year 

follow-up indicated that the patients with these fibroadenomas were free of breast cancer. 

Multiple fibroadenomas were present in three patients, including two patients each with 

two biopsy confirmed fibroadenomas and one patient without biopsy results. For the 

former patients only the biopsy confirmed fibroadenomas were analyzed and for the latter 

patient the largest fibroadenoma in each breast was analyzed. For much of the analysis, 

lesions were grouped into the following four categories: (i) invasive lesions (85 lesions 

from 72 patients) (ii) ductal carcinoma in situ (DCIS, 12 lesions from 12 patients) (iii) 

fibroadenomas (23 lesions from 17 patients) and (iv) benign lesions other than 

fibroadenomas (non-fibroadenoma benign lesion, 16 lesions from 15 patients), where 

some patients have lesions in more than one group. The mean (± SD) ages (years) of the 

patients in these four groups were 53 ± 10,49 ± 12,45 ± 11 and 47 ±11, respectively.
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Benign Lesions 39
Fibroadenoma 23
Fibrosis 3
Fibrocystic Change 3
Intraductal Papilloma 2
Complex Papillary Lesion 3
Scar Tissue 2
Skin Lesion 1
Apocrine Metaplasia 1
Fat Necrosis 1
Malignant Lesions 97
Invasive Ductal Carcinoma (IDC) 76
Ductal Carcinoma in situ (DCIS) 12
Invasive Lobular Carcinoma (ILC) 5
Invasive Cancer with Mucinous Features 4
All Lesions 136

Table 2-1 Histopathological diagnosis for the 136 breast lesions.

2.2.2 Image Acquisition

The DCE-MRI had been performed on a 1.5 T Siemens MRI system with a two- 

element breast coil (Siemens Avanto, Siemens, Erlangen, Germany). The 3D spoiled 

gradient echo sequence known as volume interpolated breath hold imaging (VIBE) was 
used with the following parameters: TRITE = 4.5 ms/1.2 ms, flip angle = 20°, fat 

saturation with SPAIR, 6/8 partial Fourier in two directions. Parallel imaging with an 

acceleration factor of two was applied. The image matrix size was 448 * 318 x 100, 

interpolated to 512 x 512 x 160 with a field of view ranging from 300 mm x 300 mm x 

176 mm to 350 mm x 350 mm x 176 mm. Contrast agent administration involved manual 

injection of a 20 ml dose of gadopentetate dimeglumine (Gd-DTPA) (Magnevist, Bayer 

Healthcare Pharmaceuticals, USA) over 15 s to 20 s. The DCE acquisition consisted of 1 

pre-contrast image and 7 post-contrast images with a temporal resolution of 1 min, with
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the middle of first post-contrast image occurring 1 min after the start of Gd-DTPA 

administration.

2.2.3 Whole Lesion Image Analysis

Lesion Segmentation

First, a radiologist (A.K.) reviewed each patient’s radiology report along with 

their magnetic resonance images viewed on a clinical work station, and then provided 

landmarks regarding lesion location, morphology and size. Following that, image analysis 

was performed in Matlab (Matlab R2009a, The MathWorks Inc., USA) using in-house 

scripts. Using a Matlab graphical user interface, a 3D rectangular box enclosing the lesion 

was positioned by a second radiologist (O.S.) on the first post-contrast image based on 

the provided landmarks. Voxels inside the box were classified into two clusters by K- 

means clustering (28) applied to the images obtained by subtracting the pre-contrast 

image from each post-contrast image. Euclidian distance was chosen as the criterion of 

similarity between each curve and the centroids in the classification. The cluster with the 

higher signal enhancement on the first post-contrast image averaged across all voxels was 

considered as the lesion. Groups of disconnected voxels less than 30 voxels (approximate 

12 mm3) were eliminated in order to reduce the influence of the noise.

Time-to-peak Analysis

The signal evolution curve for each voxel was fit to the following three parameter 

model (29):

AS(t) = a  • t  • e b ,

A 5 ( t ) = 5 ( t ) - 5 0 ,

where t is the time elapsed after the beginning of contrast agent administration; S(t) is 

signal intensity at time t\ S0 is signal intensity before contrast agent administration; a, b, c 

are free parameters which can vary from voxel to voxel. The Trust-Region algorithm was
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applied for non-linear curve fitting. The 7 ^  of each curve was calculated using the 

following relationship (29):

Tpeak— (b/c)c  .

For each lesion we determined the percentile values of the 7 ^  distribution over a 

range from the 10th to the 90th percentile (i.e.,/7th percentile where p  varies from 10 to 90) 

as well as a quantity to be referred to as the “hot spot volume”, defined as the volume of 

tissue corresponding to voxels having r peak values less than a certain threshold value. The 

dependence of the hot spot volume on threshold value was determined for all lesions 

using threshold values in the range from 1 min to 7 min. The hot spot volume was 

expressed as an absolute volume and as a fraction of the lesion volume (fractional 

volume).

