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Abstract

A model for stenosis development in the carotid artery, employing the lattice

Boltzmann method, is presented and its suitability is investigated and demon-

strated. The development of a stenosis is modelled based on the blood flow; and

the subsequent changes in the flow are examined. The model is applied to inves-

tigate the role of different haemodynamic markers on stenosis development and

also the importance of modelling the non-Newtonian nature of the blood.

A stenosis growth model based on the time-averaged velocity magnitude at

the wall is considered. The wall position where this marker has a minimum value

is determined and the stenosis is allowed to develop at this point. The extent to

which the stenosis develops is controlled by two parameters which are introduced.

Simulations are then run based on the new geometry and a new position selected

for stenosis development. The stenosis developed in this way was seen to be

compatible with observations from the literature.

Simulations of stenosis development are presented to investigate the effect of

the introduced model parameters to determine suitable ranges for their applica-

tion. A range of parameters are determined over which the stenosis develops in

an independent manner.

These parameters relate the extent to which the stenosis can grow in each

development phase with no physical significance. It is important to find a variable

which will describe the evolution in a manner which is independent of the model

parameters.
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As well as the time-averaged velocity magnitude, a selection of alternative

markers were applied to the model. The results show that a number of markers

involving near-wall velocity, wall shear stress, residential time, stagnation index

and second invariant of the strain rate tensor, all resulted in a realistic stenosis.

The oscillatory shear index, which gives a measure of the oscillatory nature of

the shear, was found to not be a suitable marker, unless it was combined with

the wall shear stress in the form of a ratio.

The effect of the non-Newtonian nature of blood on the stenosis development

model is also considered. Here the non-Newtonian simulation showed noticeable

differences compared to Newtonian; however both produced a realistic stenosis.
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Chapter 1

Introduction

Cardiovascular diseases have constituted a major cause of mortality in developed

countries over the last decade [1]. Atherosclerosis is the main cardiovascular

disease [1, 2] responsible for ischaemic stroke as it can lead to the progressive

narrowing of blood vessels, due to a build-up of plaque. There is a growing

body of evidence which suggests a correlation between regions of low Wall Shear

Stress (WSS) and early development of atherosclerosis [3–8] in blood vessels.

Within regions of low WSS, oscillatory flow may also be associated with regions

where stenosis is observed to develop [9–11]. The haemodynamic (blood flow

mechanics) parameters such as the velocity, shear stress and vorticity are some

of the properties studied in relation to the progression of stenosis in the present

project.

Examination of the haemodynamic parameters needs careful treatment be-

cause of the nature of the blood flow. Blood is a two-phase suspension of formed

elements (e.g., red blood cells, white blood cells, platelets) [12–15] in plasma. Red

Blood Cells (RBCs) constitute an important component in blood because of their

large concentration [13, 14] and their crucial role in oxygen transfer [12, 16]. The

RBC membrane is highly deformable so that the RBCs can pass through capil-

laries of as smalls as 4 µm inner diameter [17] after undergoing large deformation.

1
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In certain cases, particularly in narrow arteries, the behaviour of the blood de-

viates from the standard Newtonian case of the constant viscosity and exhibit

Non-Newtonian behaviour. Blood is a shear-thinning fluid [12, 18, 19] meaning

that the viscosity is reduced in regions of high shear.

1.1 Navier-Stokes equations

Fluid (blood in our case) flow is governed by the Navier Stokes equations as well

as the continuity equation. Assuming the case of incompressible flow (constant

density, ρ), its behaviour is described by the Navier-Stokes equation:

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ ν(▽2)u, (1.1)

accompanied with the continuity equation,

∇ · u = 0, (1.2)

where u is the fluid velocity, p is the hydrostatic pressure and ν =
η
ρ is the

kinematic shear viscosity with η the dynamic shear viscosity.

1.2 Flow parameters

Blood flow can be described by the dimensionless parameters, Reynolds number,

Mach number and Womersley parameter. The Reynolds number, Re, for flow in

a section of diameter D, is expressed as:

Re =
ρuD

η
=
uD

ν
. (1.3)
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The Mach number, M , is expressed as:

M =
u

cs
, (1.4)

when cs is the speed of sound. The Womersley parameter α, is expressed as:

α =
D

2

√

ω

ν
, (1.5)

where ω is the angular frequency. For low values of α, the flow is quasi-steady

and the instantaneous flow is approximately parabolical with the amplitude pro-

portional to the pressure gradient. At high values of α the flow reaches the

acoustic limit with approximately uniform flow across the diameter (except close

to the walls) and is out of phase with the pressure gradient. In the carotid artery

α ≃ 4.5 and so takes an intermediate value. This results in flow, which for a

purely oscillatory pressure gradient, can have a positive velocity profile towards

the centre of the section and a negative profile closer to the walls, or vice-versa.

1.3 Numerical modelling

Most fluid flow problems are too complex to be solved analytically and so a

numerical solution to the Navier-Stokes equations, Equation (1.1) is required.

The most commonly used classical approaches to the discrete solution [20] are

the Finite Difference Method (FDM), the Finite Element Method (FEM) and the

Finite Volume Method (FVM). Here, we implement a more novel approach, the

Lattice Boltzmann Method (LBM) [21, 22].
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1.4 Lattice Boltzmann Method

The LBM [23, 24] is a relatively recent approach to Computational Fluid Dy-

namics (CFD) which differs from the conventional commercial solvers [25–28].

LBM has attracted interest from researchers in a broad range of fields such as

acoustically induced flows [29], bubble dynamics [30], free surface flows [31] and

flow in porous media [32] as well as a range of blood flow simulations [33–43]. Its

strength is based on its simple coding and its local application. Briefly, the LBM

describes the flow in a mesoscopic manner. The fluid is comprised of a set of

fictitious particles [21,24] moving on the nodes of a Cartesian lattice, represented

by distribution functions fi, with i the index for a link which connects each grid

node to its nearest neighbours. The LBM, from which physical properties of the

flow can be determined, will be described in detail in Chapter 2.

1.5 Notation

Throughout this thesis, Roman index will be used to represent a label and a Greek

index to represent a component. Summation over repeated Greek indices will be

assumed. For example, in fi the ‘i’ labels the distribution function with, typically,

i in the range 0 - 6. The component of the velocity u in the α-direction is expressed

as uα, with α = 1,2 in a 2D simulation. The dot produce u · u =
∑2

α=1 uαuα or

uαuα for short.

1.6 Thesis Aims

The aim of the present work is to develop and investigate a numerical model

for the development of a stenosis in the carotid artery. In particular, the devel-

opment of a stenosis is modeled based on the haemodynamical properties of the
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blood flow; and the subsequent changes in the flow are examined as the steno-

sis develops. This blood modelling work has been undertaken with the Lattice

Boltzmann Method (LBM) [23,24]. The non-Newtonian nature of blood will also

be considered, as will the manner in which this affects the stenosis development.

1.7 Structure of the Thesis

In the present chapter, Chapter 1, an introduction to the main concepts is pre-

sented. In Chapter 2, the concept and application of the Lattice Boltzmann

Method is developed in detail. Chapter 3 presents details of the LBM simulation

specific to its application here. In Chapter 4 a review on blood modelling simu-

lations with the LBM is presented. Chapter 5 presents a literature review of the

medical problem. The original achievevents within the PhD Thesis are presented

as follows. In Chapter 6, the stenosis development model is described. Chapter 7

presents the flow fields for a healthy artery. In Chapter 8, simulations of stenosis

development are presented to investigate the performance of the model and to de-

termine suitable ranges for its application. In Chapter 9, haemodynamics during

stenosis development is studied. In Chapter 10, alternative methods, based on

alternative haemodynamic markers are presented and investigated. In Chapter

11, the influence of non-Newtonian nature of blood on the stenosis development

is considered. The conclusions are set out in Chapter 12. Chapters 2-5 provide a

review of existing literature and Chapters 6-11 document the novel work of this

thesis.



Chapter 2

The Lattice Boltzmann Method

The present chapter is devoted to the Lattice Boltzmann Method (LBM). It

considers the continuous Boltzmann equation as well as the Lattice Gas Model

which preceded the LBM. The method is described and developed; and it is

shown to satisfy the Navier-Stokes equation. Aspects of its implementation are

also considered.

2.1 Fluid Analysis at several scales

Fluids, such as air and water, are common in our daily life. From a physics

viewpoint, all fluids are composed of a large set of atoms or molecules that collide

one with the other [44–47] and whose motion contains a random component. In

contrast, the microscopic dynamics of the fluid [47, 48], which is the average of

the motion of the molecules, is homogeneous and continuous. The motion of a

fluid can be described with mathematical models with regards to these scales;

microscopic models at molecular scale, mescoscopic scale subjected to kinetic

theories and the macroscopic scale undergoing continuum mechanics principles.

6
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2.2 Study at microscopic scale

In microscopic analysis, a fluid is regarded as a set of fluid molecules. Then, the

position and momentum of each molecule is tracked. Under these circumstances,

the accumulative dynamics of a fluid system can be computed. The molecular

dynamics of a fluid is described [44,47,48] by Newton’s second law, expressed as:

Fi = mẍi, (2.1)

where m is the mass of a fluid molecule and xi and Fi, are the position vector

of the i molecule and the total force applied to it, respectively. A fluid can be

described microscopically with the Hamiltonian of a N-Body system [21] consid-

ered, H = H (x,p, t), where x = (x1,x2, ..,xN) are the N spatial molecules and

p = (p1,p2, ..,pN) are the N corresponding momentums. H is the total energy

of the system composed by the kinetic energy and the potential energy due to

molecular interactions. However, the study of the fluid flow, even in a small vol-

ume, is troublesome because of the vast number of molecules [49,50] which yields

this research impractical. This highlights the need to investigate fluid flow at a

higher level, such as the mesoscopic.

2.3 Study at mesoscopic scale

From the viewpoint of mesoscopic physics, the N-body fluid system can be de-

scribed through employing the concept of a probabilistic distribution function

fN (x,p, t) in the 3N space-momentum phase. This probabilistic distribution de-

termines, [46, 47], the probability fN (x,p, t) that a system is found in the state

([xN ,xN + dxN ] , [pN ,pN + dpN ]). The distribution function fN contains all the

statistics information characterising the N particles. fN satisfies the Liouville
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equation [51]:

dfN
dt

=
∂fN
∂t

+

N
∑

i

[

∂fN
∂pi

ṗi +
∂fN
∂xi

ẋi

]

= 0, (2.2)

with pi the momentum of the i particle, xi the position vector of the i particle.

Based on the definitions for H given by equations (A.1), (A.2), equation (2.2)

can be re-written as:

∂fN
∂t

−
N
∑

i

[

∂H

∂xi

∂fN
∂pi

− ∂H

∂pi

∂fN
∂xi

]

= 0. (2.3)

A shrinking into dx can be achieved through integration by parts, [52], to give:

Fs (x1,p1, ..,xN ,pN , t) = V s

∫

fN (x1,p1, ..,xN ,pN , t) dxs+1dps+1 .. dxNdpN ,

(2.4)

defining a so called s-particles distribution function, where V s works as a nor-

malisation factor and 1 ≤ s ≤ N . This is the called BBGKY equation [52] after

Bogoljubov, Born, Green, Kirkwood and Yvon. The BBGKY hierarchy is identi-

cal to the Liouville equation. The BBGKY needs to be truncated at some point to

calculate approximate solutions. Starting from the BBGKY equation Boltzmann

derived the Boltzmann equation [53]. Even though the Boltzmann equation is

based on the BBGKY, it employs at its core a number of approximations:

• The case of s = 2, considers only two-particle collisions.

• Before the two particles collide their velocities are uncorrelated.

The Boltzmann equation for this case is expressed [51], in the absence of a body

force, as:

∂tf + u · ∂xf = Q (f, f), (2.5)

where u =
p

m
is the particle velocity, m is a constant particle mass, f the velocity

distribution function defined as f (x,u, t) and f (x,u, t) d3xd3u is the probability

of finding a particle in the 3-D d3x box around x, the position vector, and velocity
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over u to u+ du, u = (u1, u2, u3). The Q (f, f) is the collision integral (equation

(A.3) ) describing the two particles collision [54]. The collision integral may be

shown to possess four elementary collision invariants ψk(u) [54–56], k = 0, 1, 2, 3,

such that:
∫

Q (f, f)ψk (u) d
3u = 0, (2.6)

with ψ0 = 1, (ψ1, ψ2, ψ3) = u and ψ4 = u2. General collision invariant φ(u)

can have the form of a linear combination of ψk: φ (u) = A + B · u + Cu2

with A, B, C constants. It can be further shown [54, 57] that there are positive

functions f which give
∫

Q(f, f)xid
3u = 0. The functions f are of the form

[52], f(u) = exp (A +B · u+ Cu2) where C must be negative. The Maxwell

distribution [58, 59] given by:

fM = f (x,u, t) = 4πu2

(

m

2πkBT

)
3

2

exp

[

− m

2kBT
(u− u)2

]

, (2.7)

is special among these solutions, where u is the mean velocity,

u =
1

N

∫

uf (x,u, t) d3u. (2.8)

Equation (2.7) may be re-written as:

fM (x,u, t) = 4πu2

(

1

2πRT

)
3

2

exp

[

−(u− u)2

2RT

]

, (2.9)

where R =
kB
m

is the gas constant with kB the Boltzmann constant, T the tem-

perature and m the molecular mass.

2.3.1 The Bhatnagar Gross Krook (BGK) approximation

The collision integral Q(f, f), as seen in equation (2.5), can be approximated

with a simplified operator proposed by [60], the BGK (Bhatnagar Gross Krook)
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operator. The BGK operator −1

τ

(

f − f (eq)
)

, where τ is the relaxation time, has

to satisfy the constraints; it conserves the collision invariants ψk of Q (f, f):

∫

ψk

[

−1

τ

(

f − f (eq)
)

]

d3xd3u = 0, (2.10)

for k = 0, 1, 2, 3, 4. The BGK operator reflects the overall effect of inter-molecular

collisions. The term f (eq) is the equilibrium distribution function for the particle

to lie in the equilibrium state and is taken as fM . According to the constraint,

equation (2.10):

1

τ

[
∫

ψkf
(eq) (x,u) d3xd3u−

∫

ψkf (x,u, t) d
3xd3u

]

= 0 (2.11)

meaning that at any space point and time instant f (eq) (x,u) must describe the

same density, velocity and temperature, as described by f (x,u, t) [54].

2.3.2 Conservation laws

Conservation laws can be determined by multiplying the Boltzmann equation,

equation (2.5), with a collision invariant for i = 0, 1, 2, 3, 4 and integrating with

respect to u. Using equation (2.6) we see that for i = 0:

∫

(∂t + u∂x) f (x,u, t) d
3u = 0, (2.12)

which gives [52]:

∂tρ+ ∂x (ρu) = 0, (2.13)

where ρ =
∫

fd3u. Considering i = 1, 2, 3, 4, gives:

∫

(

uα + uβ + u2
)

(∂t + uα∂xα
) f (x,u, t) d3u = 0, (2.14)
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which expands to

∫

uα∂tf (x,u, t) d
3u+

∫

uαuα∂xα
f (x,u, t) d3u+

∫

uαuβ∂xβ
f (x,u, t) d3u = 0

(2.15)

which can be written:

ρ∂tuα + ρuβ∂xβ
uα = −∂xβ

Παβ (2.16)

since ρuα (x, t) =
∫

uαf (x,u, t) d
3u and Παβ =

∫

uαuβf (x,u, t) d
3u, is the mo-

mentum flux tensor.

