26 research outputs found

    Interpolation of G1 Hermite data by C1 cubic-like sparse Pythagorean hodograph splines

    Get PDF
    open3siProvided that they are in appropriate configurations (tight data), given planar G1 Hermite data generate a unique cubic Pythagorean hodograph (PH) spline curve interpolant. On a given associated knot-vector, the corresponding spline function cannot be C1, save for exceptional cases. By contrast, we show that replacing cubic spaces by cubic-like sparse spaces makes it possible to produce infinitely many C1 PH spline functions interpolating any given tight G1 Hermite data. Such cubic-like sparse spaces involve the constants and monomials of consecutive degrees, and they have long been used for design purposes. Only lately they were investigated in view of producing PH curves and associated G1 PH spline interpolants with some flexibility. The present work strongly relies on these recent results.embargoed_20220415Ait-Haddou R.; Beccari C.V.; Mazure M.-L.Ait-Haddou R.; Beccari C.V.; Mazure M.-L

    Construction of planar quintic Pythagorean-hodograph curves by control-polygon constraints

    Get PDF
    In the construction and analysis of a planar Pythagorean–hodograph (PH) quintic curve r(t), t∈[0,1] using the complex representation, it is convenient to invoke a translation/rotation/scaling transformation so r(t) is in canonical form with r(0)=0, r(1)=1 and possesses just two complex degrees of freedom. By choosing two of the five control–polygon legs of a quintic PH curve as these free complex parameters, the remaining three control–polygon legs can be expressed in terms of them and the roots of a quadratic or quartic equation. Consequently, depending on the chosen two control–polygon legs, there exist either two or four distinct quintic PH curves that are consistent with them. A comprehensive analysis of all possible pairs of chosen control polygon legs is developed, and examples are provided to illustrate this control–polygon paradigm for the construction of planar quintic PH curves

    New algebraic and geometric characterizations of planar quintic Pythagorean-hodograph curves

    Get PDF
    The aim of this work is to provide new characterizations of planar quintic Pythagorean-hodograph curves. The first two are algebraic and consist of two and three equations, respectively, in terms of the edges of the Bézier control polygon as complex numbers. These equations are symmetric with respect to the edge indices and cover curves with generic as well as degenerate control polygons. The last two characterizations are geometric and rely both on just two auxiliary points outside the control polygon. One requires two (possibly degenerate) quadrilaterals to be similar, and the other highlights two families of three similar triangles. All characterizations are a step forward with respect to the state of the art, and they can be linked to the well-established counterparts for planar cubic Pythagorean-hodograph curves. The key ingredient for proving the aforementioned results is a novel general expression for the hodograph of the curve

    Hermite Interpolation Using Möbius Transformations of Planar Pythagorean-Hodograph Cubics

    Get PDF
    We present an algorithm for C1 Hermite interpolation using Möbius transformations of planar polynomial Pythagoreanhodograph (PH) cubics. In general, with PH cubics, we cannot solve C1 Hermite interpolation problems, since their lack of parameters makes the problems overdetermined. In this paper, we show that, for each Möbius transformation, we can introduce an extra parameter determined by the transformation, with which we can reduce them to the problems determining PH cubics in the complex plane ℂ. Möbius transformations preserve the PH property of PH curves and are biholomorphic. Thus the interpolants obtained by this algorithm are also PH and preserve the topology of PH cubics. We present a condition to be met by a Hermite dataset, in order for the corresponding interpolant to be simple or to be a loop. We demonstrate the improved stability of these new interpolants compared with PH quintics

    Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable

    Full text link

    Smooth path planning with Pythagorean-hodoghraph spline curves geometric design and motion control

    Get PDF
    This thesis addresses two significative problems regarding autonomous systems, namely path and trajectory planning. Path planning deals with finding a suitable path from a start to a goal position by exploiting a given representation of the environment. Trajectory planning schemes govern the motion along the path by generating appropriate reference (path) points. We propose a two-step approach for the construction of planar smooth collision-free navigation paths. Obstacle avoidance techniques that rely on classical data structures are initially considered for the identification of piecewise linear paths that do not intersect with the obstacles of a given scenario. In the second step of the scheme we rely on spline interpolation algorithms with tension parameters to provide a smooth planar control strategy. In particular, we consider Pythagorean\u2013hodograph (PH) curves, since they provide an exact computation of fundamental geometric quantities. The vertices of the previously produced piecewise linear paths are interpolated by using a G1 or G2 interpolation scheme with tension based on PH splines. In both cases, a strategy based on the asymptotic analysis of the interpolation scheme is developed in order to get an automatic selection of the tension parameters. To completely describe the motion along the path we present a configurable trajectory planning strategy for the offline definition of time-dependent C2 piece-wise quintic feedrates. When PH spline curves are considered, the corresponding accurate and efficient CNC interpolator algorithms can be exploited

    Smooth path planning with Pythagorean-hodoghraph spline curves geometric design and motion control

    Get PDF
    This thesis addresses two significative problems regarding autonomous systems, namely path and trajectory planning. Path planning deals with finding a suitable path from a start to a goal position by exploiting a given representation of the environment. Trajectory planning schemes govern the motion along the path by generating appropriate reference (path) points. We propose a two-step approach for the construction of planar smooth collision-free navigation paths. Obstacle avoidance techniques that rely on classical data structures are initially considered for the identification of piecewise linear paths that do not intersect with the obstacles of a given scenario. In the second step of the scheme we rely on spline interpolation algorithms with tension parameters to provide a smooth planar control strategy. In particular, we consider Pythagorean–hodograph (PH) curves, since they provide an exact computation of fundamental geometric quantities. The vertices of the previously produced piecewise linear paths are interpolated by using a G1 or G2 interpolation scheme with tension based on PH splines. In both cases, a strategy based on the asymptotic analysis of the interpolation scheme is developed in order to get an automatic selection of the tension parameters. To completely describe the motion along the path we present a configurable trajectory planning strategy for the offline definition of time-dependent C2 piece-wise quintic feedrates. When PH spline curves are considered, the corresponding accurate and efficient CNC interpolator algorithms can be exploited

    Parametric Spiral And Its Application As Transition Curve

    Get PDF
    Lengkung Bezier merupakan suatu perwakilan lengkungan yang paling popular digunakan di dalam applikasi Rekabentuk Berbantukan Komputer (RBK) dan Rekabentuk Geometrik Berbantukan Komputer (RGBK). The Bezier curve representation is frequently utilized in computer-aided design (CAD) and computer-aided geometric design (CAGD) applications. The curve is defined geometrically, which means that the parameters have geometric meaning; they are just points in three-dimensional space
    corecore