2.2.4 Region of Interest Image Analysis

Manually drawn regions of interest (ROIs) were created in order to compare a 

ROI analysis with our whole lesion analysis. For each lesion, one region of interest 

(ROI) with at least three voxels (as recommended by the American College of Radiology) 

was drawn by a radiologist (A.K.) with specialization in breast imaging. For each ROI, 

the average signal intensity across all voxels in the ROI was determined for the pre

contrast image and each post-contrast image. The above mentioned fitting procedure was 

then applied to the resulting signal evolution curve and the 7 ^  was extracted.

2.2.5 Receiver Operating Characteristic (ROC) Analysis

Receiver operating characteristic (ROC) analysis was employed to assess die 

optimized 7 ^  percentile values, the optimized hot spot volumes and the ROI-based 7 ^  

values as indicators for differentiating each of the two malignant lesion groups separately 

from each of the two benign lesion groups (i.e., fibroadenoma versus invasive lesions, 

fibroadenoma versus DCIS, non-fibroadenoma benign versus invasive and non
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fibroadenoma benign versus DCIS). The area under ROC curve (AUC), which is a 

measure of diagnostic performance, was determined (SPSS 17.0, SPSS Inc., USA) as a 

function of p  for the percentile analysis and as a function of 7 ^  threshold for the hot 

spot volume analysis. To compare the diagnostic performance of different indicators, 

statistical comparisons between ROC curves were performed based on a previously 

described test (30) using MedCalc (MedCalc 11.3, MedCalc Software, Belgium). In 

addition, linear regression analysis was performed to investigate the relationship between 

hot spot volume and lesion volume for the four groups of lesions separately.

The ROC analyses were repeated using a subset of the invasive lesions for which 

the volumes of these lesions were matched to those of the benign lesions. (This analysis 
was not done with DCIS due to the small number of DCIS lesions.) First, the lesion 

volumes of the invasive group were compared with those of the fibroadenomas and then 

with those of the non-fibroadenoma benign lesions using a f-test. If the volume 

difference was significant, then the largest invasive lesion was excluded and the f-test 

repeated. This process was repeated until there was no significant difference (p > 0.05) 

between the volumes of the lesions in each group. Finally, the ROC analysis for the 10th 

percentile and 50 percentile r peak as well as for the ROI-based analysis were repeated 

with rpeak values less than 1 minute set to be exactly 1 minute and values greater than 7 

minutes set to exactly 7 minutes.

2.3 Results

Figure 2-la illustrates a bar graph of percentile values of the 7 ^  distributions as 

well as ROI-based r peak values for lesions in each group. Each bar represents the median 

value for one group and the error bars indicate the interquartile range (i.e., 25 to 75 

percentile). As displayed in this figure, malignant lesions (DCIS and invasive) tend to 

have lower percentile values than that of benign lesions (fibroadenoma and non

fibroadenoma benign lesion), especially at low p  values. At higher p  values than the 50th, 

the median values become larger than seven minutes (i.e., are obtained from extrapolation 

beyond the last post-contrast image with the fitting procedure). It was found that the 10th
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percentile Tpeak, values for all lesions were less than seven minutes, but three non

fibroadenoma benign lesions and 13 invasive lesions had values less than one minute. 

However with increasing value of p  more lesions had r peak percentile values exceeding 

seven minutes, as one might expect from observing (Figure 2-la) that with increasing 

value of p  the top of the interquartile range approaches seven minutes. For the manual 

ROI-based analysis several lesions had values less than one minute (one fibroadenoma, 

three non-fibroadenoma benign lesions, two DCIS and six invasive lesions) or greater 

than seven minutes (five fibroadenoma, one non-fibroadenoma benign lesion, and four 

invasive lesions).

Figure 2-lb, which is a plot of AUC versus p, shows that the separation of 

fibroadenomas from invasive lesions and DCIS increases with decreasing p, especially 

for the latter separation. Although the AUC values corresponding to the separation of 

fibroadenomas from malignant lesions are reasonably high at low values of p, the AUC 

values for distinguishing non-fibroadenoma benign lesions from invasive lesions are low 

at any value of p. The AUC values for differentiating non-fibroadenoma benign lesions 

versus DCIS (not shown) are even lower than for non-fibroadenoma benign lesions 

versus invasive lesions.
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Figure 2-1. Median percentile r peak values and ROI-based Tpeak values (a) as well

as AUC values corresponding to percentile r peak values (b). In part (a) the median
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and interquartile ranges (error bars) of the /7th percentile 7 ^  values (p = 10, 20 
.. .50) and ROI-based values are shown for each of the four groups of lesions 
(fibroadenoma, non-fibroadenoma benign, DCIS and Invasive). The 10th 
percentile 7 ^  shows similar median values as does the ROI-based measure. In 
part (b), The AUC values for fibroadenoma versus invasive lesions (blue solid), 
fibroadenoma versus DCIS (red solid) and non-fibroadenoma benign lesions 
versus invasive lesions (green solid) are displayed as a function of p. The two 
dashed lines above and below each solid line represent the AUC plus and minus 
one standard error, respectively.