2.4 Cellular Automata

Cellular Automata are mathematical models introduced by von Neumann and

Ulam [61]. A cellular automaton consists of a lattice, where each discrete site can

take on a finite number of states, at each discrete time [62, 63]. The automaton

evolves in discrete timesteps at discrete sites, the condition of which is updated

by either deterministic or nondeterministic rule. The rules for the evolution of

a site depend only on local neighbourhood sites around it [52]. The Lattice Gas

Automaton (LGA) is a Cellular Automaton developed for the simulation of fluid

dynamics.

2.4.1 The Lattice Gas Automata

The Lattice Gas Automaton is used for the simulation of fluid dynamics problems.

In a Lattice Gas Automaton the fluid is treated as a set of simulated particles

residing on the sites of the lattice, as shown in Figure 2.1. LGA situations are

updated in two parts; streaming and collision. The streaming consists of simple

particle transpositions from site x to the site x+ ei, where ei are the link vectors
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connecting each site on a regular lattice to their neighbours as shown in Figure

2.1 for a hexagonal lattice. Streaming can be expressed as:

ni (x + ei, t+ 1) = ni (x, t), (2.17)

where ni is the occupation number: the number of particles present on the link

i. A hexagonal grid was used since this was the simplest (with only 7 links) grid

which provided adequate symmetry. For the hexagonal lattice, shown in Figure

2.1, i = 0, .., 6 is a label, corresponding to the 6 links, connecting the site to its

neighbours and i = 0 is a ‘rest particle’ with e0 the null vector. When particles

1e

e2
e3

e4

e5 e6

e0

Figure 2.1: The FHP lattice

approach a site, they collide [21, 52]. In collision, the conservation of mass and

momentum are satisfied at each node. The collision is grid dependent and will

be discussed in Section 2.4.3.

2.4.2 The FHP Automaton

The first Lattice Gas Automaton was known as HPP, introduced by Hasslacher,

Pazzis and Pomeau [64]. The HPP model operated on a square lattice where the

limited number of collisions produced non-physical effects [65,66]. The difficulties
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of the HPP model were overcome by Frisch, Hasslacher, Pomeau (FHP) [66, 67]

for the two dimensional (2-D) Navier-Stokes.

The FHP automaton evolved on a lattice with hexagonal symmetry such that

each site is surrounded by six neighbours. The six neighbours are connected

by the displacement vectors ei, with i = 0, 1, .., 6, as shown in the Figure 2.1.

Particles were allowed to travel on these 6 links, and also remain at rest (rest

particles) on each null link e0.

The following rules were updated to the FHP model.

• All the particles carry the same mass m = 1.

• Particles can either move along one of the ei, i = 1, .., 6 at unit speed

or remain at rest, at x. In each streaming step, lasting a time-step, the

particles either shift to their nearest neighbours or remain at rest.

• Only one particle is allowed on each link such that:

ni (x, t) =











1 if i link occupied

0 if i link empty.

This is referred as the exclusion principle.

• After the streaming step, all the particles arriving at a site collide.

• The collision rules are shown in Figure 2.2. These will be described for the

FHP model in the Section 2.4.3. Collisions occur such that particle mass

and momentum are conserved.

The density (mass) and momentum at each site is found as

ρ(x, t) =
∑

i

fi(x, t) and ρ(x, t)u(x, t) =
∑

i

fi(x, t)ei (2.18)
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2.4.3 FHP collisions

The collision rules are shown in the Figure 2.2, where the particles on links 1− 6

are represented by outgoing arrows both before and after the collisions. A rest

particle is represented by an open circle.

• The first case represents 2-particle head-on collisions, (mass= 2, momentum=

0). The two particles arrive on e1 and e4, move off either along e2 and e5

or e3 and e6. Both of the two collision outcomes conserve mass and mo-

mentum, they are selected randomly with probability 0.5. Two alternative

head on collisions result from rotating the grid through ±60o.

• In the second case, a 3-particles symmetric collision takes place where the

total momentum is zero: here the particles move onto the unoccupied links.

The inverse of this collision is also possible.

• In the third case, a rest particle is either created or removed. There are six

rotational variations of these collisions.

• The fourth case can be thought as the 2-particle head-on collisions with 2

additional particles which do not take place in the collision. Again, alter-

native configurations are possible by rotating by ±60o.

Combining the streaming and collision gives the LGA equation:

ni (x + ei, t+ 1)− ni (x, t) = ∆i (x, t), (2.19)

where the collision operator ∆i is:

∆i =























−1 particle removed

0 no change

1 particle added,
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Figure 2.2: FHP collisions, inspired from Wolfram [52]
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that is, in the Figure 2.2, for the ‘rest particle collision’ ∆3 = ∆4 = ∆5 = 0,

∆2 = ∆6 = 1 and ∆0 = ∆1 = −1. The mass and momentum at the site are

conserved.

2.5 From the Lattice Gas Automaton to the Lat-

tice Boltzmann Method

Although the LGA has been widely used, it has a number of disadvantages.

One significant problem is that simulations with LGA automaton tend to be

very noisy [68, 69] due to the small number of particles at each site. This is

overcome to some extent by calculating density, momentum, and velocity by

averaging over a larger region. The results of such averaging can still be noisy and

frequently [68,69] very larger averaging cells are used, and/or ensemble averaging,

to reduce the statistical noise further.

To suppress the statistical noise, McNamara and Zanetti in 1988 [70], in-

troduced the Lattice Boltzmann Method, as an independent numerical regime

for hydrodynamic simulations. The Boolean variables of the LGA are replaced

with continuous distributions, fi in the LBM. The BGK operator −1

τ

(

f − f (eq)
)

,

[71–73] replaces the collision operator used in the LGA. This gives the Lattice

BGK (LBGK) Boltzmann equation

fi (x+ ei, t + 1)− fi (x, t) = −1

τ

(

fi − f
(eq)
i

)

. (2.20)

The form of the equilibrium distribution function f
(eq)
i is dependent on the grid

used in the simulation. Its form will be considered in Section 2.6.2. The density

ρ and the velocity u are found from fi (x, t) following the continuous Boltzmann
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equation and the LGA as:

ρ (x, t) =
∑

i

fi (x, t), (2.21)

and

ρ (x, t)u (x, t) =
∑

i

eifi (x, t). (2.22)

2.6 D2Q9 lattice

In LBGK models, the Boltzmann equation is solved on a regular lattice, depicted

as DnQm, [74], with n the number of the dimensions and m the number of the

links including ‘rest particles’. The most commonly used 2-D LBGK model is the

D2Q9 [33, 52, 75–80],

2.6.1 Lattice symmetries

Not all lattice types are adequate for the execution of a Lattice Boltzmann

simulation [81]. In order for the simulation to yield the desired asymptotic partial

differential equations, the lattice must verify a set of symmetry conditions. The

LBGK model requires that for a set of constants Wi and cs, the link values

satisfy [81]:

∑

iWi = 1
∑

iWieiα = 0
∑

iWieiαeiβ = c2sδαβ
∑

iWieiαeiβeiγ = 0

∑

iWieiαeiβeiγeiδ = c4s (δαβδγδ + δαγδβδ + δαδδβγ)

∑

iWieiαeiβeiγeiδeiǫ = 0,

(2.23)
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where δαβ is the Kronecker delta:

δαβ =











1 α = β

0 α 6= β

The D2Q9 satisfies the symmetry conditions [81]. The D2Q9 lattice is a 2-D

lattice with nine nodes, as shown firstly in Figure 2.3. The ei are given by:

e

e

e0

2

4

e8

e1

e5

e3

e6

7e

Figure 2.3: The D2Q9 lattice

ei =























(0, 0) for i = 0
(

cos
(

π
2
(i− 1)

)

, sin
(

π
2
(i− 1)

))

for i = 1, 2, 3, 4
(

cos
(

π
2
(i− 9

2
)
)

, sin
(

π
2
(i− 9

2
)
))

for i = 5, 6, 7, 8,























(2.24)

For ‘vanishing velocities’, [52], a global equilibrium distribution Wi for the fluid

at rest can be defined. In the vicinity of the equilibrium state, the distribution

functions can be expressed as:

fi (x, t) = Wi + f
(neq)
i (x, t), (2.25)
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with |f (neq)
i (x, t) | << Wi. The Wi have to be positive to ensure positive density.

These are chosen to be represented by Maxwell distributions. The lattice velocity

moments up to the fourth order over the Wi are set identical to the respective

velocity moments over the Maxwell distribution, see equation (2.7):

wB(u) =

(

m

2πkBT

)

exp

(−mu2

2kBT

)

, (2.26)

with m the mass particle and u the particle velocity. The odd moments vanish

[52]:
∑

i

Wieiα = 0, (2.27)

∑

i

Wieiαeiβeiγ = 0. (2.28)

The even moments, [52],read:

∑

i

Wi =

∫

wB(u)du = 1, (2.29)

∑

i

Wieiαeiβ =

∫

wB(u)uαuβdu =
kBT

m
δαβ. (2.30)

and

∑

i

Wieiαeiβeiγeiδ =

∫

wB(u)uαuβuγuδdu =
kBT

m
(δαβδγδ + δαγδβδ + δαδδβγ),

(2.31)

which can be formed using [82] and

∫

∞

0

x2n exp
(

−ax2
)

=
(2n− 1))!!

2n+1an

√

π

a
(2.32)
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2.6.2 Distribution functions for the D2Q9

Due to symmetry, Wi for directions with identical speeds are the same [52] and

are given by the values in Table 2.1. Evaluating equations (2.29), (2.30), (2.31),

i e2i Wi

0 0 WA

1-4 1 WB

5-8 2 WC

Table 2.1: Velocities, i and Wi for the D2Q9 lattice

we get:

• for the 0th moment, using equation. (2.29):

∑

i

Wi = WA + 4WB + 4WC = 1, (2.33)

• for the second moment, using equation (2.30):

∑

i

e2i1Wi = 2WB + 4WC =
kBT

m
, (2.34)

• for the fourth moment,

∑

i

e4i1Wi = 2WB + 4WC =
kBT

m
. (2.35)

These have solutions: WA =
4

9
, WB =

1

9
, WC =

1

36
, where

kBT

m
=

c2s
3

and

cs =
1√
3
, which will later be identified as the speed of sound in equation (2.56).

For non-vanishing velocities, it can be shown that the equilibrium distribution

functions can be defined as [83]:

f
(eq)
i (ρ,u) =Wi

{

ρ+
m

kBT
ρei · u+

m

2ρkBT

[

m

kBT
(eiρ · u)2 − ρ2u2

]}

. (2.36)
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Thus:

f
(eq)
i =







































4ρ

9

(

1− 3

2

u2

c2s

)

, if i = 0,

ρ

9

[

1 + 3
ei · u
c2s

+
9

2

(ei · u)2
c4s

− 3

2

u2

c2s

]

, if i = 1, 2, 3, 4,

ρ

36

[

1 + 3
ei · u
c2s

+
9

2

(ei · u)2
c4s

− 3

2

u2

c2s

]

, if i = 5, 6, 7, 8,

(2.37)

is the equilibrium distribution function for the D2Q9 lattice.

2.7 Chapman Enskog expansion

The Champman Enskog expansion was applied by Frisch et al. [67] to the LGA

to demonstrate that it satisfied the Navier-Stokes equation. The same approach

is applied here to the LBM with a D2Q9 grid. The derivation is based on that

of Chen and Doolen [84]. Taking the Taylor expansion of the left-hand-side of

equation (2.20) with respect to x and t, we find that to second order in the small

expansion parameter ǫ:

∂fi
∂t

+ ei ·▽fi + ǫ

(

1

2
(ei · ∇)2 fi + ei · ∇

∂fi
∂t

+
1

2

∂2fi
∂t2

)

. (2.38)

We assume that fi can be expanded formally around f (eq)
i in the following manner:

fi = f
(eq)
i + ǫf

(neq)
i (2.39)

with f (neq)
i the non-equilibrium distribution function, expanded as:

f
(neq)
i = f

(1)
i + ǫf

(2)
i +O

(

ǫ2
)

, (2.40)
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satisfying the constraints

∑

i

f
(k)
i = 0,

∑

i

eif
(k)
i = 0 (k = 1, 2) . (2.41)

Two time and one spatial scale are introduced [24]:

∂

∂t
= ǫ

∂

∂t1
+ ǫ2

∂

∂t2
,

∂

∂x
= ǫ

∂

∂x1
. (2.42)

The right-hand-side of equation (2.20) can then be written:

−1

τ

(

f
(1)
i + ǫf

(2)
i

)

. (2.43)

Substituting equations (2.42), (2.39) and (2.40) into equation (2.38) combined

with equation (2.43), and separating the orders of ǫ we get:

∂f
(eq)
i

∂t1
+ ei · ∇1f

(eq)
i = −f

(1)
i

τ
, (2.44)

and

∂f
(eq)
i

∂t2
+

(

∂f
(1)
i

∂t1
+ ei∇1f

(1)
i

)

+
1

2

∂

∂t1

(

∂f
(eq)
i

∂t1
+ ei · ∇1f

(eq)
i

)

+
1

2
(ei · ∇1)

(

∂f
(eq)
i

∂t1
(ei · ∇1) f

(eq)
i

)

= −f
(2)
i

τ
.

(2.45)

Substituting equation (2.44) into equation (2.45), we find:

∂f
(eq)
i

∂t2
+

(

1− 1

2τ

)

[

∂f
(1)
i

∂t1
+ ei · ∇1f

(1)
i

]

= −f
(2)
i

τ
. (2.46)

Summing equation (2.44) over i and using equations (2.18) and (2.41) we find:

∂ρ

∂t1
+∇1 · ρu = 0, (2.47)
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if we also multiply equation (2.44) by ei and sum over i we find:

∂ρuα
∂t1

+∇βΠ
(0)
αβ = 0, (2.48)

where

Π
(0)
αβ =

∑

i

f
(eq)
i eiαeiβ (2.49)

is the momentum flux tensor to the first order approximation [52]. Similarly,

summing over i in equation (2.45) gives:

∂ρ

∂t2
= 0. (2.50)

Multiplying equation (2.45) by ei and summing over i:

∂ρuα
∂t

+∇β ·
(

1− 1

2τ

)

Π
(1)
αβ = 0, (2.51)

where

Π
(1)
αβ =

∑

i

f
(1)
i eiαeiβ (2.52)

is the second order approximation of the momentum flux tensor [52]. Using

equation (2.36) we can express (2.49) and (2.52) generally as, [85]:

Π
(0)
αβ = ρc2sδαβ + ρuαuβ, (2.53)

and

Π
(1)
αβ = ρτ

[

−c2s (∇βuα +∇αuβ)
]

. (2.54)

Combining equations (2.48) and (2.51) and using equations (2.53) and (2.54), we

recover the Navier-Stokes equation [24]:

∂uα
∂t

+∇βuαuβ = −∇αp

ρ
+ ν∇β (∇αρuβ +∇βρuα), (2.55)
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where the pressure p, is given by [52]:

p =
kBT

m
ρ =

c2s
3
ρ, (2.56)

and the kinematic viscosity [24, 52], ν =
2τ − 1

6
. Equation (2.56) is an equation

of state where cs is the speed of sound. The shear stress can be determined in the

LBM directly from the distribution functions. The derivation shown here follow

closely than in [85]. For a viscous fluid, this affects fluid motion. Dissipation

energy is associated with the momentum flux tensor Παβ , which is symmetric,

Παβ = Πβα. This tensor gives the αth component of the amount of momentum

flowing in unit time through unit area perpendicular to the xβ- axis. The mo-

mentum flux tensor is given by

Παβ = ρuαuβ − σαβ (2.57)

where

σαβ = −pδαβ + ν (∇βuα +∇αuβ) = −pδαβ + 2νρSαβ , (2.58)

is the stress tensor for an incompressible fluid.

