11 research outputs found

    HEMELB Acceleration and Visualization for Cerebral Aneurysms

    Get PDF
    A weakness in the wall of a cerebral artery causing a dilation or ballooning of the blood vessel is known as a cerebral aneurysm. Optimal treatment requires fast and accurate diagnosis of the aneurysm. HemeLB is a fluid dynamics solver for complex geometries developed to provide neurosurgeons with information related to the flow of blood in and around aneurysms. On a cost efficient platform, HemeLB could be employed in hospitals to provide surgeons with the simulation results in real-time. In this work, we developed an improved version of HemeLB for GPU implementation and result visualization. A visualization platform for smooth interaction with end users is also presented. Finally, a comprehensive evaluation of this implementation is reported. The results demonstrate that the proposed implementation achieves a maximum performance of 15,168,964 site updates per second, and is capable of speeding up HemeLB for deployment in hospitals and clinical investigations

    Lattice-Boltzmann simulations of cerebral blood flow

    Get PDF
    Computational haemodynamics play a central role in the understanding of blood behaviour in the cerebral vasculature, increasing our knowledge in the onset of vascular diseases and their progression, improving diagnosis and ultimately providing better patient prognosis. Computer simulations hold the potential of accurately characterising motion of blood and its interaction with the vessel wall, providing the capability to assess surgical treatments with no danger to the patient. These aspects considerably contribute to better understand of blood circulation processes as well as to augment pre-treatment planning. Existing software environments for treatment planning consist of several stages, each requiring significant user interaction and processing time, significantly limiting their use in clinical scenarios. The aim of this PhD is to provide clinicians and researchers with a tool to aid in the understanding of human cerebral haemodynamics. This tool employs a high performance fluid solver based on the lattice-Boltzmann method (coined HemeLB), high performance distributed computing and grid computing, and various advanced software applications useful to efficiently set up and run patient-specific simulations. A graphical tool is used to segment the vasculature from patient-specific CT or MR data and configure boundary conditions with ease, creating models of the vasculature in real time. Blood flow visualisation is done in real time using in situ rendering techniques implemented within the parallel fluid solver and aided by steering capabilities; these programming strategies allows the clinician to interactively display the simulation results on a local workstation. A separate software application is used to numerically compare simulation results carried out at different spatial resolutions, providing a strategy to approach numerical validation. This developed software and supporting computational infrastructure was used to study various patient-specific intracranial aneurysms with the collaborating interventionalists at the National Hospital for Neurology and Neuroscience (London), using three-dimensional rotational angiography data to define the patient-specific vasculature. Blood flow motion was depicted in detail by the visualisation capabilities, clearly showing vortex fluid ow features and stress distribution at the inner surface of the aneurysms and their surrounding vasculature. These investigations permitted the clinicians to rapidly assess the risk associated with the growth and rupture of each aneurysm. The ultimate goal of this work is to aid clinical practice with an efficient easy-to-use toolkit for real-time decision support

    Lattice-Boltzmann interactive blood flow simulation pipeline.

    Get PDF
    PURPOSE:Cerebral aneurysms are one of the prevalent cerebrovascular disorders in adults worldwide and caused by a weakness in the brain artery. The most impressive treatment for a brain aneurysm is interventional radiology treatment, which is extremely dependent on the skill level of the radiologist. Hence, accurate detection and effective therapy for cerebral aneurysms still remain important clinical challenges. In this work, we have introduced a pipeline for cerebral blood flow simulation and real-time visualization incorporating all aspects from medical image acquisition to real-time visualization and steering. METHODS:We have developed and employed an improved version of HemeLB as the main computational core of the pipeline. HemeLB is a massive parallel lattice-Boltzmann fluid solver optimized for sparse and complex geometries. The visualization component of this pipeline is based on the ray marching method implemented on CUDA capable GPU cores. RESULTS:The proposed visualization engine is evaluated comprehensively and the reported results demonstrate that it achieves significantly higher scalability and sites updates per second, indicating higher update rate of geometry sites' values, in comparison with the original HemeLB. This proposed engine is more than two times faster and capable of 3D visualization of the results by processing more than 30 frames per second. CONCLUSION:A reliable modeling and visualizing environment for measuring and displaying blood flow patterns in vivo, which can provide insight into the hemodynamic characteristics of cerebral aneurysms, is presented in this work. This pipeline increases the speed of visualization and maximizes the performance of the processing units to do the tasks by breaking them into smaller tasks and working with GPU to render the images. Hence, the proposed pipeline can be applied as part of clinical routines to provide the clinicians with the real-time cerebral blood flow-related information

    Heterogeneous System-on-Chip based Lattice-Boltzmann Visual Simulation System

    Get PDF
    Cerebral aneurysm is a cerebrovascular disorder caused by a weakness in the wall of an artery or vein, that causes a localised dilation or ballooning of the blood vessel. It is life-threatening, hence an early and accurate diagnosis would be a great aid to medical professionals in making the correct choice of treatment. HemeLB is a massively parallel lattice-Boltzmann simulation software which is designed to provide the radiologist with estimates of flow rates, pressures and shear stresses throughout the relevant vascular structures, intended to eventually permit greater precision in the choice of therapeutic intervention. However, in order to allow surgeries and doctors to view and visualise the results in real-time at medical environments, a cost-efficient, practical platform is needed. In this paper, we have developed and evaluated a version of HemeLB on various heterogeneous system-on-chip platforms, allowing users to run HemeLB on a low cost embedded platform and to visualise the simulation results in real-time. A comprehensive evaluation of implementation on the Zynq SoC and Jetson TX1 embedded graphic processing unit platforms are reported. The achieved results show that the proposed Jetson TX1 implementation outperforms the Zynq implementation by a factor of 19 in terms of site updates per second

    Towards patient-speci�fic modelling of cerebral blood flow using lattice-Boltzmann methods

    Get PDF
    Patient-specifi�c Computational fluid dynamics (CFD) studies of cerebral blood flow have the potential to help plan neurosurgery, but developing realistic simulation methods that deliver results quickly enough presents a major challenge. The majority of CFD studies assume that the arterial walls are rigid. Since the lattice-Boltzmann method (LBM) is computationally efficient on multicore machines, some methods for carrying out lattice-Boltzmann simulations of time-dependent fluid flow in elastic vessels are developed. They involve integrating the equations of motion for a number of points on the wall. The calculations at every lattice site and point on the wall depend only on information from neighbouring lattice sites or wall points, so they are suitable for efficient computation on multicore machines. The �first method is suitable for three-dimensional axisymmetric vessels. The steady-state solutions for the wall displacement and flow �fields in a cylinder at realistic parameters for cerebral blood ow agree closely with the analytical solutions. Compared to simulations with rigid walls, simulations with elastic walls require 13% more computational e�ffort at the parameters chosen in this study. A scheme is then developed for a more complex geometry in two dimensions, which applies the full theory of linear elasticity. The steady-state wall pro�files obtained from simulations of a Starling resistor agree closely with those from existing computational studies. I �find that it is essential to change the lattice sites from solid to fluid and vice versa if the wall crosses any of them during the simulation. Simple tests of the dynamics show that when the mass of the wall is much greater than that of the fluid, the period of oscillation of the wall agrees within 7% of the expected period. This method could be extended to three dimensions for use in cerebral blood ow simulations

    Mesoscopic simulation of blood and general suspensions in flow

    Get PDF
    corecore