Figures 2-2a and 2-3a illustrate the median fractional and absolute hot spot 

volumes for the four groups of lesions obtained at several different 7 ^  thresholds. 

Fibroadenomas have the smallest fractional and absolute hot spot volumes at any Tpeak 

threshold. Plots of AUC versus r peak threshold (Figure 2-2b and 2-3b) indicate that the 
maximal AUC value for distinguishing fibroadenomas from invasive lesions and DCIS 

occurs at approximately three to four minutes. Although the AUC values for the 

separation of fibroadenomas from malignant lesions are high especially at thresholds of 

three to four minutes, AUC values for distinguishing non-fibroadenoma benign lesions 

from invasive lesions are low, at any threshold. The AUC values for distinguishing non

fibroadenoma benign lesions from DCIS (not shown) are also low (< 0.75 and < 0.6 for 

absolute and fractional hot spot volume, respectively). It should be noted that Figure 2-2a 

reflects similar information as that in Figure 2-la (pth percentile part), since the variablep  

is equivalent to fractional hot spot volume (expressed as a percent), and /7th percentile of 

the Tpeak distribution is equivalent to the r peak threshold value. However, the plots in part 

b of these figures differ, because Figure 2-lb illustrates an optimization with respect to p  

whereas Figure 2-2b illustrates an optimization with respect to 7 ^  threshold.
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Figure 2-2. Median fractional hot spot volumes (a) and corresponding AUC 

values (b). The fractional hot spot volume is the fractional volume of tissue 

within the lesion having r peak values less than a threshold value. In part (a) the
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median and interquartile ranges (error bars) of the fractional hot spot volumes are 
shown for each of the four groups of lesions (fibroadenoma, non-fibroadenoma 
benign, DCIS and Invasive). In part (b), The AUC values for fibroadenoma 
versus invasive lesions (blue solid), fibroadenoma versus DCIS (red solid) and 
non-fibroadenoma benign lesions versus invasive lesions (green solid) are 
displayed as a function of the threshold. Two dashed lines above and below 
each solid line represent the AUC plus and minus one standard error, 
respectively. The maximal AUC values are achieved at the threshold of 
approximate three to four minutes for fibroadenoma versus invasive lesions and 
three minutes for fibroadenoma versus DCIS.
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Figure 2-3. Median absolute hot spot volumes (a) and corresponding AUC 

values (b). The absolute hot spot volume is the volume of tissue within the lesion
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having 7 ^  values less than a threshold value. In part (a) the median and 
interquartile ranges (error bars) of the fractional hot spot volumes are shown for 
each of the four groups of lesions (fibroadenoma, non-fibroadenoma benign, 
DCIS and Invasive). In part (b), The AUC values for fibroadenoma versus 
invasive lesions (blue solid), fibroadenoma versus DCIS (red solid) and non
fibroadenoma benign lesions versus invasive lesions (green solid) are displayed 
as a function of the 7 ^  threshold. Two dashed lines above and below each solid 
line represent the AUC plus and minus one standard error, respectively. The 
maximal AUC values are achieved at the threshold of approximate three to four 
minutes for fibroadenoma versus invasive lesions and for fibroadenoma versus 
DCIS.

The AUC values for ROI-based T^ak, 10th percentile T^ak, 50th percentile 

(median) 7 ^  as well as for the hot spot volumes with a Tpeak threshold of 3 min are 
provided in Table 2-2. For distinguishing fibroadenomas from invasive lesions, the AUC 

value for the manual ROI-based r peak is significantly lower than those for 10th percentile 

Tpeak ip = 0.020), fractional hot spot volume ip = 0.016) and absolute hot spot volume (p 
= 0.024). The AUC value for 50th percentile 7 ^  is significantly lower than those for 

fractional (p = 0.019) and absolute hot spot volumes ip = 0.006). For distinguishing 

fibroadenomas from DCIS, the AUC value for 10th percentile 7 ^  is significantly lower 

than that for the absolute hot spot volume ip = 0.039), and the AUC value for the 50th 

percentile T’peak is significantly lower than the other values ip = 0.014 for manual ROI- 

based r peak, p  = 0.008 for 10th percentile T'peak, p  = 0.001 for fractional and absolute hot 
spot volumes). No other statistical differences were found for the rest of the comparisons, 

including those involving non-fibroadenoma benign lesions (bottom two rows of Table 2- 

2). AUC values determined with the constraint that percentile and ROI-based r peak values 

less than one minute, or greater than seven minutes, were set equal to one minute or 

seven minutes, respectively (see Methods), showed only some small differences 

compared to those in Table 2-2. (For fibroadenoma vs. invasive, the AUC value for 50th 

percentile T^ak decreased by 0.01. For fibroadenoma vs. DCIS, AUC values for 10th and 

50th percentile 7 ^  increased by 0.01 and 0.04, respectively. For comparisons with non

fibroadenoma benign lesions, values changed by 0.01 for ROI-based values and 0.03 or
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less for percentiles.) ROC curves for distinguishing fibroadenomas from invasive lesions 

and from DCIS corresponding to ROI-based analysis and absolute hot spot volume at a 

threshold o f 3 m in are shown in Figure 2-4.