Sαβ =
1

2
(∂βuα + ∂αuβ), (2.59)

is the strain rate tensor. Thus, equation (2.54) becomes:

Sαβ = − 1

2ρτc2s
Π

(1)
αβ . (2.60)
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Substituting ν =
2τ − 1

6
in equations (2.60), (2.56) into equation (2.58) and using

equation (2.52), we write the stress tensor:

σαβ = −ρc2sδαβ −
(

1− 1

2τ

)

Π
(1)
αβ

= −ρc2sδαβ −
(

1− 1

2τ

)

∑

i

f
(1)
i eiαeiβ .

(2.61)

Thus, the shear stress can be calculated locally at each site.

2.8 Application of the LBM algorithm

The LBM is implemented in the following steps.

1. Initialising the system for given initial values of ρ (x) and u (x) by assigning

fi = f
(eq)
i through equation (2.37).

2. Streaming the distribution function according to f ′

i (x+ ei, t+ 1) = fi (x, t).

3. Calculating ρ and u from equations (2.21) and (2.22), respectively, using

the new distribution function f ′.

4. Computing f (eq)
i through equation (2.37).

5. Performing the collision according to fi(x, t) = f ′

i(x, t) + f
(eq)
i (x, t).

6. Repeating from step (2).

2.9 Boundary conditions

When applying the scheme set out in Section 2.8, the streaming step. step 2, relies

on the distribution functions being available at the neighbouring sites. When

these are not available, they must be determined by applying an appropriate
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boundary condition. The modelling of the boundary condition in the LBM is

crucial because it determines the overall accuracy and stability of the method

[86, 87]. A boundary can be introduced to an LBM by picking the grid sites

where the boundary is to be set and streaming the fluid in a different manner at

these sites. The commonly used boundary scheme for modelling no-slip boundary

conditions is the half-way bounceback scheme [88, 89], however more complex

boundary conditions such as the extrapolation scheme [77] used here have been

developed to deal with more complex geometries.

2.9.1 Bounceback scheme

The most commonly used LBM non-slip boundary condition is the bounceback

scheme. This is the case encountered when a fluid particle meeting a wall re-

bounds in the opposite direction. That is, when a distribution function in link

ei encounters a wall during the streaming stage, it reflects and returns to the

original site along link −ei. Averaging the velocity of the distribution functions

before and after the collision, we get:

〈u〉 = 0. (2.62)

This original bounceback scheme is only first order [88].

2.9.2 Half-way bounceback scheme

If the wall boundary is placed half way between a boundary site and an adjacent

fluid site, the bounceback scheme is referred to as half-way bounceback scheme,

as shown in Figure 2.4 [21, 87]. A distribution function streaming from the fluid

site (A) towards the boundary is reflected back to site (A) [21]. The half-way

bounceback scheme is generally credited with second order accuracy in simple

geometries where the boundary is parallel to the link directions [21, 87]. Hence,
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BOUNDARY

WALL 

FLUID SITES

A

Figure 2.4: The half-way bounceback scheme

this is preferable to the bounceback scheme.

2.9.3 Extrapolation scheme

A number of boundary regimes have been proposed [77, 90–92]. These meth-

ods seek to enhance the accuracy of boundary schemes and also find methods of

modelling more complicated wall geometries. Although the half-way bounceback

scheme provides second order accuracy in planar geometries, its accuracy is re-

duced to first order when more complicated curved boundaries are considered.

These additional errors are imposed partially because the half-way bounceback

scheme requires the boundary sites to be placed halfway between the fluid sites

and the wall sites, parallel to lattice links. However, this is unfeasible for a curved

wall as it requires a staircase of straight lines, such as the dotted line, shown in

Figure 2.5.

2.9.3.1 Extrapolation boundary scheme

The extrapolation scheme [77] seeks to overcome the deficits of the half-way

bounceback scheme by approximating the position of the boundary more precisely

and calculating the distribution functions which reflect from it. The underlying
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idea of Guo [77] is documented in Figure 2.5, where the fluid sites (filled circles)

and the boundary sites (empty circles) are separated by the curved boundary,

represented by the solid line. The squares represented by the wall points where

the curved boundary intersects the lattice links. We will consider the bound-

ary condition at site xf , for the distribution function which is incoming along

the link which intersects the boundary at xb. The distribution function is split

into two parts; an equilibrium and a non-equilibrium part. We are required to

compute a fictitious distribution function f ′

5 (xw). The non-equilibrium part is

approximated by that of the neighbouring fluid site (xf or xff = xf +e5) and the

equilibrium part is determined from a fictitious density and velocity ρ′w (xw) and

u′

w (xw). The density is approximated by ρ′w (xw) = ρ (xf ) and u′

w is determined

Physical boundary

x
FLUID SITES

WALL SITES

xff

5

w

f

x

xb

e

δ*

Figure 2.5: The extrapolation scheme. The fluid sites are shown as filled circles
and the wall sites as open circles. They are separated by a physical boundary
represented by the solid line. The dashed line represents the staircase boundary
applied by the half-way bounce back scheme. Also shown are the sites xf ,xw and
xff which are sued in the extrapolation boundary scheme; and the normalised
distance δ∗.
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by extrapolation based on the known boundary velocity, ub = u (xb) = 0 and

the known velocities of uf = u (xf) and uff = u (xff ). Two approximations are

quantified [77] by either:

u′

w1 =
(ub + (δ∗ − 1)uf )

δ∗
, (2.63)

or

u′

w2 =
(2ub + (δ∗ − 1)uff )

1 + δ∗
, (2.64)

where δ∗ is the normalised fraction of the intersected link, still in the fluid, [77]:

δ∗ =
(|xf − xb|)
(|xf − xw|)

. (2.65)

It is usually more accurate to use u′

w1 than u′

w2 to approximate u′

w. However if

δ∗ is small, then numerical instability may result [77], so we select u′

w = u′

w1 for

δ∗ ≥ 0.75, and u′

w = δ∗u′

w1 + (1− δ∗)u′

w2, for δ∗ < 0.75. Similarly, to u′

w, the

distribution functions are formulated as:

f
(neq)
i (xw) = f

(neq)
i (xf ) , if δ∗ ≥ 0.75 (2.66)

and

f
(neq)
i (xw) = δ∗f

(neq)
i (xf) + (1− δ∗) f

(neq)
i (xff ) , if δ∗ < 0.75 . (2.67)

Then, the required expression for fi (xw, t) is:

fi (xw) = f
(eq)
i (xw) +

(

1− 1

τ

)

f
(neq)
i (xw), (2.68)

with f (eq)
i (xw, t) calculated from equation (2.37) with ρ = ρ′w and u = u′

w.
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2.9.3.2 Inflow and outflow boundary conditions

The velocity waveform seen in Figure 3.2 was implemented at the base of this ge-

ometry by setting the incoming distribution functions to their equilibrium values,

given by equation (2.37) when ρ = 1 and x is the velocity shown in Figure 3.2.

This profile was applied uniformly across the base of the artery at each position

of the cycle except for a boundary layer of approximately 1mm, over which the

profile was linearly reduced so that there was zero velocity at the wall of the

artery.

At the outflow boundary, the unknown distribution functions were found from

the following linear extrapolation based on the work by Neal [93], as given:

fi (x, t+ 1) = 2fi (x+ ei, t+ 1)− fi (x+ 2ei, t+ 1) . (2.69)

This boundary condition ensures that a pre-determined velocity is not forced on

the outflow, thus enabling the mass fraction exiting from the ICA and ECA to

the dependent on the artery geometry and flow conditions, in a similar way to be

constant pressure outflow condition.



Chapter 3

LBM simulation of the carotid

artery

3.1 Carotid artery geometry

Figure 3.1 shows the model of the carotid geometry used here. It has been,

used previously in [78, 94]. The carotid artery geometry is complex, consisting

of irregular walls, changing vessel diameter and a bifurcation. The three main

regions of the carotid artery near the bifurcation are the Internal Carotid Artery

(ICA), External Carotid Artery (ECA) and Common Carotid Artery (CCA),

as shown in Figure 3.1. The box in Figure 3.1 highlights the region of interest

around the bifurcation which is known to be susceptible to atheroslerosis [3–8,

11, 95, 96] and where the results will be presented. This region is sufficiently

far from the inlet and outlet boundaries so as to avoid any effects caused by

the method of applying these boundary conditions. No-slip boundary conditions

were implemented at the geometry wall using the extrapolation scheme, discussed

previously in Section 2.9.3.

31
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0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
x(m)

0

0.015

0.03

0.045

0.06

0.075

0.09

0.105

y(
m

)

CCA

ICA

ECA

Figure 3.1: Carotid artery geometry. The entire carotid artery geometry. Regions
corresponding to the ICA, ECA and CCA are indicated. The box indicates the
region of interest around the bifurcation where results will be presented.

3.2 Pulsatile flow

The velocity waveform used to drive the blood flow in the carotid artery is dis-

played in Figure 3.2, in terms of the period, T . This waveform was adapted

from Holdsworth et al. [97]. The velocity waveform, seen in Figure 3.2 was im-

plemented at the base of the geometry. The complicated shape was implemented

by decomposing the pulse shape into harmonic components using the Fourier de-

composition. For simulations of an arterial pulse, it is held that 5-10 harmonics

will generally suffice to describe the pulse accurately [98]. A decomposition of 31

harmonics was used for greater accuracy as in [78, 94]. It was shown in [94] that

small variations in the inlet parameters, such as the width of the boundary layer

did not significantly affect the results.
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0 0.2 0.4 0.6 0.8 1
time(t/T)
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0.6

0.8
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Figure 3.2: Carotid artery velocity waveform, obtained from Holdsworth et al.
[97].

3.3 Simulation convergence

The blood flow simulations were performed in a box of size 401 by 697 lattice

units (lu), using the velocity pulse shown in Figure 3.2 and the extrapolation

scheme (Section 2.9.3). After initialising the model was run over seven periods

to achieve convergence. This is shown in Figure 3.3 for a Newtonian simulation

where:

L (t) =

∣

∣

∣

∣

xmaxu (x, (T + t)) -xmaxu (x, t)

xmaxu (x, t)

∣

∣

∣

∣

, (3.1)

is the normalised maximum absolute difference between the velocity u (x, t) and

the one at the same site one period later u (x, (t + T )). The results show that

L (t) converges to < 10−3 after 7 periods.
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Figure 3.3: Convergence of LBM simulation

3.4 Non Newtonian simulations using the Carreau-

Yasuda Model

For a Newtonian fluid the shear viscosity η is constant and is related to the

relaxation time τ through equation:

η = ρ
2τ − 1

6
. (3.2)

The shear-thinning nature of blood can be mimicked using the Carreau-Yasuda

(C-Y) model [99–102] :

η (γ̇) = η∞ + (η0 − η∞)
(

1 + (λγ̇a)
n−1

a

)

, (3.3)

where γ̇ is the shear rate, and α, n and λ are empirically determined constant

parameters, [103]. The parameters α and n are dimensionless, but λ has units of

time. The C-Y model is continuous for all γ̇ ≥ 0. η0 and η∞ are limiting values

of the viscosity in the lowest and highest shear rate cases, respectively. The shear
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rate is defined as:

γ̇ = 2
√

DII , (3.4)

where DII is the second invariant of the strain rate tensor [103]:

DII =
∑

α,β

SαβSαβ . (3.5)

For the LBM, Sαβ can be found directly from the non-equilibrium distribution

function through equation (2.37).

3.5 Set-up of the simulation

We describe here the initiation of the LBM simulation and its parameters as well

as the assumptions made in our simulations. Following [33, 43, 78–80, 104–107]

our simulations are run in 2-D to capture the mean features of the flow. Mainly,

Newtonian simulations are considered, however, non-Newtonian modelling is con-

sidered in some cases using the C-Y model. The artery walls are assumed

rigid [43, 78]. This is a good approximation in the stenosed region, and for the

point of view of this work provides sufficient accuracy in the stenosed region to

develop and evaluate the numerical model. Oscillatory flow was presumed to

approximate the behaviour of arterial blood flow. No slip boundary condition,

using the second-order accurate extrapolation scheme, is applied at the walls.

3.6 Model parameters

In the following, variables labelled with a subscript ‘A’ refer to that variable in

physical SI units, variables labelled with a subscript ‘B’ refer to that variable in



CHAPTER 3. LBM SIMULATION OF THE CAROTID ARTERY 36

LBM (lattice) units. Reδ is determined by:

Reδ =
ρUδ

ν
(3.6)

where ρ = 1, δ is the Stokes layer thickness, used in [108, 109] is expressed:

δ =

√

νT

π
, (3.7)

with T the period. The Womersley parameter, α, defined by equation (1.5), can

be expressed as:

α =
D

2

√

2π

Tν
. (3.8)

Parameter Artery Boltzmann(lu)

u0 1.07 ms−1 0.08152
D 6.4× 10−3 m 36

η = η∞ 3.5× 10−6 Pa . s 0.001104
T 0.16744 s 66987
α 4.5 4.5
Reδ 307 307

Table 3.1: Carotid artery parameters, based on Holdsworth et al. [97] and equiv-
alent Boltzmann scaled parameters.

Table 3.1 shows the SI parameters selected to describe the artery, along with

the Boltzmann parameters based on an artery diameter of 36 lu. These param-

eters preserve Re and α between the model and the artery. For non-Newtonian

simulations the C-Y model parameters, based on [110] are shown in Table 3.2,

along with their Boltzmann equivalents. We can rearrange equation (3.7) to find

the peak simulated velocity U0B as:

U0B = Reδ

√

ηBπ

TB
, (3.9)
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Parameter SI Boltzmann(lu)

η0 2.17× 10−4 Pa . s 0.068364
η∞ 3.5× 10−6 Pa . s 0.0015
λ 1.5 s−1 603619
a 0.64 0.64
n 0.2128 0.2128

Table 3.2: C-Y model parameters from Abraham et al. [110] and equivalent
Boltzmann scaled parameters.

where ρB = 1. Also from equation (3.8):

TB =
2π

ηB

(

DB

2a

)2

, (3.10)

for fixed values of Re and α, and DB, the suitable values of UB was selected.

Matching Reynold’s numbers we can find ηB related to ηA by:

ηB = ηA

(

U0B

U0A

)2
TB
TA
. (3.11)

The λB of equation (3.3) is related to the λA by:

λB = λA
TB
TA
. (3.12)



Chapter 4

Literature on LBM applications

The Lattice-Boltzmann method (LBM) has been systematically employed in

several computational haemodynamics applications. A literature review on blood

modelling flows with the Lattice Boltzmann Method is presented in this chapter.

4.1 Lattice Boltzmann Modelling of flows

The Lattice Boltzmann Method has been validated both theoretically, where

it can be shown that it mimics the Navier-Stokes equation up to second order

[21], and through its application to a range of diverse flow problems including

acoustically induced flows [29], bubble dynamics [30], free surface flows [31] and

flow in porous media [32]; as well as a range of blood flow simulations [33–39,41,

111–131].