i

0.9

0.8

0.7

. 0.6 

£  0.5

I. i------------ r

!L>
GO 0.4 

0.3 

0.2 

0.1 - 

0

—  Fibroadenoma vs Invasive (ROI)
—  Fibroadenoma vs DCIS (ROI)
-  Fibroadenoma vs Invasive (Absolute)
-  Fibroadenoma vs DCIS (Absolute)

0.1 0.2 0.3 0.4 0.5 0.6
1-Specificity

0.7 0.8 0.9

Figure 2-4. Receiver operating characteristic (ROC) curves for differentiating 

fibroadenoma versus invasive lesions and fibroadenoma versus DCIS using ROI- 

based analysis and absolute hot spot volume at a r peak threshold of 3 min. The 

area under the curves (AUC values) for each test are 0.87 ± 0.05, 0.94 ± 0.04, 

0.96 ± 0.02 and 0.99 ± 0.01, respectively. Pairwise ROC curve comparison 

showed that for differentiating fibroadenoma from invasive lesions the absolute 

hot spot measure performed significantly better than the ROI-based measure. 

However, for differentiating fibroadenoma from DCIS no significant differences 

were found.
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Comparison
AUC ±  SE

M anual R O I 10th
percentile

50th
percentile

Fractional 
(3 min)

Absolute 
(3 min)

Fibroadenoma vs 
Invasive 0.87 ± 0.05c 0.93 ± 0.03ab 0.88 ± 0.03bc 0.95 ± 0.02a 0.96 ± 0.02a

Fibroadenoma vs 
DCIS 0.94 ± 0.04ab 0.87 ± 0.06b 0.63 ± 0.11? 0.94 ± 0.04ab 0.99 ± 0.01A

Non-fibroadenoma 
benign vs Invasive 0.58 ± 0.09c 0.66 ± 0.09c 0.66 ± 0.09c

i
0.67 ± 0.08c 0.72 ± 0.08c

Non-fibroadenoma 
benign vs DCIS 0.63 ± 0.1 l c 0.52 ± 0.1 l c

i
0.41 ±0.1 l c\ 0.53 ± 0.1 l c 0.71 ± 0.10c

Table 2-2 AUC values for 5 measures in differentiating 4 groups of breast lesions.

* AUC: area under ROC curve; SE: standard error; DCIS: ductal carcinoma in situ.
* In the same row, measures with a different letter C  B’ c) are significantly different (ROC 
comparison test, p < 0.05), and measures with the same letter are not significantly different (ROC 
comparison test,/? >= 0.05).

The invasive lesions were found to have significantly larger volumes than those of 

the fibroadenomas but not significantly larger than those of the non-fibroadenoma benign 

lesions. In order to match the volumes of the invasive lesions to those of fibroadenomas 

(see Methods) it was necessary to eliminate the largest 23 invasive lesions. After this 

elimination, the AUC values for 10th and 50th percentile 7 ^  were slightly higher (by 

0.01 and 0.02, respectively) than the corresponding values in Table 2-2. The AUC value 

for absolute hot spot volume was slightly lower (by 0.01) and that for fractional hot spot 

volume was unchanged. The standard errors were the same as those in Table 2-2.

A further investigation of the absolute hot spot volume at the optimal threshold (3 

min) revealed a significant correlation (Table 2-3) between hot spot volume and lesion 

volume for the invasive lesions, the DCIS and the non-fibroadenoma benign lesions, but 

not for the fibroadenomas. The invasive lesions showed the largest rate of increase of hot 

spot volume with volume (i.e., slope of the regression line). These increases in hot spot 

volume with lesions volume are illustrated in Figure 2-5 as well as by the slopes of the 

linear regressions in Table 2-3. Note that although Figure 2-5 is a log-log plot, the 
parameters in Table 2-3 correspond to the relationship prior to log transformation. In
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contrast to the changes in absolute hot spot volume with lesion volume, no significant 

correlation was found between fractional hot spot volume (at a threshold of 3 min) and 

lesion volume for any lesion group.
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Figure 2-5. Relationship between absolute hot spot volume ( 7 ^  threshold of 3 
min) and lesion volume for fibroadenomas (empty up triangles), non
fibroadenoma benign lesions (empty squares), DCIS (filled down triangles) and 
invasive lesions (filled circles). Note the log scale on both axes. Fibroadenomas 
tend to have smaller absolute hot spot volumes than those of malignant lesions. 
The relationship of absolute hot spot volume to lesion volume is similar for non
fibroadenoma benign lesions and malignant lesions. The non-fibroadenoma 
benign lesions, DCIS and invasive lesions show a significant linear correlation 
between absolute hot spot volume and lesion volume (Table 2-3).
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Coefficient F Statistics

Slope
Intercept 

(xlO2 mm3) j ï2 F  value p  value

Non-fibroadenoma benign 0.17 ±0.08 4 ± 9 0.26 4.9 0.04
DCIS 0.09 ± 0.03 5 ± 7 0.53 11 0.007

Invasive 0.27 ± 0.02 0.5 ± 4 0.74 243 < 0.001

Table 2-3 Linear regression analysis for absolute hot spot volume at a threshold of 3 min versus 
lesion volume.

The absolute hot spot volumes (rpeak threshold of 3 min) are shown for all lesions 

grouped according to histopathological type in Figure 2-6. This plot confirms that 

fibroadenomas appear to be the most easily distinguished from malignant lesions. The 

absolute hot spot volumes for histopathological types of non-fibroadenoma benign 

lesions show greater overlap with malignant lesions.
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Figure 2-6. Absolute hot spot volumes at a 7 ^  threshold of 3 min for lesions 
within each histopathological type. Each triangle (benign) or circle (malignant)
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represents one lesion. Fibroadenomas appear to be more easily distinguished 
from malignant lesions as compared to other benign lesions.

2.4 Discussion

In this study we investigated several measures based on the time-to-peak as 

indicators for distinguishing (i) fibroadenomas from invasive lesions, (ii) fibroadenomas 

from DCIS (iii) non-fibroadenoma benign lesions from invasive lesions and (iv) non

fibroadenoma benign lesions from DCIS. Based on the area under the ROC curves (Table 

2-2), most of these indicators performed very well for distinguishing fibroadenomas from 

both types of malignant lesions, but poorly for distinguishing non-fibroadenoma benign 

lesions from the malignant lesions. This observation exemplifies the challenge in 

comparing diagnostic performance values obtained in different studies which differ in 

terms of the distribution (relative number) of lesions of each histopathological type. 

Several previous studies have qualitatively demonstrated that various non-fibroadenoma 

benign lesions can exhibit similar signal kinetics as malignant lesions (31-34). Perhaps a 

combined approach using r peak analysis, i.e., 10th percentile of rpeak distribution or hot 
spot volume at threshold of 3 min, and the methods (10-12) of characterizing lesion 

morphology and texture would then provide better diagnostic performance for 

differentiating non-fibroadenoma benign lesions from malignant lesions. Unfortunately, 

because of the small sample sizes of non-fibroadenoma benign lesions in our study, it was 

not possible to determine the extent to which histological sub-types within the non

fibroadenoma benign group of lesions could be discriminated from malignant lesions.

Although previous studies have utilized the Tpeak as a diagnostic indicator, they 

have usually involved manual ROI selection followed by the extraction of the T^ak of the 

mean signal across voxels within the ROI (7-9, 14). In our study, the 10 percentile 7 ^  

and hot spot volumes did provide significantly better discrimination of fibroadenomas 

from invasive lesions than the 7 ^  values based on manually drawn ROIs. However, for 
discriminating fibroadenomas from DCIS there was no significant difference between the 

manual ROI analysis and the 10 percentile Tpeak and hot spot volumes, although this
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comparison may have been limited by the small number (N = 12) of DCIS lesions. It 
should be noted that manual ROI selection is subject to inter- and intra-observer variation 

(35-38), which may lead to varying diagnostic performance and lower reproducibility, 

compared to more automated procedures.

Our results suggest that the overlap between fibroadenomas and malignant lesions 

tends to be minimized close to the lower end of the r peak distribution, especially for the 

fibroadenoma versus DCIS comparison. Thus the diagnostic performance of employing 

the Tp̂ ak as a diagnostic indicator depends on the way in ivhich the distribution of Tpeak 

values is sampled, likely due to the wide range of r peak values existing within each lesion 

(i.e., lesion heterogeneity). Previous reports have utilized statistical quantities sensitive to 

heterogeneity of various DCE-MRI measures as indicators in the diagnosis of breast 

lesions (21, 23, 24, 26). For example, in an early study involving measurement of the 
pharmacokinetic parameter A*"“®, measures of the width of the A^ans distribution provided 

higher diagnostic performance for differentiating breast cancer from benign lesions 

compared with the mean of ^ trans (21). In a more recent study, using the normalized 

maximum intensity-time ratio (nMITR), the entropy of the nMITR distribution provided 

the best indicator for quantitative diagnosis (23). Recently, the heterogeneity of breast 

lesions was investigated using several features of the grey level co-occurrence matrices 
(GLCM) applied to empirical parameter maps (24). Analysis reflecting lesion 

heterogeneity have also been applied to the diagnosis of other lesions and to assess 
changes following treatment (26).

In addition to the percentile values of the Tpeak distribution, we also quantified the 

absolute and fractional hot spot volumes (volume of tissue corresponding to voxels 
having 7 ^  values less than a threshold), and assessed these measures as diagnostic 

indicators. For both fractional and absolute hot spot volumes, threshold T^ak value of 

approximately three to four minutes appeared optimal. It is reasonable to expect that the 

absolute hot spot volume would be a stronger indicator because it is “weighted” by the 

lesion volume which tends to be larger in malignant versus benign lesions. Although the 

AUC values (Table 2-2) obtained from absolute hot spot volume were slightly larger than

51



that of the fractional hot spot volume, the differences were not statistically significant in 

this data set. One advantage of utilizing the absolute hot spot volume rather than the 

fractional hot spot volume is that the former measure may be less sensitive to lesion 

segmentation methods than the latter. The non hot spot voxels included in the “lesion 

region” should not influence the absolute hot spot volume as long as all hot spots are 

determined.