4.2 Lattice Boltzmann Modelling in general blood-

flow projects

LBM has been applied to a limited number of blood-flow simulations. Krafczyk

et al. [130,131] considered blood flow through an artificial aortic valve, presented

38
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details of transient flows at selected fixed openings and also considered a two-

dimensional model with moving leaflets. Matyka et al. [127] calculated the wall

shear stress in the human abdominal aorta, in steady flow using LBM and com-

pared the results with a standard finite volume solver and experimental data

available in the literature.

4.2.1 Lattice Boltzmann Modelling of blood flow in arteries

Artoli et al. [126] considered a two-dimensional model of a symmetric bifurcation

and compared the LBM results to a Navier-Stokes solver. Axner [125] compared

the LBM to the finite element modelling of the flow in a mesenteric artery. The

LBM was validated for systolic flows by comparing the velocity and pressure pro-

files between the models. LBM was also shown to prove an alternative solution

method for computational haemodynamics. Using LBM Chen et al. [124] exam-

ined the blood flow in a stented channel embedded in a a blood vessel and four

human coronary artery geometries based on the images obtained from patients.

For a model of stented flow involving an S-shape stent, a pulsatile flow rate was

applied as the inlet boundary condition, and the time- and space-dependent flow

field was computed. The LBM was found to be able to reproduce the velocity

profiles and wall shear stress distributions for the pulsatile channel flow. For the

coronary arteries, the distributions of wall shear stress, which were important

for clinical diagnostic purposes, were in good agreement with conventional CFD

predictions.

He et al. [120] used a haemodynamics analysis approach, a combination of

medical imaging analysis and the LBM to simulate flow in cerebral vasculature

geometry, a patient-specific cerebral vasculature geometry. Itani et al. [123] used

an advanced LBM model, FabHemeLB (Python tool assisting automation, the

construction and management of ensemble simulation workflows). FabHemeLB

is built on HemeLB, as proposed in [121, 123]; that has been applied to simu-
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late blood flow in healthy brain vasculature as well as in the presence of brain

aneurysms [121,122]. FabHemeLB was used also to examine the WSS properties

in a middle cerebral artery at a location of interest close to the outlet.

4.2.2 Lattice Boltzmann Modelling of Blood Clotting

The formation of atherosclerotic plaques (deposits) within arteries, commonly

leading to vessel stenosis, are features of cardiovascular disease. It is likely that

regions of stagnant or recirculating flow will develop downstream of a stenosis

and if blood remains in such a region for a prolonged period of time, thrombosis

may occur. Tamagawa and Matsuo [38] simulated blood flow in a simple model

of a blood pump or a medical fluid machine. They further estimated thrombus

formation from the shear rate and the effective distance of the wall. Bernsdorf

et al. [41,119] simulated blood clotting and unsteady flow within a stenosed artery.

A simplified blood clotting process, described there, was based on a residence

time model, using a lattice Boltzmann flow solver with passive scalar advective-

diffusive transport. Tamagawa et al. [39] added the effects of surface tension and

adhesion force because of thrombus at the wall. They simulated the thrombus

formation by considering the effects of a threshold level of physical parameters

such as shear rate and adhesion force (effective distance from the wall). They

concluded from the designing viewpoint, the material with low adhesion force

(effective length) should be located at the low shear rate and stagnation region

in the pumps and other fluidics.

Bernsdorf et al. [119] simulated the blood clotting process using a residence

time model. They simulated the clotting process numerically, extending LBM in

two ways: an advection-diffusion scheme for a passive scalar [132] was applied

in order to estimate the residence time of the fluid blood, and a solidification

procedure depending on the ‘age’ of the fluid was introduced. It was assumed

initially that activated fluid entered the flow domain at the inlet. The complex
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process of blood coagulation was replaced by the ‘residence time’: if the activated

fluid was ‘old enough’, it solidified. The fluid was presumed able to clot after a

certain elapsed period post-activation. The local age of the fluid was determined

by the concentration of the passive scalar tracer. When the local concentration of

the tracer (computed at each timestep) reached a given threshold, solidification

took place; a fluid site became a wall site and the solid surface boundary condition

was applied. During any subsequent iterations, the flow field and age distribution

adapted to the new geometry, while further clotting on adjacent fluid nodes could

occur. Bernsdorf et al. in a later study [41] worked on an adaptation of the

LBM for simulating blood coagulation within a stenosed artery. LBM was used

to compute the flow field, the clotting was simulated via addition of an age

scalar, subjected to a passive-scalar advection-diffusion scheme, and solidification

occurred based on a threshold age.

Harrison et al. [40] presented a simple clotting model, based on residence

time and shear stress distribution, that could simulate the deposition over time

of enzyme-activated milk in an in vitro system. Carotid changes were observed

in the blood clotting models. They compared the flow simulated with LBM and

clot deposition to flow visualisation and experimental milk clots, respectively.

4.3 Cellular Nature of Blood

Blood is a heterogeneous multi-phase mixture of solid suspensions (of red blood

cells, white blood cells and platelets) in a liquid plasma which is an aqueous solu-

tion of proteins, organic molecules and minerals. The rheological characteristics

of blood are determined by the properties of these components [133–135] and

their interaction with each other as well as with the surrounding structures.
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4.3.0.1 Lattice Boltzmann Modelling of Cellular Material in Blood

flow

At a microscopic level, blood is a concentrated suspension of several cellular

components, including Red Blood Cells (RBCs) or erythrocytes, white blood

cells or leukocytes, and platelets, suspended in plasma, an aqueous solution of

numerous ions and macromolecules [13]. Among these cellular components, RBCs

are the most important components because of their biological roles as carriers of

oxygen and carbon dioxide and the direct influence of RBC properties on blood

flow characteristics [135, 136]. Migliorini et al. [116] considered the forces acting

on leukocytes due to red blood cells in a two-dimensional simulation of a blood

vessel. This work was continued by Sun et al. [115]. Li et al. [33,137] considered

the transport of red blood cells through a two-dimensional symmetric model of

an artery containing a semi-circular stenosis. Zhang [114] used the coupled LBM

with Immerse Boundary (IB), (IB-LBM) to simulate the suspending viscosity

effect on RBC dynamics and microscopic haemorheology in shear and channel

flows.

Arterioles, small blood vessels that carry arterial (oxygenated) blood might

be affected by atherosclerosis associated with vessel wall thickening and luminal

narrowing. Vahidkhah and Fatouraee [112] simulated the interactions between

the RBC membrane and plasma flow in a stenosed arteriole using the IB-LBM

method, used in [114]. Using IB-LBM Alinejad and Fallah [111] examined the

deformation of RBC transferred in a carotid artery whose flow subjects to drug

delivery. It was shown in [111] that the IB-LBM can properly simulate the RBCs

deformation and also damage to the vessel wall can lead to the formation of

vortices inside the arteries and block to its passage.
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4.3.0.2 Non-Newtonian simulations

Unless fluid flow forces are sufficient to keep them dispersed, red cells tend to

adhere to each other due to bridging by plasma proteins [138]. In bulk shear

flow, aggregation increases blood viscosity at low shear rates. As the shear rate

is increased, the progressive breakup of aggregates leads to a decrease in viscosity

(‘shear thinning’) [135]. Despite this fact, a large body of literature concerning

computational haemodynamics characterises blood as a Newtonian fluid under

the assumption that this is acceptable in large arteries [139].

Due to its kinetic essence, the LBM allows straightforward calculations of the

local shear rate to second-order accuracy. It thus has been applied to simulate

the non-Newtonian behaviour of blood flows. Boyd et al. [140] employed LBM to

analyse the Casson and Carreau-Yasuda (C-Y) non-Newtonian blood models in

steady and oscillatory flows. They compared their results to analogous Newtonian

flows and characterised the differences. The use of a Non-Newtonian model has

some effect on the blood flow especially at stenoses or bifurcations where the shear

rate of blood is very small and its non-Newtonian nature cannot be neglected

[141].

Wang and Bernsdorf [141] have used the Carreau Yasuda model applied to the

Lattice Boltzmann Method to simulate the flow on several occlusion percentage

geometries; general stenosed geometries created by a mesh generator. The non-

Newtonian nature was modelled by the C-Y model and was compared to the

Newtonian model. The Newtonian flow had a longer recirculation length than

the non-Newtonian, due to the low shear rates within the recirculations, caused

by the overestimate of the WSS. The shear stress for C-Y was lower than the

Newtonian case.

Ashrafizaaden and Bakhshaei [142] compared three non-Newtonian models

for lattice Boltzmann blood flow simulations: the Casson, C-Y and K-L models.
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They demonstrated the capability of LBM for complex blood flows.

Yanhong Liu [143] used a Bi-viscosity model and compared it to the Casson

model adapted from [144, 145] to simulate the blood flow of a stenosed artery.

Yanhong Liu introduced a ceiling viscosity and cutoff viscosity to produce a re-

laxation time for σ < σy, (σy is the yield stress). Qualitative agreements were

shown for the velocity profiles of the lattice Boltzmann Bi-viscosity model against

that of the lattice Casson’s model; well accepted as a useful method to simulate

various fluid behaviours. In the meantime, research toward the heat transfer

enhancement due to the use of nanofluid using lattice Boltzmann method has

recently become attractive for many researchers.

4.4 LBM modelling the flow in stenosed geome-

tries

Boyd et al. [78] simulated, using the LBM, flow in 2D arteries with varying

degrees of stenosis. During the simulation, the arterial walls were assumed rigid

and the level of compliance for the healthy walls was not considered. The aim

of the study was to investigate how the wall shear varies in the presence of a

stenosis. Thirty incrementally larger stenosis growths were implemented in such

a way that the geometries varied smoothly between increments. The stenosis

growth was implemented in a region of the carotid artery prone to atherosclerotic

progression, which exhibits low velocity and a low near wall shear stress [3].

Maximum near wall shear stresses at points in the artery were compared with

literature results and changes in the velocity and shear fields due to stenosis

growth within the artery were examined. Regions of low velocity, rotational flow

and low near wall shear were observed in areas of the unstenosed artery known

to be susceptible to atherosclerosis. These regions persisted during the simulated

stenosis growth as well as during the pulse cycle, suggesting that growing stenosis
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maintain conditions in the artery which can further promote their growth. A

small region of rotational flow was observed just upstream of the upper edge of

the implemented stenosis. This may increase the particle residency time for lipids

and blood cells in this region and further promote stenosis progression. This also

suggested that the plaque build-up maintained flow conditions favourable to its

progression.

Boyd and Buick [80] applied the LBM to examine the variations in velocity

profiles across three regions of the artery, for different waveforms (resting with

long period and lower mass flow rate, [97] and exercising, with shorter period

and larger mass flow rate, [94]). Again, thirty incrementally larger stenosis ge-

ometries were implemented in a region known to exhibit low velocity flow and be

susceptible to atherosclerosis, [78]. For the waveform describing heart at rest, it

was observed that some low velocity rotational flow was preserved as the growth

of the stenosis increased and remained adjacent to the stenosis region. For the

exercising heartbeats waveform, the narrowing of the artery created higher shears

near the wall of the stenosis.

Karimpour and Javdan [43] considered an LBM model, where a stenosis de-

velops based on the details of the simulated arterial flow. The stenosis growth

is based on the Oscillatory Shear Index (OSI) calculated along the artery wall.

Regions of high OSI, which are related to the oscillatory nature of the WSS

and which will be formally defined in Chapter 5, were deemed to be prone to

atherosclerosis and layers of deposits were progressively deposited in these re-

gions. Although no algorithm is presented in this work, this appears to be based

on a pre-determined threshold similar to [38–41] and results in a layer of de-

posit at each step. The stenosis growth was simulated by laying a segment at

these locations through converting adjacent fluid nodes to solid ones. The authors

identified difficulties in applying their strategy due to the step-like nature of their

artery walls which lead to boundary roughness; difficulty in defining the wall nor-
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mal; and fluctuations in the wall velocity which feeds into the OSI calculation.

To address this the authors introduced a ‘parallel’ surface three units from the

wall which was used to calculate the WSS. The artery normal was defined to be

the normal to the fluid velocity at this surface. Regions subjected to partial ob-

structions identified qualitatively well with those susceptible to atherosclerosis in

an in vivo sample, thereby approving this criterion by verifying its accumulative

effect. The artery walls were reshaped in a recursive manner. Shear stress level

elevation was observed in the vicinity of the apex and the relative minimum near

the sinus region.

In literature, LBM has been proposed to describe flow in geometries with dis-

tinct characteristics. A number of studies have been designed to simulate fluid

flow through constricted tubes. Fu et al. [146] developed a Finite Difference Lat-

tice Boltzmann model coupled to an Immersed boundary (FDLBM/IB) scheme

to simulate the flow in constricted pipes. The model is based on the FDLBM

model designed by Fu et al. [147, 148] that provides a convenient algorithm for

setting the boundary condition using a splitting method to solve the discrete lat-

tice Boltzmann (LB) equation. The FDLBM proposed in [147,148], is not easily

adapted to flows with complex boundary geometries. This is a serious drawback

of the FDLBM which was intended to be overcome with the implementation of

the IB method. In this study, the FDLBM was applicable for Newtonian and

non-Newtonian fluids. The non-Newtonian flow through constricted tubes with

different constriction geometries was demonstrated. In a related study [149], they

validated the time-accurate FDLBM/IB scheme proposed in [146] in order to sim-

ulate Newtonian and non-Newtonian fluid flow in constricted tubes. FDLBM/IB

was used to investigate a model blood flow problem of an axisymmetric pulsat-

ing flow in a constricted tube with 75% area occlusion in Newtonian fluid and

non-Newtonian (C-Y) flow. This study showed a smaller pressure drop in non-

Newtonian flow compared to the Newtonian flow under the same flow conditions.
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LBM has also been used to simulate the pulsatile blood flow in realistic

stenosed carotid arteries. Kang [150] used LBM to simulate the pulsatile blood

flow in carotid artery bifurcations of internal carotid arteries for severe stenosed

carotid bifurcations. The main focus of the investigation was the wall shear stress

in the internal carotid arteries for severe stenosed and recanalised carotid bifur-

cations. The OSI was used to measure the oscillatory features of WSS during

pulsatile cycles, representing the disturbed flow patterns leading to reverse veloc-

ity components occurring near the arterial walls. The stenosed carotid geome-

tries were digitally reconstructed from a 2D human angiography with severe ICA

stenosis. Kang validated the simulations conducted with the half-way bounceback

scheme, against numerical experiments, on a 2D Poiseuille flow, which were in-

clined with respect to the lattice axis. Kang investigated the spatiotemporal and

average distributions of the WSS along the outer and inner walls of the internal

carotid arteries. In the severely stenosed arteries, the WSS increased dramat-

ically in the narrowed area, thereby resulting in plaque rupture and thrombus

formation. Along the path downstream of the stenosed segment, the severely

disturbed flow also caused the lesion region to continue to expand downstream

and become more serious.

Kang, in a second study [151], simulated the flow in a three-dimensional (3-D)

moderate stenosed carotid bifurcations aiming to examine the relevance of the lo-

cal haemodynamics to arterial atherosclerosis formation and its progression. The

helical flow patterns, secondary flow and wall dynamical pressure spatiotemporal

distributions were investigated, which lead to the disturbed shear forces in the

carotid artery bifurcations. The study [151] concluded that the LBM was an at-

tractive computational tool in haemodynamics research due to its high efficiency

and robustness in dealing with complex boundaries.
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Medical problem

Atherosclerosis is a major cause of mortality in our society representing up to

35% of all deaths in the western world [1].