An interesting finding of this study is that the absolute hot spot volume (Tpeak 

threshold = 3 min) for invasive lesions, DCIS and non-fibroadenoma benign lesions 

correlated to lesion volume, with the strongest correlation for the invasive lesions (Table 

2-3 and Figure 2-5). No correlation was found for fibroadenomas. The observed decrease 

in absolute hot spot volume with decreasing volume (Figure 2-5) suggests that the 

separation of malignant lesions from fibroadenomas based on absolute hot spot volume 
may be weaker for the smallest lesions compared to the larger ones. Finally, the finding 

that no significant correlation existed between the fractional hot spot volume and lesion 

volume also suggests that the hot spot volume scales with lesion volume.

In our analysis the Tpeak values for each voxel (and for the ROI-based signals) were 

determined with the aid of curve fitting using an empirical model. Although rpeak values 
could have been determined from the raw signal values, curve fitting likely provides 

better precision and continuity than determination from raw signal data especially 

considering limited signal to noise ratio of single voxel data. The accuracy of the Tpeak 

values depends on how well the empirical model describes the signals. The results of a 
previous assessment of this model for breast DCE signal analysis found higher R values 

and lower mean square errors than for three pharmacokinetic models tested (29).

In our analysis Tpeak values determined by the curve fitting procedure were for some 

curves outside of the one minute to seven minute time span over which the images were 

acquired. The values obtained for the hot spot volumes were not dependent on the 
particular Tpeak values obtained by the extrapolation, but only depended on the number of 

voxels with Tpeak values less than the threshold. Thus, the hot spot analysis was not
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influenced by the extrapolation. Although the percentile and ROI-based Tpe& values used 

in the ROC analysis included some values outside of the one minute to seven minute time 

window, the ROC analyses corresponding to AUC values in Table 2-2 were also repeated 

with Tpeak values less than one minute set to be exactly one minute and values greater 

than seven minutes set to exactly seven minutes. These are similar to constraints used 

previously (14) and represent the limits of Tpeak measurements in analysis without curve 

fitting (7-9, 13). For the separation of fibroadenomas from invasive lesions the AUC for 

10th percentile Tpeak obtained with constraints was identical to that obtained without, 

presumably because the only unconstrained values outside of the one to seven minute 

window were the values for invasive lesions and these were less than one minute (i.e., 

they were all less than the lowest fibroadenoma value in either case). For other AUC 

values in Table 2-2, the difference between AUC values obtained with and without the 

constraints, were small (see Results).

A limitation of this study is that patients were given the same dose of contrast agent 

independent of patient weight. This may have introduced additional variation into the 

Tpeak data. However, it can be shown (Appendix A) that in the context of the 

pharmacokinetic model presented by Tofts and Kermode (27), the Tpeak is independent of

dose. The extent to which this independence of dose holds in actual patient data is not
\

known. Thus it is possible that if this analysis had been applied to patient data obtained 

using the same dose per body weight for each patient, unwanted variation might have 

been reduced and diagnostic performance improved.

Although this paper focused on the application of the Tpeak distribution to provide 

empirical diagnostic indicators, it is nevertheless worthwhile to consider how the Tpeak 
values can be related to a pharmacokinetic parameter the rate constant for 

transporting contrast agent from interstitial space to plasma, in the context of the 

pharmacokinetic model presented by Tofts and Kermode (27). Within this model, the 

maximum signal intensity should occur at the point in time at which the contrast agent 

concentration in the tissue is maximal. Using this assumption, the Tpeak depends only on 

and the parameters describing the arterial input function (see Appendix A). Figure 2-7
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illustrates a plot of kep versus Tpeak using the arterial input function originally measured by 

Weinmann (39) and modeled by Tofts and Kermode (27). Using Figure 2-7, we find that 

the optimal Tpeak threshold (3 min) for hot spot volume measurement corresponds to a kep 

value of 1 min'1. Also using this figure, the values corresponding to our median (50th 

percentile) Tpeak values can be compared to kep from a previous study (22) which applied 

the Tofts and Kermode model directly and assumed the same arterial input function. This 

previous study (22) obtained k^  values of 0.44 min'1 for fibroadenoma, 0.32 min'1 for 

benign stromal and epithelial tissue overgrowth and 0.55 min*1 for DCIS, 0.85 min"1 for 

IDC, where the values quoted were obtained by taking the median value of the kep 
distribution for each lesion and then taking the mean of these median values over the 

lesion group. Based on Figure 2-la and 2-7, our 50th percentile (median) values over the 

Tpeak distribution correspond to kep values of 0.32 min"1 for fibroadenoma, 0.38 min"1 for 

non-fibroadenoma benign lesions, 0.33 min'1 for DCIS and 0.64 min'1 for invasive 

lesions, which is a reasonable correspondence considering differences in lesion 

segmentation.