5.1 Pathogenesis of atherosclerosis

Cardiovascular diseases [1, 152, 153], particularly when they are atherosclerotic-

related [152, 153] are responsible for a significant proportion of mortality in the

developed countries [1, 2, 154, 155].

Among the many cardiovascular risk factors, elevated plasma cholesterol level

is probably unique in being sufficient to drive the development of atherosclerosis,

even in the absence of the next more widely known factors [156]. The other

risk factors, such as hypertension [134, 157, 158], diabetes, smoking [157, 158],

male gender, and possibly inflammatory markers (like C reactive protein and

cytokines), appear to accelerate a disease driven by atherogenic lipoproteins, the

first of which being Low-Density Lipoprotein (LDL) [156].

Exercise, and High-Density Lipoprotein (HDL) and its major apolipoprotein

(apoA-I) confer protection against diseases caused by atherothrombosis. Among

other things, HDL/apoA-I prevents the atherogenic modifications of LDL and

48
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promotes ‘reverse cholesterol transport’ which retards plaque progression.

5.2 Composition of the arterial wall

The geometry of the arteries have been suggested to play a role in determining

atherosclerotic lesion localisation [159]. Blood does not flow uniformly in the

arterial tree because of variations in geometric configuration which impose resis-

tance to flow. The artery wall is composed of the intima, which is covered on the

luminal surface by a monolayer of endothelial cells; the media, which among its

constituents contains smooth muscle cells, collagen, and elastin [157].

Endothelial cells, leukocytes, and intimal smooth muscle cells are the ma-

jor activators in the development of this disease. Their dyfunctions favour the

occurrence of Atherosclerosis [134].

Atherosclerosis is a chronic immunoinflammatory, fibroproliferative disease of

large and medium-sized arteries fuelled by lipid [160, 161].

5.3 Localisation of Atherosclerosis

Certain vessels such as the abdominal aorta, carotid arteries [158], coronary ar-

teries and peripheral arteries, are particularly susceptible to plaque formation,

whereas others, such as upper extremity vessels rarely experience it [95,157,162,

163].

The distal internal carotid is mainly free of disease despite marked atheroscle-

rosis in the adjacent carotid bifurcation [157].

Considering that blood flow exerts stresses on vessel walls and affects mass

transport to the arterial tissue, we are led to the hypothesis that fluid dynamic

forces are localising factors in atherogenesis [157].
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5.4 Association of haemodynamics to Atheroscle-

rosis

Blood flow in an arterial tree is not uniform. Differing lumen diameters, curva-

tures, branchings, and angles favour local disturbances in the primary flow field

resulting in regions of altered shear stress [164] and boundary conditions with

areas of separation, secondary flow patterns and occasional turbulence. Charac-

terisation of these conditions at specific sites becomes much more complex when

the pulsatile nature of blood flow is considered [157]. Branch points are known to

be particularly vulnerable to plaque formation and are subjected to wide varia-

tion in haemodynamic conditions. Hence, it is not unexpected that a wide variety

of haemodynamic factors have been connected to plaque pathogenesis, including

high and low wall shear stress, flow separation and stasis, oscillation of flow,

turbulence and hypertension [95, 162, 163, 165].

5.4.1 Shear stress

Prior to studying the association of the shear stress to the atherosclerosis its

definition related to the flow in arteries has to be given.

Wall Shear Stress in arteries is the tangential force per unit area produced by

blood moving across the endothelial surface [5,157,162]. WSS is an expression of

the velocity gradient of blood near the endothelial surface and is dependent on

blood flow, blood viscosity, as well as the geometry of the artery [157].

The endothelium is very sensitive to shear stress, and local haemodynamic

conditions related to branching, low and oscillating shear, and reverse flow may

offer some of the explanation for the fact that the coronary arteries are much

more susceptible to atherosclerosis than the internal mammary arteries [161].
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5.4.1.1 Reaction of endothelium to shear stress

Endothelium reciprocates through various pathophysiological mechanisms de-

pending on the kind and the magnitude of shear stresses. Normal laminar flow

induces adequate shear stress forces, which promote endothelial cells stability and

increase their survival [166]. Also, these stresses align the endothelial cells in the

direction of flow and participate to the secretion of agents with direct or indirect

antithrombotic and vasodilatory properties such as Nitric Oxide (NO) [167] and

thrombomodulin [168]. Especially the secretion of NO and transforming growth

factor beta (TGF- β) are stimulated by normal levels of arterial shear stress (10-70

dyn/cm2) [167, 169, 170] and inhibit smooth muscle cell proliferation [167, 168].

Under normal conditions, shear stresses maintain their direction and their

magnitude within a range of values that does not enable atherogenesis, throm-

bosis, adhesion of leukocytes, smooth muscle proliferation, vascular remodelling

and endothelial apoptosis [166]. Also, under normal shear conditions, endothelial

as well as smooth muscle cells have a rather low rate of proliferation [170].

5.4.1.2 Association of shear stress variations with atherosclerotic pro-

cesses

The carotid atherosclerosis is usually asymmetrical in the carotid artery [3, 95,

162,163]. From Gnasso’s study [3], the peak and mean wall shear stress are lower

in carotid arteries where atherosclerotic plaques are located than in plaque-free

carotids.

This concept is explained as there is a an association between the wall shear

stress, the blood velocity. A reduction of shear stress contributes to an increased

fluid residence time [171] and therefore to increased mass transport of atherogenic

particles, thus interfering with endothelial metabolism [171].

Platelets more probably adhere to the endothelium in regions of increased
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residence time and in human endothelial cells the Tissue Plasminogen Activator

(TPA) secretion rate decreases with decreasing values of shear stress, at least

in vitro experiments [158, 172, 173]. Furthermore, shear stress has been shown

to modulate the transcription of genes for nitric oxide (NO) syntheses, platelet-

derived growth factor and transforming growth factor-β1, all factors involved in

vascular remodelling [134, 174–176].

Plaque localisation has been noted in humans and Caro and his associates

[171] have suggested that low wall shear rates may retard the mass transport of

atherogenic particles at the wall, resulting in increased intimal accumulation of

lipids [171] interfering with endothelial metabolism.

Correlative studies of plaque localisation in the human carotid bifurcations

[95, 96] with quantitative flow models have shown that intimal plaques form in

the low shear stress region of the carotid sinus, opposite the flow divider, and

not in the high shear stress region along the inner wall of the internal carotid

artery [95, 96]. Negligible shear stress values were recorded in the region most

likely to develop plaque [95]. It has been suggested that a threshold value below

which plaque deposition occurs may exist [96].

5.4.2 Flow separation and Geometry

A number of flow field alterations, other than shear stress, occur at branch

points and have been implicated in the plaque localisations. These changes are

particularly prominent in the carotid bifurcation because of the carotid sinus and

may account for the marked vulnerability of this site to atherosclerosis [157,177].

The carotid sinus has double the cross-sectional area of the distal internal carotid

artery and this, together with the effects of branching and angulation, results in

a large area of flow separation and stasis along the outer wall of the carotid sinus

[96,157,177]. As flow from the common carotid artery enters the bifurcation, flow

streamlines are compressed toward the flow divider and inner wall of the internal
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carotid artery where flow is rapid and laminar and shear stress is high [157].

Plaques do not form in this area. Along the outer wall of the sinus, a large

area of flow separation develops in which flow velocity and shear stress are low.

The earliest intimal plaques develop in this region, as do late, complicated, and

clinically significant lesions [95].

In the region of flow separation, there is a reversibility of axial flow and slow

fluid movement upstream. However, the region of separation is not simply a zone

of stasis and recirculation but it is a zone of complex secondary flow patterns,

including counterrotating helical trajectories [177].

Flow reattaches distally in the sinus, and the distal internal carotid, which

is almost always free of plaque and has relatively experienced rapid axial flow

throughout its cross-section. The presence of flow separation and stasis in patients

in this outer wall region of the carotid bifurcation [95,177] has been also cited by

ultrasound studies [177, 178].

5.4.2.1 Oscillatory flow

The preferential sites atherosclerotic lesions to develop have been shown to lie

in regions of low or oscillating shear stress [95, 162, 163].

Under conditions of pulsatile flow, the flow can be complex. Conditions along

the inner wall of the carotid sinus are similar to those seen under steady flow

conditions. Flow velocity and shear stress are high and flow remains laminar.

There are fluctuations in magnitude of velocity and shear but without significant

changes of direction [157]. Along the outer wall, where plaque is known to form,

pulsatile flow produces an oscillating shear stress pattern [157, 179, 180].

During early systole, the region of flow separation disappears with forward flow

throughout the cross-sectional area of the sinus. During late systole, however, the

region of separation and flow reversal becomes prominent along the outer wall,

and there is a reversal of direction in the shear stress directional vector [181].
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During diastole, conditions are similar to those seen under steady flow conditions.

The magnitudes of velocity and shear are low in this region and correlate strongly

with plaque localisation. Oscillations in the WSS vector along the outer wall of

the carotid sinus have also been shown to correlate strongly with early plaque

deposition [96].

Ku [96] described increased residence time along the outer wall of the sinus

which is caused by oscillations of fluid velocity about a mean value close to zero.

This occurrence delays the convection of fluid and traps fluid elements near the

outer wall for several cycles despite the absence of a clear region of stasis or of

an area of permanent boundary layer separation.

Low shear stress probably contributes to an increased fluid residence time,

which sequentially may result in increased transport of atherogenic particles or

interfere with endothelial metabolism [171].

Platelets and macrophages, key elements of atherosclerotic lesions, are more

likely to adhere to the arterial wall in regions of increased residence time and the

TPA secretion rate of human endothelial cells decreases with decreasing values of

shear stress, at least in experiments in vitro [173].

5.4.2.2 Oscillatory Shear Index

An oscillatory shear index (OSI) was introduced to describe the cyclic departure

of the wall shear stress vector from its predominant axial alignment [96]. The

rationale for development of OSI is justified as follows. In the common carotid

artery, flow velocity near the wall, while pulsatile, is continually directed forward

or cephalad (toward the head or anterior section), leading to wall shear stress

acting in the positive axial direction [96].

However, different wall shear stress behaviour are observed at the outer and

side walls of the bifurcation, particularly in the internal carotid sinus. At the side

walls of the branches the stress vector changes direction with time [96]. Thus, OSI
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could be useful to describe the degree of deviation of the wall shear stress from

its average direction. Ku [96] showed that the outer wall of the bifurcation is a

region of low, time-averaged, mean shear stress and oscillatory shear stress. Both

the low and oscillatory stress contribute to an increased fluid residence time of

the particles in the carotid sinus. Low mean shear stress and marked oscillations

in the direction of wall shear stress may be critical factors in the development

and localisation of atherosclerotic plaques. The OSI is calculated over a period

and is defined as:

OSI = 0.5



1−

∣

∣

∣

∫ T

0
WSS(t)dt

∣

∣

∣

∫ T

0
|WSS(t)| dt



 (5.1)

5.4.2.3 Relative Residence Time

Particles in the region of flow separation [177] have an increased residence time

and therefore a greater chance to interact with the vessel wall. Time-dependent

lipid particle-vessel wall interactions would elevate the intimal entrapment of

atherogenic particles [182]. Thereafter, this situation would promote the slow

flow, facilitating hence the occurrence of the plaque formation [157].

Caro et al. poses a similar interpretation to the relationship of low flow to the

fluid residence time [96,171,183,184]. Caro et al. supported that low shear stress

urged high transport of atherogenic particles to the arterial wall [96,171,183,184].

The Relative Residence Time (RRT) is defined as:

RRT ∝
[

∫ T

0
|WSS(t)| dt

T
(1− 2OSI)

]−1

. (5.2)

5.4.3 High Shear Stress flow and Endothelial injury

In contrast to low shear, high shear stress has been thought to promote plaque

formation by evoking endothelial injury and disruption, thereby exposing the un-

derlying artery wall to circulating platelets and Lipids [134]. Endothelial injury
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and the response to endothelial injury has been implicated in plaque pathogen-

esis. According to this hypothesis [134] the endothelial lining of arteries is dam-

aged by one of several factors, including mechanical forces such as shear stress

and hypertension, chemical agents (like hyperlipidemia,homocysteine) acting in

immunologic reactions, or hormonal dysfunction. The injury hypothesis also en-

compasses the response to such injury, including platelet deposition, release of

platelet-derived growth factor (TGF- β ), cellular proliferation, and lipid deposi-

tion [185, 186]. In particular, repeated endothelial injury would account for the

localised nature of plaque deposition.

Activated endothelial cells which have become permeable to Low-Density

Lipoprotein (LDL), are of higher replication rates, and develop prothrombotic

properties. They express surface glycoproteins that promote the adhesion of neu-

trophils, monocytes, and platelets [187].

Thus, although mechanical endothelial injury is unlikely to be a significant

contributing factor to plaque initiation, endothelial cell function plays an im-

portant role in the responses and functions of the artery wall. The functional

state of the media appears to be important in plaque pathogenesis. At peak

blood pressure, characterized by increased cells motion and so increased tensile

loading along the walls in areas such as the proximals to the coarctation (congen-

ital narrowing) of the aorta, there is smooth muscle cell proliferation, elevated

biosynthetic activity, and plaque formation can occur [188].

5.5 Relationship of intimal media thickening to

flow

A low shear stress has been associated with Intima Media Thickening (IMT) and

plaque occurrence. In particular, an inverse relationship of the wall shear stress

to the IMT of the arterial wall, has been observed. Gnasso [3, 189] showed that
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the internal carotid diameter has been evidenced to rise with increasing values

of blood pressure in regions of reduced flow velocity, accounting for the inverse

correlation of these variables with wall shear stress.

A possible relationship between IMT and near wall velocity magnitude con-

sidering a viscosity distribution in human coronary arteries has been investigated

using Finite Element Modelling by Giannoglou [190]. Low velocity at each point

along the length of the vessel was shown to be significantly correlated with IMT.

An interpretation of the relationship between the low velocity and the IMT

was proposed by Giannoglou [190]. They suggested that a low near wall velocity

promotes wall thickening which is probably due to increased residence time of

blood lipoproteins. Long residence time permits the prolonged contact with the

endothelium and increases the uptake of LDL lipoproteins particles [95,163,191].

Ku [96] verified the occurrence of the intimal thickening in areas of low time

averaged shear stress over the pulse. In contrast to the shear stress, the oscillatory

shear index was strongly correlated to the intima media thickening [96]. Along

the inner wall of the internal carotid sinus, at points where lesions were least

prominent, velocity magnitudes were similar to those measured in the common

carotid artery lower. Along the anterior and posterior walls of the sinus, where

lesions were of intermediate thickness, velocities were lower. Along the outer wall

of the carotid sinus, where lesions were thickest, flow velocity was greatly reduced

and high oscillations were observed.



Chapter 6

Stenosis growth model

This chapter describes the model used to simulate the stenosis developed. Its

development and implementation are considered.

6.1 Boundary movement mechanism

Here we consider a model which monitors the blood flow in the carotid artery

over a period and adjusts the wall geometry, based on the simulated blood flow,

to model the development of a stenosis. The concept of the presented model is

not that the stenosis develops every period; rather the assumption is that there

are a large number of periods between each sequential change in the boundary

and the flow properties do not change over this time. Thus there is no advantage

in simulating all the intermediate periods which are identical. Based on this

assumption, that simulations will not give a precise time scale for the development

of the stenosis, but rather will indicate its sequential development.

6.2 Boundary description and orientation

The position where the stenosis develops is selected to be one of the fluid sites aj

which are selected as the set of all fluid sites x which are adjacent to the arterial
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wall; that is aj , is a fluid site with at least one link which cuts the boundary.

The artery geometry is defined by a series of boundary points bk which lie at

the intersection of the artery wall and each link which cuts it. Boundary condi-

tions are applied at each boundary point bk using a sub-grid accurate extrapo-

lation boundary scheme [77], see Section 2.9.3, which maintains the second-order

accuracy of the LBM while describing the geometry of the artery to a resolution

greater than the underlying lattice [94, 192].

It is also necessary to define, for each aj , a grid-based normal direction (out

of the wall) defined as lj. For each aj (fluid site adjacent to the wall), the grid

base normal lj was defined to be one of the m links, subset of the 6 links at

the site, which intersect the boundary, m < 6. The m links are ebn, n = 1,· · ·m.

When m = 1, (only one link through aj cuts the artery wall), the normal is set

to −eb1. A negative sign is required since lj is defined to be an outward normal.

For m > 1 a vector b, approximating the local boundary, is defined joining the

first and last boundary points for the site aj .

For example, in Figure 6.1 the hexagonal node has two links e3 and e6 which

cut the boundary (thin solid line) at the boundary points (solid squares) b0 and

b1 respectively. Thus k = 2 and eb1 = e3 and eb2 = e6. lj = −e3 = e1 is found as

the closest grid-based normal to b. This is found numerically as

lj = − arg min
ebn

∣

∣ebn · b
∣

∣

|ebn| |b|
. (6.1)

We note that in Figure 6.1 it is converted to label bm such that b0 is on link lj

through the site aj . The remaining boundary points are labelled sequentially.

It is also required to find a unit normal nj , which is not restricted to lie on a

lattice link and the associated unit tangent, tj. For each aj (fluid site adjacent
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Figure 6.1: Model for the wall development is shown for selected values of h and
w; (a) h = 0.5, w = 1, (b) h = 0.5, w = 2, (c) h = 0.15, w = 1. The move-
ment boundary scheme depends on h and w which have no physical significance.
These parameters relate to the extent to which the stenosis can grow in each
development phase.

to the wall), the unit tangent nj is defined as

tj =
b10 − b−10

|b10 − b−10|
. (6.2)

nj is then found as the unit vector which satisfies

nj · tj = 0. (6.3)

The orientations of nj and tj are selected such that tj is pointing downstream

and nj is pointing into the fluid.
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6.3 Selection criteria

There is a growing body of evidence which suggests a correlation between regions

of low WSS and early development of atherosclerosis [3–8]. It has also been

suggested that, within regions of low WSS, oscillatory flow may also be associated

with regions where stenosis is observed to develop [11,95,96]. Here we considered

the following haemodynamic markers for the development of the stenosis:

• TA velocity magnitude

• TA tangential velocity modulus

• TAWSS

• TA seconds invariant of the deviatoric stress tensor, TADII

• Oscillatory Shear Index (OSI)

• Ratio OSI: TAWSS (O:WS)

• Relative Residence Time (RRT)

• Reversibility Flow Index (RFI)

• Stagnation index (SI)

6.3.1 Velocity magnitude

Since the velocity is zero at the wall, it is necessary to calculate the velocity a

short distance from the wall - here we selected 1 lu. Thus the velocity associated

with aj , 1 lu from the wall along link lj can be expressed

u
(1)
j (t) =

u
(δ)
j (t)

δ
, (6.4)
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where δ is the distance from the wall to aj and u
(δ)
j (t) is the velocity a distance

δ from the wall, that is

u
(δ)
j (t) = u(aj , t). (6.5)

Alternatively, we can write

u
(1)
j =

(lj + δj − 1)uδ
j(t) + (1− δj)u

(l+δ)
j

lj
, (6.6)

where u
(l+δ)
j (t) is the velocity a distance lj + δj from the wall along link lj . That

is

u
(l+δ)
j (t) = u(aj + lj , t) (6.7)

and

lj = |lj|.

Since equation (6.4) can become unstable for small δj , equation (6.6) was used

except if aj + lj is not in the fluid. The site selected, A for stenosis development,

based on their minimum TA velocity magnitude, was found for the Nth period

as

A = arg min
aj

∫ (Np+1)T

NpT

u
(1)
j (t) dt. (6.8)

6.3.2 Tangential velocity

The tangential velocity component u(1)jt (t) was found as

u
(1)
jt (t) = u

(1)
j (t) · tj, (6.9)

where u
(1)
j (t) was calculated from equation (6.4) or equation (6.6). The position

where the stenosis development was modelled for the Nth period based on the
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TA tangential velocity was

A = arg min
aj

∫ (Np+1)T

NpT

u
(1)
j (t) · tjdt. (6.10)

.

6.3.3 Wall Shear Stress

Here, we progress in a similar fashion to the velocity, except that we require the

values at the wall, rather than 1 lu away. Thus

σ
(0)
j (t) = σ

(δ)
j (t)− δj

lj

(

σ
(l+δ)
j (t)− σ

(δ)
j (t)

)

, (6.11)

where σ(δ)
j (t) = σ (aj , t) and σ(δ+l)

j = σ (aj + lj , t). We define WSS at time t:

WSSj (t) = σ
(0)
jαβnβ. (6.12)

The selected site is then found by monitoring the Time Average WSS (TAWSS):

A = arg min
aj

∫ (Np+1)t

NpT

∣

∣

∣
σ
(0)
jαβnβ

∣

∣

∣
dt. (6.13)

6.3.4 Second invariant of the deviatoric stress tensor

Based on the second invariant of the deviatoric stress tensor we can define at the

selected site for stenosis growth as:

A = argmin
aj

∫ (Np+1)t

NpT

∣

∣

∣

∣

∣

∣
D

(0)
jII

∣

∣

∣

∣

∣

∣
dt. (6.14)

where:

D
(0)
jII =

1

2
σ
(0)
jαβσ

(0)
jαβ. (6.15)
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6.3.5 Oscillatory Shear Index (OSI)

Ku et al, [96], proposed the Oscillatory Shear Index (OSI) to describe the shear

stress acting in directions other than the direction of the temporal mean shear

stress vector. It was used here to measure the cyclic departure of the WSS (t)

from its predominant axial alignment. We calculated OSI at the boundary point

following equation (5.1),

OSIj = 0.5



1−

∣

∣

∣

∫ T

0
WSSj(t)dt

∣

∣

∣

∫ T

0
|WSSj(t)| dt



 (6.16)

This gives the value 0 ≤ OSIj ≤ 0.5. The selected criterion is:

A = arg max
aj

OSIj . (6.17)

6.3.5.1 Ratio OSI:WSS

We calculated alternatively O:WS at the wall to model the effect of both the

OSI and the TAWSS:

O:WSj =
OSIj

|WSSj|
. (6.18)

The selected criterion is:

A = arg max
aj

O:WSj . (6.19)

6.3.6 Relative Residence Time

We can also use the Relative Residence Time (RRT), defined through equation

(5.2) to monitor the residence time of the trapped blood particles at the boundary

point bj. Here the selection criterion as

A = arg max
aj

[

∫ T

0
|WSSj(t)| dt

T
(1− 2OSIj)

]−1

. (6.20)
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6.3.7 Reversibility Flow Indexes

The Reversibility Flow Index (RFI) is used to monitor reversibility and is defined

as:

RFIj =
NjR

T
(6.21)

where NjR is the number of time-steps during the period where u
(1)
j · tj < 0. The

selected criterion is:

A = arg max
aj

RFIj. (6.22)

6.3.8 Stagnation index

In a similar way we use the Stagnation Index (SI) to monitor the regions affected

by low velocity. We calculated the stagnation index at 1 lu from the wall, SIj :

SIj =
NjS

T
. (6.23)

where NjS is the number of time-steps where
∣

∣

∣
u
(1)
j (t)

∣

∣

∣
≤ 1% of the maximum

velocity of the driving pulse. The selected criterion is:

A = arg max
aj

SIj . (6.24)

6.4 Boundary movement

The mechanism for modifying the artery wall, to represent the development

of the stenosis, is shown in Figure 6.1 where the hexagon represents the fluid

site selected A, based on one of the criteria set out in Section 6.3. The re-

positioning of the wall is based on two parameters h and w which represent the

height and width of the deposited plaque, as shown in Figure 6.1. The original

artery wall is shown by the thin solid line with the fluid sites (blood flow region)



CHAPTER 6. STENOSIS GROWTH MODEL 66

to the right. The boundary points bk are shown by the solid squares at the

intersections of the artery boundary and the grid links. For this configuration of

the artery boundary and the selected fluid site the link-based normal direction

found from equation (6.1) is e1, the boundary point on this link is labelled b0,

and δ = |A− b0| = 0.3. The remaining wall points are then labelled b±1,b±2,

such that they are numbered sequentially, as shown in Figure 6.1. Three cases

are shown corresponding to (a) h = 0.5, w = 1, (b) h = 0.5, w = 2 and (c) h =

0.15, w = 1. For these parameters the new section of the artery wall is shown

by the thick solid line and the corresponding new wall points by the filled circles.

For these parameters the new section of the artery wall is shown by the thick

solid line and the corresponding boundary points by the filled circles. In Figure

6.1 (a) h = 0.5 and boundary point b0 moves h (0.5) units along the normal link

(e1) towards the selected wet node. Since here h > δ, (δ = 0.3), the boundary

encapsulates the selected fluid site which becomes wall. Construction lines are

then drawn between this new boundary point and the old boundary links b±w

(here w = 1). New boundary points are then selected where the construction lines

cross the links. In Figure 6.1 (a) the new boundary follows the lower construction

line through the new boundary points. However, boundary point b1 is on link e6

out of the selected wet node A. Since this is now a wall node and the link joins

two wall nodes, it is not possible for it to have an associated boundary point.

Thus the upper part of the new boundary connects to the next-nearest boundary

point: b2. In Figure 6.1 (b) h > δ and w = 2, the construction lines connect

to the old points b±2 and the new boundary follows the construction lines. In

Figure 6.1 (c) h < δ, w = 1 the old boundary point, b0 moves h (0.15) units

along the normal link (e1) towards the selected wet node (A). This produces a

new boundary point on the same link, a distance 0.15 closer to A. Construction

lines are then drawn between this new boundary point and the old boundary links

b±w (here w = 1). New boundary points are then selected where the construction
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lines cross the links.

6.5 Summary

A model for simulating the development of a stenosis within the LBM has been

set out. The stenosis develops in stages, based on the local wall haemodynamics.

A number of markers for stenosis development are presented based on different

haemodynamic properties. A mechanism for the movement of the artery wall was

also presented. This is based on two parameters h and w which determine the

height and width of the wall movement. These parameters do not have a physical

interpretation and their use in the model will be considered in detail in Chapter

8.



Chapter 7

Haemodynamics in a healthy artery

Before considering the application of the stenosis development model described

in chapter 6, it is interesting to consider what happens in the healthy artery. This

gives details of the blood flow to establish the flow regime in regions where the

stenosis will later develop, and will enable comparisons to be made between the

flow in a healthy artery and a stenosed one.

The velocity and vorticity field for a healthy artery is shown in Figure 7.1 at

the times 2T/66 T (a and b); 4T/66 (c and d); 6T/66 (e and f); 9T/66 (g and h);

11T/66 (i and j); 13T/66 (k and l); 15T/66 (m and n); 17T/66 (o and p); and

19T/16 (q and r). Velocity profiles are shown in the left column while vorticity

is in the right column. During the initial acceleration phase, Figures 7.1 (a) and

(c), two regions of low velocity are observed, one on the outer wall of the ICA and

the other on the outer wall of the ECA. The region on the ECA starts below the

bifurcation and extends to slightly above the branch point. The region on the ICA

also starts below the bifurcation, but extends significantly further downstream.

During this time there is no significant vorticity in the artery. Figures 7.1 (c) and

(d) correspond to a time close to the peak velocity. Here the velocity is higher

across the whole artery - the areas of low velocity observed at earlier times are

still present, but their size is much reduced.
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(a) u at 2T /66 (b) ω at 2T /66

(c) u at 4T /66 (d) ω at 4T /66

(e) u at 6T /66 (f) ω at 6T /66
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(g) u at 9T /66 (h) ω at 9T /66

(i) u at 11T /66 (j) ω at 11T /66

(k) u at 13T /66 (l) ω at 13T /66
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(m) u at 15T /66 (n) ω at 15T /66

(o) u at 17T /66 (p) ω at 17T /66

(q) u at 19T /66 (r) ω at 19T /66

Figure 7.1: Velocity (u = |u|) (left column) and vorticity ω = (|ωωω|) (right column)
for the healthy artery at 2T/66 (a and b), 4T/66 (c an d), 6T/66 (e and f), 9T/66
(g and h), 11T/66 (i and j), 13T/66 (k and l), 15T/66 (m and n), 17T/66 (o and
p) and 19T/66 (q and r).
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As the flow decelerates, Figures 7.1 (g) - (j), the low velocity regions are re-

established; however, they now correspond to a region of vorticity, with a vortex

being formed in each region. Figures 7.1 (k) - (r) correspond to times when the

velocity is relatively low. During this time the vortices move downstream and

reduce in strength. Both have an affect on the flow, but it is greater in the

ICA because the vortex progresses further into this branch, due to the different

positions where the two vortices were generated. During the rest of the period

the vorticity dies out completely and the velocity remains low and decreases in a

fairly uniform manner across the artery.

These observations are consistent with previous studies using the same model

[78, 94].



Chapter 8

Stenosis model results

The stenosis model described in chapter 6 is considered and discussed. Simula-

tions of stenosis development are presented to investigate the effect of the model

parameters w and h to determine suitable ranges for their application. Flow

fields are also presented which indicate that the stenosis is developing in a realis-

tic manner, providing evidence that the stenosis development is indeed influenced

by the low velocity magnitude rather than occurring in such areas coincidentally.

8.1 Illustration of stenosis growth

It is important to establish how the h and w parameters relate to the extent

to which the stenosis can grow in each development phase and how h and w

affect this. There are two distinctive time-scales which play a significant role in

the stenosis development; these are the heartbeat and the development time of

the stenosis. The concept of the model is not that the stenosis develops every

period; rather the presumption is that there are a large number of periods between

each sequential change in the boundary when the flow properties do not change.

Therefore, there is no benefit in simulating all the intermediate periods which

are identical. Based on the assumption that we only need to simulate selected
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periods where the stenosis changes, the number of periods will not give a precise

scale for the development of the stenosis, but rather will indicate its sequential

development. Additionally it is not evident that the relationship between the

two time-scales will be linear. It is also evident that the stenosis will develop

more quickly for larger values of h and w and so the number of periods simulated

will not be a good measure of the progression since it is dependent on two non-

physical parameters. For this reason, as well as to investigate the effect of h and

w on the stenosis development, it is also important to find a variable which will

describe the evolution in a manner which is independent of h and w.