In summary, the percentile values of the Tpeak distribution and hot spot volumes 
were investigated and optimized as indicators for breast lesion malignancy using the area 

under the receiver operating characteristic as a performance measure. In the percentile 

analysis, the lower edge (i.e., 10th percentile) of the Tpeak distribution provided the highest 

diagnostic performance for differentiating fibroadenomas from malignant lesions, 

particularly DCIS. For the hot spot volume analysis, the highest diagnostic performance 

was obtained with a threshold of approximately three to four minutes for fibroadenoma 

versus malignant lesions. However, non-fibroadenoma benign lesions were found to be 

much more difficult to distinguish from malignant lesions, based on Tpeak percentile, hot 

spot volume method or ROI-based Tpeak values. Quantitative analysis of the Tpeak 
distribution can be optimized for diagnostic performance providing indicators that are 

sensitive to Tpeak heterogeneity over the lesion.
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2.5 Appendix

The concentration of contrast agent C(t) in tissue at time t is given by the two 

compartment Tofts and Kermode model as(27):

where D is the dose of contrast agent (Gd-DTPA) normalized by body weight (mmol/kg),

interstitial space, fep represents the rate constant for transport from interstitial space to 

plasma. Also a\ and mi are the amplitudes and rate constants describing the two 

exponential components of the arterial input function.

Since the MRI signal increases monotonically with decreasing T\, the maximal 

signal is expected to occur at the time at which the shortest T\ occurs. This is the time at 

which the highest tissue concentration of Gd-DTPA for a given voxel occurs. Also, the 

Jpeak is the time at which the first derivative of C{t) is equal to 0. Using the equation 

above this condition is expressed by the following:

Thus the T^ak only depends on &ep and the parameters of the arterial input function

relationship between r peak and as shown in Figure 2-7, assuming the values for a\, a2, 

m\ and m2 are 3.99 kg/L, 4.78 kg/L, 0.144 min'1 and 0.0111 min'1, respectively as 
provided in reference (27).

A4™“ is the endothelial transfer constant for transporting contrast agent from plasma to

(a\, a2, mi and m2). Numerical simulation by solving the equation above provides the
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Figure 2-7. Relationship of 7 ^  and obtained by numerical simulation. The 
simulation utilized the pharmacokinetic model presented by Tofts and Kermode 
(27) and assumed the arterial input function measured by Weinmann (39).
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CHAPTER 3

Summary and Future Work

3.1 Summary of Findings

The Tpeak is a fundamental empirical parameter describing the kinetics of the DCE- 

MRI signal. Although a few previous studies have reported on measures of the 7 ^  in 

malignant and benign lesions, this thesis has gone well beyond these previous studies by 

(i) providing measures of the intra-lesion distribution of this parameter (ii) optimizing the 

diagnostic performance of the distribution measures and (iii) assessing this performance 

specifically for classification involving subgroups of malignant and benign tumors.

This thesis provides novel methods for investigating the intra-lesion heterogeneity 

of Tpeak values with voxel-by-voxel based analysis. To the best of our knowledge, most of 

the analyses for quantitative kinetic features including 7 ^  were performed based on 

signals from manually drawn ROIs, in which a single r peak was extracted from the 

average curve across this ROI. In Chapter 2, the analysis of the 7Peak distribution based on 

a voxel-by-voxel r peak extraction across the whole lesion indicated that the smallest 
overlap between benign and malignant breast lesions occurs at the lower end of the 

distribution (e.g. 10th percentile). The diagnostic performance of employing kinetic 

features, at least for 7 ^ ,  was demonstrated to be largely dependent of the way in which 

the distribution of the feature values is sampled. In addition, measures referred to as Tpeak 

hot spot volumes including absolute and fractional hot spot volume were also 

investigated. The 7peak hot spot volume differed between benign and malignant breast 

lesions with the characteristics that malignant lesions generally have larger hot spot 
volume than that of benign ones.

In most previous DCE-MRI analyses, benign lesions were mixtures of various 

histopathological types including fibroadenomas, fibrocystic changes, etc. Although it 

has been known that differences in kinetic features may exist between breast lesion sub
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types, very few quantitative DCE-MRI studies involving manual or automatic methods 

have been done that considered the influence of lesion sub-type on diagnostic 

performance. In this thesis, benign lesions were divided into a fibroadenoma group and 

non-fibroadenoma benign lesion group, and malignant lesions were divided into invasive 

lesion group and DCIS group. All the 7 ^  measures were analyzed separately for each of 

the lesion sub-types (e.g., fibroadenoma vs. invasive, non-fibroadenoma benign lesion vs. 

DCIS, etc.). My results help to quantitatively demonstrate the challenges for 

differentiating non-fibroadenoma benign lesions from malignant lesions, while 

fibroadenomas are much more easily separated from malignant lesions. This result is 

important from a research perspective because the relative proportion of fibroadenoma 

and non-fibroadenoma benign lesions varies greatly across different reported studies and 

hence may be an important factor contributing to differences in diagnostic performance 

between these studies. While the greater diagnostic challenge associated with non

fibroadenoma benign lesions, compared to fibroadenomas is known to radiologists, 

reported studies on the development of quantitative automated or semi-automated 

methods have mostly not considered these subgroups. In most of these quantitative 

analyses, benign lesions have been a mixture of fibroadenomas and non-fibroadenoma 

benign lesions, and in some cases the majority of benign lesions have been 

fibroadenomas. Thus, this work may provide further motivation for researchers 
developing automated/semi-automated methods to demonstrate performance on both 

fibroadenomas and non-fibroadenoma benign lesions.

The investigation of the relationship of an empirical kinetic feature ( rpeak) and a 
pharmacokinetic parameter kep in the Tofts and Kermode model is an interesting aspect of 

the discussion presented in Chapter 2. A monotonie theoretical relationship was 

established by computer simulation showing that decreases with increasing 7 ^ .  The 

Tpeak values obtained in Chapter 2 after conversion to kep values provided a reasonable 

correspondence to the results from one previous published study (1) considering the 

differences in lesion segmentation. One study previously performed by Li et al. (2) also 

provided a means of associating an empirical kinetic feature, known as the signal 

enhancement ratio (SER) (see section 1.5.1) with kep. However, given the fact that SER

61



values are sensitive to the time points chosen, the method of mapping 7 ^  to should 

be more advantageous.

3.2 Future Work

Chapter 2 demonstrates the analysis of measures related to the distribution of r peak 

across whole lesions. This method can be easily translated to analyze other empirical 

kinetic features and possibly pharmacokinetic parameters including K ^ s  and (when 

accurate arterial input functions and native T\ maps are available or properly estimated). 

In particular, the percentile values and hot spot volumes can be determined for other 

kinetic features. As mentioned above, given the heterogeneous nature of breast lesions, 

the diagnostic performance of kinetic features largely depends on the location within the 

lesions from where the features were extracted and how they were sampled.

One important extension of this work would involve assessing the spatial 

distribution of 7 ^  values and of the hot spot regions, within breast lesions. In this thesis, 

the analysis of intra-lesion heterogeneity of 7 ^  has mostly concentrated on the r peak 
value distribution and measures relevant to tissue volume, but the spatial distribution of 

voxels with regard to the r peak values was not considered. In particular, we do not know if 

the shorter r Peak (i.e. 7 ^  hot spot) regions tend to be contiguous or separated and 

possibly scattered within the lesion. Also, we do not know if the Tpeak hot spot regions 

tend to be located centrally or peripherally within the lesions. Measures of this spatial 

location may provide further diagnostic indicators. Several previous studies have 

demonstrated that peripheral enhancement of breast lesions is an important indicator for 

lesion malignancy (3,4). An investigation of the spatial distribution of the Tpeak (e.g. Tpeak 

map) may be helpful for characterizing intra-lesion structure and texture.

Future work may also involve assessing the influence of DCE-MRI spatial 

resolution on the T’peak analysis. It is expected that high spatial resolution should be 

valuable for heterogeneity-based analyses, since spatial variation is much better 

represented with high spatial resolution compared to low resolution images, especially for
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analyzing small lesions. Previous studies (5-7) have demonstrated the critical role of high 

resolution for obtaining good diagnostic performance in differentiating benign versus 

malignant breast lesions. The images analyzed in this work had voxel sizes (prior to 

interpolation) of approximately 1 mm x 1 mm x 2 mm. However, in present clinical scans 

at our institute, one of the post-contrast images is acquired with even higher spatial 

resolution which has the voxel size approximately 3 times smaller than images used in 

this work. Future work could involve assessing the Tpeak analysis with these higher 

resolution images.

Finally, a further investigation of the relationship between Tpeak and kep would be 
interesting. This relationship as presented in Chapter 2 was based on a population 

averaged arterial input function. In future, the influence of the assumed arterial input 

function on this relationship could be assessed. The verification of this relationship could 

be performed using human breast MR data with accurate measures of the AIF and native 
T\ relaxation times.

3.3 Conclusions

In addressing the objective of the thesis, it has been shown, that quantitative 

analysis of the Tpeak distribution including percentile analysis and Tpeak hot spot volume 

analysis can be optimized for diagnostic performance providing indicators that are 

sensitive to Tpeak heterogeneity over the breast lesion. In the Tp^ percentile analysis, the 

lower edge (i.e., 10th percentile) of the Tpeak distribution provided the highest diagnostic 
performance for differentiating fibroadenomas from malignant lesions, particularly DCIS. 

For the Tpeak hot spot volume analysis, a threshold of approximate three to four min was 

obtained for best separating fibroadenoma from malignant lesions. However, non

fibroadenoma benign lesions were generally found to be much more difficult to 
distinguish from malignant lesions.
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