8.1.1 Layer Development

The manner of the stenosis development in shown in Figure 8.1, where N repre-

sents the number of periods of simulation. This development generally occurs in
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Figure 8.1: The development of the stenosis for h = 0.7 and w = 1. The stenosis
geometry is shown at selected times corresponding to the final period during
which each of the layer is developed.

a series of layers which build up from the bottom towards the top of the artery.
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After each layer is completed a new layer starts either on the same artery wall

or on the opposite wall. For selected layers, Figure 8.1 displays the geometry of

the stenosis at the final period over which the layer develops. The layers selected

in Figure 8.1 correspond to where a switch occurs between the ICA, on the right

of the image, and the ECA, shown on the left. While this description of the

stenosis development describes the general process, there are a small number of

times where this pattern is broken. Typically, a larger layer, such as the one

shown at N = 365, which is formed between N = 10 and N = 365 is composed

of a number of sub-layers. There are also a small number of times where this

pattern is broken. In these cases the site selected by equation (6.10) is either on

the opposite wall or at a different position on the same wall. This can occur for

two or three periods before it returns to the current layer. We also note that

the development of these layers occurs only on the outer walls of both ICA and

ECA. Although the geometry of a stenosis can vary significantly from patient to

patient, the geometry shown in Figure 8.1 has geometrical similarities to some

imaged arteries [193–196] suggesting that the modelling is performed in a realistic

manner.

8.2 Stenosis Development

The results in Figure 8.2 show the stenosis development for different values of h,

in terms of Ts which is a sequential label indicating the number of sites converted

from wet to dry. For h = 1 this corresponds to the number of periods, N , for which

the simulation had been running. For h < 1 we find Ts ≃ N/h . The advantage of

using Ts to describe the time evolution of the stenosis rather than N , stems from

its being a regular measure independent of h and w. The simulations in Figure 8.2

run until the stenosis reached a top buffer zone at y = 63 mm. It is evident from

Figure 8.2 that this occurs at a value of Ts of around 750 for the lower values
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of h and at a higher value of around 1900 for h = 1. The effect of the larger

development time can be seen as the considerable thicker wall growth on both

the outer walls for h = 1, and to a lesser extent for h = 0.9. To better evaluate

the procedure, Figures 8.3 and 8.4 depict the same results with regards to the

normalised parameters T ∗

s and T ∗∗

s respectively. T ∗∗

s is obtained by normalising Ts

by the run time in periods which is the maximum value of Ts for each individual

run. This gives a normalisation with respect to the extent of stenosis development

along the artery wall. In contrast, T ∗

s is obtained by normalising with respect to

the minimum of these run lengths over the range of h considered. This gives a

normalisation with respect to the volumetric (areal) development of the stenosis.

To enable a direct comparison, only values of T ∗

s ≤ 1 are shown in Figure 8.3. The

results in Figure 8.3 show similar stenosis progression for h = 0.1, 0.3 and 0.5.

The results for h = 0.7 are somewhat similar, while those for the larger values of h

are significantly different in terms of the wall plaque extending less far along the

wall, but further into the interior of the artery. This can be understood in terms

of the mechanics of the model. When h = 1, as soon as a wet node is selected

by equation (6.8) it is removed from the artery and the stenosis develops into the

artery by 1 lattice unit. If h = 0.1, then the same wet site can potentially be

re-selected for a further nine periods (possibly sequentially) before it is converted

to a dry site. However, during this time, it is feasible that the small increments

can sufficiently change the flow such that the development moves to another layer

and an alternative site is selected; and the original one is not returned to (at least

until a later stage in the development of the stenosis). Based on this picture of

the stenosis development, it is evident that as h increases, it will reach a level

at which the resolution of the artery refinement becomes too large and the value

of h becomes significant in determining the evolution. Figure 8.3 suggests that

this happens for values of h between 0.5 and 0.7. This would also suggest that

the limiting value of h is based on the fraction of a lattice unit, rather than the
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(a) h = 0.1

25 30 35 40 45 50 55

35

40

45

50

55

60

x(mm)

y(
m

m
)

1650
1500
1350
1200
1050
900
750
600
450
300
150

TsTs

(b) h = 0.3
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(c) h = 0.5
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(d) h = 0.7
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(e) h = 0.9
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(f) h = 1.0

Figure 8.2: Stenosis development in terms of Ts for different values of h, when
compared to h = 0.5.
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(a) h = 0.1
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(b) h = 0.3
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(c) h = 0.5

25 30 35 40 45 50 55

35

40

45

50

55

60

x(mm)

y(
m

m
)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Ts*Ts*Ts*Ts*

(d) h = 0.7
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(e) h = 0.9
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(f) h = 1.0

Figure 8.3: Stenosis development in terms of T ∗

s for different values of h.
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(a) h = 0.1
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(b) h = 0.3
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(c) h = 0.5
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(d) h = 0.7
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(e) h = 0.9
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(f) h = 1.0

Figure 8.4: Stenosis development in terms of T ∗∗

s for different values of h.
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physical dimensions of h, e.g. as a fraction of the diameter.

The results in Figure 8.4 also indicates the similar behaviour of the model for

the lower values of h. The stimulus for applying the normalisation T ∗∗

s was to

account for the different rate of stenosis development along the artery wall (in

terms of Ts). It is clear from Figure 8.4 that this normalisation has not overcome

the differences observed previously for the largest values of h. Thus it is clear

that the limiting value observed in Figure 8.2 is a real phenomenon and that Ts

and/or T ∗

s are the appropriate measures for the evolution of the stenosis.

8.3 Applicable range of h

To better determine the cut-off value of h, ∆T ∗

s is shown in Figure 8.5. This is

calculated as the difference between the value of T ∗

s found for h = 0.5 and that for

h= 0.1, 0.3, 0.7, 0.9 and 1.0 in Figure 8.5 (a-e) respectively. Values are shown only

for sites which were originally wet and which have been converted to dry sites in

both simulations. While the differences are generally small in Figure 8.5 (a) and

(b), there are a number of larger values. These are due to the stenosis developing

in layers. There will be a number of sites close to the edge of each layer which

will, at the end of the development of the layer, be wet for one value of h and dry

for another - even when the difference between the geometry of the layers is so

small as to have an insignificant effect on the wall geometry and the blood flow.

Even though the difference between the stenosis development may be negligible

between these cases, this explains the small number of points identified in Figure

8.5 (a) and (b) where ∆T ∗

s is not small. These points do not overturn the view

that the simulations with h = 0.1, 0.3 and 0.5 are effectively independent of h.

Figure 8.5 (c) shows small, but slightly larger differences between the simulations.

This suggests that h = 0.5 should be used as an upper limit, rather than h =

0.7. As expected Figure 8.5 (d) and (e) highlight the fact that h = 0.9 and 1.0
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(b) h = 0.3
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(c) h = 0.7
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(d) h = 0.9
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(e) h = 1.0

Figure 8.5: ∆T ∗

s for different values of h.
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are not suitable due to a lack of resolution.

8.4 Applicable range of w

The effect of w on the stenosis development was also considered. This is shown in

Figure 8.6 for w = 1 and w = 2 for the case h = 0.3. Figure 8.6(a) and (b) depict
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(a) h = 0.3, w = 1
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(b) h = 0.3, w = 2
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Figure 8.6: Comparison of h = 0.3 results for w = 1 and w = 2.

the evolution in terms of T ∗

s and show a different behaviour for the two cases.

These differences are highlighted in Figure 8.6(c) which shows the difference in

T ∗

s between w = 1 and w = 2, where the differences can be related to the layered
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growth occurring at different rates. This behaviour is similar to that observed

for the larger values of h and suggests that the resolution is not sufficient for w

= 2 and that the model should be run with w = 1.

8.5 Flow profiles

The effect of the stenosis growth on the blood flow for a T ∗

s = 1 stenosed geometry

is shown, at the time of the peak velocity, Figure 8.7 and during the deceleration

phase, Figures 8.8 and 8.9. The images on the left are for the healthy artery

and the ones on the right are for the stenosed geometry at T ∗

s = 1 with h = 0.5

and w = 1. Figure 8.7 depicts the velocity field at the peak in the cardiac cycle.

The stenosed geometries show a higher velocity through both the internal and

external carotid branches when compared to the healthy geometry, similarly to

the ‘high velocity jet’ observed in the Doppler measurements of [197], as well as

the PIV measurements of [198]. Vorticity, (ωωω) is determined by:

ωωω =

(

∂uy
∂x

− ∂ux
∂y

)

(8.1)

and is presented in Figure 8.8 which shows significant vorticity developing in the

healthy artery towards the bottom of both the ICA and ECA. This can be seen

developing at the peak flow in Figure 8.8 (a) and fully developed flow in Figure

8.8 (c).

This is consistent with the MRI images and CFD results reported by [197–199].

It should be noted that [197–199] present results for a phantom; however, these

were based on patient measurements and so provide a realistic geometry for a

stenosed artery. Additionally, the authors considered a more severe stenosis on

only one wall of the artery. The more severe stenosis results in an increased

narrowing of the artery and so the jet nature of the flow is more pronounced. This
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(a) Healthy artery velocity field (b) Stenosed artery velocity field

(c) Healthy artery velocity field (d) Stenosed artery vorticity field

Figure 8.7: Velocity (a and b) and vorticity ω, (c and d) for the healthy artery
geometry (left column) and the stenosed geometry corresponding to T ∗

s = 1 (right
column) at peak flow. The driven pulse and the healthy geometry is also shown
as an insert in each figure, where the pulse phase and the level of stenosis are
depicted by the red dot and the red line respectively.

leads to vorticity/oscillations further from the bifurcation, which is not present

here. Despite these differences, and the natural differences between individual

artery geometries, the similarities suggest that the stenosis development model is

predicting a realistic geometry for the stenosed artery.
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(a) Healthy artery vorticity field (b) Stenosed artery velocity field

(c) Healthy artery vorticity field (d) Stenosed artery velocity field

Figure 8.8: Velocity (a and b) and vorticity ω, (c and d) for the healthy artery
geometry (left column) and the stenosed geometry corresponding to T ∗

s = 1 (right
column) during the deceleration phase of the cardiac pulse. The driven pulse and
the healthy geometry is also shown as an insert in each figure, where the pulse
phase and the level of stenosis are depicted by the red dot and the red line
respectively.

8.6 Shear stress

Shear stress fields in Figures 8.9 reflect the regions of vorticity observed in Figures

8.8 (a) and (c) for the healthy artery, and their absence in the stenosed case.

Figure 8.8 (b) also shows that, during peak flow, the region of highest shear stress
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(a) Healthy artery shear stress field (b) Stenosed artery shear stress field

(c) Healthy artery shear stress field (d) Stenosed artery shear stress field

Figure 8.9: Shear stress (a and b) at the peak flow and during (c and d) the
deceleration phase of the cardiac pulse for the healthy artery geometry (left col-
umn) and the stenosed geometry corresponding to T ∗

s = 1 (right column). The
driven pulse and the healthy geometry is also shown as an insert in each figure,
where the pulse phase and the level of stenosis are depicted by the red dot and
the red line respectively.

remains close to the wall in the stenosed region, in contrast to the behaviour for

the healthy artery, shown in Figure 8.8 (a).
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8.7 Conclusion

The stenosis development model has been evaluated for a range of the parameters

h and w which are used to determine the extent of the stenosis growth at each

stage. It was found that the model is effectively independent of h for h ≤ 0.5,

indicating that the model should be run in this range. A difference was also

observed between w =1 and w = 2, suggesting that the model should be run with

w = 1.

Different methods for describing the rate of development were also considered.

The most appropriate measure was found to be Ts, the number of fluid sites

converted to wall sites, or its normalised equivalent T ∗

s = Ts/Tsmax.

Simulations were run within the identified range of h and w. The result

showed similar features to experimental observations, suggesting the validity of

the model.



Chapter 9

Effect of stenosis growth on the

haemodynamics

The haemodynamics during stenosis development is studied for h = 0.3 and

w = 1. This is done by considering how the flow changes with the development

of the stenosis. In chapter 8 we saw that the stenosis occurs on the outer walls of

the ECA and ICA in a series of layers which build up from the bottom tswowards

the top of the artery. A layer can be comprised of a number of sub-layers. Table

9.1 displays in detail the development of the stenosis in terms of the number of

consecutive site swaps on each wall. Also shown is the number of the periods N

and total number of sites converted, Ts, at the time that the stenosis development

jumps to the other wall. A layer is considered to be built up on either the ECA

or ICA wall until a site swap occurs. A site swap is defined by more than four

sites being converted on the opposite wall. Each layer in Table 9.1 is coloured

according to:

• orange for Ts ≤ 20 where there is no clear development on either wall

• yellow if the development is primarily on the ECA

• red if the development is primarily on the ICA.

88
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Table 9.1: Details of the stenosis development on the ICA and ECA walls for
h = 0.3 w = 1.

N Ts number of sites on ICA number of sites on ECA
7 6 6
25 14 8
26 15 1
33 16 1
34 17 1
45 19 2
53 20 1
163 42 22
170 45 3
287 68 23
288 69 1
328 79 10
329 80 1
510 119 39
512 121 2
526 124 3
530 125 1
542 127 2
547 128 1
629 149 21
634 150 1
786 185 35
792 186 1
1056 238 52
1060 239 1
1108 249 10
1463 322 73
1579 344 22
1592 347 3
1601 349 2
1607 350 1
1621 353 3
1639 355 2
1710 368 13
1765 381 13
1855 408 27
2311 506 98
2328 510 4
2332 511 1
2348 513 2
3252 724 211
3254 725 1
3335 739 14
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The details of each layer are summarised in Table 9.2, where each row corresponds

to the formation of a layer. The geometry at the completion of each layer is

Table 9.2: Stenosis development in layers on the ICA and ECA for h = 0.3 w = 1

T Ts number of sites on ICA number of sites on ECA
53 20 9 11

1108 249 12 217
1463 322 73 0
1710 368 6 40
1765 381 13 0
1855 408 0 27
3335 739 226 7

shown in Figure 9.1. The dot-dash line for Ts = 20 corresponds to the initial
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Figure 9.1: The development of the stenosis for h = 0.3 and w = 1. The stenosis
geometry is shown at selected times corresponding to the final period during
which each of the layer is developed.

phase during which no more than 8 sites are connected sequentially in a single

wall. This line is barely distinguishable from the initial wall. The first ECA

layer is formed by Ts = 249, as illustrated in the Tables 9.1 and 9.2. During its

formation a number of sites are converted on the opposite wall. The first ICA
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layer is formed by Ts = 322. Unlike the first ECA layer, this layer deposits in a

continuous manner, as shown by Table 9.1. The second ECA layer is completed

by Ts = 368 and the second ICA layer by Ts = 381. The third ECA layer is

completed by Ts = 408 and the third ICA layer at Ts = 739 which corresponds

to the end of the simulation. Figure 9.1 shows the development occurring on the

ECA below the bifurcation, while in the ICA the stenosis occurs from slightly

below the bifurcation and extends significantly in to the ICA.

9.1 Stenosis development and wall Haemodynam-

ics

The haemodynamics in the wall regions are shown in Figures 9.2, 9.3, 9.4, in

terms of u(1), WSS and u
(1)
t on the ECA over the period of the pulse. This is

shown for the healthy artery and also at the end of each layer development stage,

as detailed in Table 9.2. Figures for Ts = 20 are not distinguishable from the

healthy artery and so these are not included. The simulations of Figures 9.2, 9.3

and 9.4 (other than the magnitude) indicate that close to the wall the velocity

is approximately tangential; and that the WSS, defined as WSS = µ(dut/dn)

is proportional to u(1). Figures 9.2, 9.3 and 9.4, parts (b)-(f) and the lower

(y < 38mm) and upper (y > 51mm) regions of part (a) depict the presence of the

velocity pulse shown in Figure 3.2. The region between y = 38mm and y = 51mm

in part (a) corresponds to the vortex shown in Figure 7.1 which develops close

to the peak velocity and is then transported down-stream by the blood. After

the development of the first layer in the ECA, this vortex motion is no longer

present. As shown in Figure 9.1, stenosis development on the ECA is limited

after Ts = 249 which explains the similarity of parts (b)-(f).
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(b) Ts = 249
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(c) Ts = 368
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(d) Ts = 381
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(e) Ts = 408
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Figure 9.2: Instantaneous u(1) on outer ECA over the cardiac pulse for (a) healthy
artery, (b) Ts = 249, (c) Ts = 368, (d) Ts = 381, (e) Ts = 408 and (f) Ts = 739.
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(a) Healthy artery geometry

t(T)

y(
m

m
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

35

40

45

50

1.75
1.50
1.25
1.00
0.75
0.50
0.25

WSS(Pa)

(b) Ts = 249
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(c) Ts = 368
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(d) Ts = 381
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Figure 9.3: Instantaneous WSS on outer ECA over cardiac pulse for (a) healthy
artery (b), Ts = 249, (c) Ts = 368, (d) Ts = 381, (e) Ts = 408 and (f) Ts = 739.
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Figure 9.4: Instantaneous u(1)t on outer ECA wall over cardiac pulse for (a) healthy
artery, (b) Ts = 249, (c) Ts = 368, (d) Ts = 381, (e) Ts = 408 and (f) Ts = 739.
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Figure 9.5: Instantaneous u(1) on outer ICA wall over the cardiac pulse for (a)
healthy artery, (b)Ts = 322, (c) Ts = 506 and (d) Ts = 739.

The haemodynamics are shown on the outer wall of the ICA in Figures 9.5,

9.6 and 9.7, over the period of the pulse. In Figures 9.5, 9.6 and 9.7, part (d)

and the lower (y < 45mm) and upper (y > 65mm) regions of parts (a) - (c) the

presence of the velocity pulse, shown in Figure 3.2, is depicted. The region be-

tween y = 45mm and y = 65mm in parts (a) - (c) corresponds to the vortex shown

in Figure 7.1 which develops close to the peak velocity and is then transported

downstream by the blood. At Ts = 322 (part (b)), after the formation of the first

layer on the ICA, the effect of this vortex motion is only slightly reduced. By Ts
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= 506, (part (c)), the effect is further reduced, but still significant. This indicates

that the vortex is present on the ICA for longer into the stenosis development,

when compared to the ECA. At Ts = 739 (part (d)) there is no clear evidence

of the vorticity, which has been removed from the flow by the geometry change

associated with the developing stenosis.
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Figure 9.6: Instantaneous WSS on outer ICA wall over the cardiac pulse for (a)
healthy artery, (b)Ts = 322, (c) Ts = 506 and (d) Ts = 739.
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Figure 9.7: Instantaneous u(1)t at the outer ICA wall across the cardiac pulse for
(a) healthy artery, (b)Ts = 322, (c) Ts = 506 and (d) Ts = 739.

9.2 Stenosis Development and time averaged wall

haemodynamics

The effect of stenosis dependent on time averaged haemodynamic properties was

also considered. The following quantities were considered:

u(1) =
1

T

∫ T

0

u(1)dt =
1

T

∫ T

0

(

(

u(1)x

)2
+
(

u(1)y

)2
)1/2

dt; (9.1)
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u
(1)
t =

1

T

∫ T

0

u
(1)
t dt; (9.2)

TAWSS =
1

T

∫ T

0

WSSdt; (9.3)

OSI, defined by equation (5.1); RRT, defined by equation (5.2); the Reverse

Flow Index, RFI, representing the fraction of the period where u(1)t is negative;

and O:WS = OSI/TAWSS. In terms of RRT, the constant of proportionality

was found by normalising with respect to the value three diameters upstream

from the bifurcation. Figures 9.10 and 9.11 show the quantities for the ICA.

The white vertical lines drawn on the contour, represent the layer completion

times shown in Figure 9.1 and Table 9.2. The dot-dash, the solid and the dashed

lines correspond to the initial mixed layer for Ts ≤ 20; ECA and ICA layers

respectively. The non-vertical white lines indicate the upper and lower extremes

of the stenosis on the wall. The black curve is a contour line for u(1) which has

been smoothed by a double pass through a smoothing filter. Each pass of the

filter shifts the value to halfway between its initial value and the average value

of its neighbours. Although the black contour has been derived from smoothed

data, none of the other data has been smoothed.

Figure 9.8 (a) shows for the ECA a region of low near-wall velocity, in the

healthy artery (Ts = 0) in the range 38 mm < y < 44 mm. During the initial

mixed layer Ts ≤ 20 the stenosis starts to develop on the ECA in this region. By

Ts = 20 it has expanded downstream to approximately the upper extreme of the

low-velocity region identified at Ts = 0. It also extends slightly upstream, but

not to the level of the initial low-velocity region. For 20 ≤ Ts ≤ 249 the stenosis

develops predominantly on the ECA, see Table 9.2 and Figure 9.1. During this

time the stenosis extends downstream, beyond the limits of the near-wall velocity

region in the healthy artery. As the position of the stenosis extends, a region of low

near-wall velocity extends on either side of the downstream tip. Once the stenosis
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Figure 9.8: (a) u(1), (b) TAWSS, (c) OSI, (d) RRT and (e) O:WS on the outer
wall of the ECA over the development of the stenosis.
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has developed through a particular y-position, the near-wall velocity gradually

reduces to close to its original value, e.g. at y = 47 mm, u(1) remains relatively

constant until Ts ≃ 100. Then the near-wall velocity decreases to a minimum at

Ts ≃ 118, close to when the stenosis reaches this point (y = 47 mm). The velocity

then gradually increases and reaches a value close to its original for Ts > 250, as

shown in Figure 9.8 (a). During the first ECA layer, the stenosis also expands

upstream, although at a slower rate. By Ts = 249, it has developed to around the

bottom of the initial low velocity region. We note that for Ts < 150, the white

line representing the extent of the stenosis is similar to the black curve which is

the low average velocity contour. The next layer 249 < Ts ≤ 322 develops solely

on the ICA and this has no significant effect on u(1) in the outer wall of the ECA.

There are two further periods 322 ≤ Ts ≤ 368 and 381 ≤ Ts ≤ 408 where the

stenosis develops on the ECA. During these periods the stenosis expands only

slightly, but the effect on u(1) is more significant in that by Ts = 408 the initial

low average near-wall velocity, at Ts = 0, and the subsequent expanded region

of low u(1) are substantially removed and u(1) is relatively constant for 35 mm

< y < 50 mm at Ts = 739.

The TAWSS in Figure 9.8 (b) demonstrates simillar behaviour as expected.

Figures 9.8 (c), (d) and (e) show the OSI, RRT and O:WS, also on the ECA.

These figures show considerable similarity to Figure 9.8 (a), except for the in-

verse relationship where the quantities plotted here are maximum where u(1) was

minimum. In particular the u(1) contour (black curve), in each case encloses a

region where the plotted quantity is large. Additionally, as the stenosis expands

downstream, there is a region where each of OSI, RRT, O:WS reaches a maxi-

mum before dropping to close to its original value (although the value ultimately

drops to a somewhat lower value). This is shown in Figure 9.8 (c), (d) and (e).

At Ts = 739 the stenosis has developed in such a way that the areas of high OSI,

RRT, O:WS are no longer evident.
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There is one significant difference between Figures 9.8 (c), (d) and (e) and the

time-averaged near-wall velocity and TAWSS plots (Figures 9.8 (a), and (b)). In

the healthy case (Ts = 0), there are secondary peaks in OSI and RRT around

y = 48mm. This is also evident in Figure 9.8 (e), but less prominent, because it

is present in OSI, but not TAWSS. This secondary peak remains approximately

constant until the developing stenosis reaches its location. Once the stenosis has

developed past this point the OSI and RRT reduce in a simpler manner to the

(increasing) u(1) in Figure 9.8 (a).

At Ts = 408, the end of the third ECA layer, there is no more significant

development of the stenosis on this wall. The upstream extent of the stenosis

corresponds to the lower limit of low u(1) and TAWSS / high OSI, RRT and O:WS

regions observed at Ts = 0, for the healthy artery. Downstream the stenosis has

extended beyond the initial low u(1) and TAWSS to slightly beyond the upper limit

of the healthy artery, secondary peak in OSI, RRT, O:WS. Figures 9.9 (a) and

(b) show u
(1)
t and RFI. These are clearly inverse properties, with large RFI when

there is a significant amount of reversed flow and u
(1)
t is negative. Both figures

indicate a significant trend of reverse flow in the healthy artery at Ts = 0 such

that the average value of u(1)t is negative for 42mm ≤ y ≤ 47mm. Comparing

the contours in Figure 9.9 (a) with the black curve which was derived from a

low u(1) contour, it is clear that within the black contour u(1)t is small; however

there is a region downstream of the black contour where u(1)t is equally small and

predominantly negative. The upper limit of that low u
(1)
t region corresponds to

the secondary part of OSI, RRT in Figures 9.8 (c) and (d) which was observed

to be associated with the downstream limit of the stenosis progression. This is

also related to the position of the vortex which forms in the healthy artery during

the deceleration phase, as observed in Figure 7.1. Figures 9.10(a)-(e) and 9.11

(a), (b) show the same properties as Figures 9.8(a)-(e) and 9.9 (a), (b), but for

ICA. Here the black, low u(1), contour encloses a number of regions; however, a
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larger region, encompassing the low u(1) region, can be considered. Although the

stenosis develops on the ICA in two main layers corresponding to 249 < Ts ≤ 322

and 408 < Ts ≤ 739, there is also some significant development for Ts < 259 as

is evident on the Table 9.2 and Figure 9.10 (a). Although the stenosis extends

for approximately 4mm along the ICA at Ts = 259, it represents a thin layer, see

Figure 9.1, and has had little effect on the time averaged values on the outer ICA

wall, see Figures 9.10(a)-(e) and 9.11 (a), (b). The stenosis development on the

ICA shows many similar features with the development on the ECA:

1. Development starts in a region of low u(1) (Figure 9.10(a))

2. The stenosis progresses only slightly upstream and is limited by the extent

of the initial low u(1) region.

3. The stenosis progresses significantly further upstream. A low u(1) region

develops around the downstream limit of the stenosis. This increases once

the stenosis tip has moved through the region (although not as rapidly as

for the ECA).
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Figure 9.9: (a) u(1)t and (b) RFI on the outer wall of the ECA over the development
of the stenosis.
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Figure 9.10: (a) u(1), (b) TAWSS, (c) OSI, (d) RRT, (e) O:WS on the outer wall
of the ICA over the development of the stenosis.
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Figure 9.11: (a)u(1)t and (b) RFI on the outer wall of the ICA over the development
of the stenosis.

4. At Ts = 739, the initial low-average wall velocity region is no longer present.

5. The TAWSS (Figure 9.8(b)) replicates u(1) (Figure 9.8(a)).

6. OSI (Figure 9.10(c)), RRT (Figure 9.10(d)) and O:WS (Figure 9.10(e))

displays the same features as u(1) and TAWSS (in the inverse sense).

7. OSI (Figure 9.10(c)), RRT (Figure 9.10(d)) and O:WS (Figure 9.10(e))

also contain a secondary peak, downstream the region of low u(1). This also

corresponds to the vortex motion in this region, as shown in Figure 7.1.

8. There is a region of significant reverse flow downstream of the low u(1) region

indicated by negative values for u(1)t (Figure 9.11 (a)) and RFI (Figure 9.11

(b)).

One significant difference was observed between stenosis development on the ICA

and the ECA. On the ICA, the stenosis develops downstream beyond the second

peak in OSI and RRT. When this happens the rate of stenosis progression along

the artery wall reduces. As the stenosis develops through this region it maintains

a region of low u(1) (Figure 9.10(a)), low TAWSS (Figure 9.10(b)), high OSI
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(Figure 9.10(c)), high RRT (Figure 9.10(d)), high O:WS (Figure 9.10(e)) and

low u
(1)
t (Figure 9.11 (a)). RFI is not high here (Figure 9.11 (b)) indicating, that

although the velocities are reduced, the flow does not reverse.

Although the developing stenosis does not affect the geometry of the inner

ICA or ECA walls, the near-wall flow is influenced by what is occurring on the

outer walls. This is shown in Figures 9.12 (a),(b), (c) and (d), which depict u(1)f

and RRTf, where Xf (y, Ts) = X(y, Ts)/X(y, 0). Figures 9.12 (a) and (b) are for
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Figure 9.12: (a) u(1)f and (b) RRTf on the inner walls of the ECA and (c) and
(d) on the inner walls of the ICA over the development of the stenosis.

the ECA. There is a slight increase of less than 3% in u(1) on this wall, as the

initial ECA layer is developing; however this is a temporary feature and is not
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present at Ts = 368 when the stenosis in the ECA is almost completely developed.

After this time, as the stenosis is developing predominantly on the ICA, there is

a slightly more significant region where u(1) is reduced by up to around 10 % for

y < 55mm. RRTf indicates the same features, but in an inverse sense.

On the ICA, figures 9.12 (c) and (d), there is little change until Ts > 408,

corresponding to the final layer development on the ICA. It is during this time

that substantial stenosis development occurs on the outer wall of the ICA, see

Figure 9.1. This results in an increase of up to 15% in the near wall velocity in

the lower part of the inner ICA wall (y < 60 mm). This represents an increased

velocity due to the decrease in the artery diameter in this region (Figure 9.1). For

y > 60 mm there is an equally large reduction in the near wall velocity, suggesting

the stenosis development is producing a meandering jet in the ICA affecting the

downstream haemodynamics. Similar features are observed in the RRT, but in a

negative sense.

9.3 Conclusions

The stenosis growth model has been successfully applied to investigate how the

haemodynamic properties at the wall change as the stenosis develops. The near

wall velocity and the WSS on both the outer ICA and ECA walls were considered

in the region where the stenosis develops. As the stenosis grows it fills in the region

where low velocity and vortex motion is observed in the healthy artery. As the

stenosis develops it was seen to progress mainly downstream - as this happens a

region of low TA velocity and low TAWSS is observed around the downstream

tip. The OSI and RRT show similar behaviour except that they have high values

where u(1) and TAWSS are low. In addition to peaking at the region of the wall

where the stenosis is expanding, the OSI and RRT also identify an additional

region where their values are initially high and which can be associated with the
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region where vortex motion is observed in the healthy artery.

Although the stenosis did not develop on the inner walls of the ECA and

the ICA, the near wall haemodynamics were also seen to be affected. This was

particularly true of the ICA where the stenosis develops further into the artery.

Here the near wall haemodynamics were consistent with a meandering jet-like

flow developing with the stenosis.



Chapter 10

Alternative haemodynamic markers

for stenosis development

The position on the artery wall where the stenosis development occurred was

determined in chapter 9 by finding the position where the time averaged velocity

magnitude calculated 1 lu from the wall, u(1), has its minimum value. In this

chapter, we consider alternative markers, will develop based on the local haemo-

dynamics, for determining the wall position where the stenosis forms. The addi-

tional selected criteria selected here, were u(1);
∣

∣

∣
u
(1)
t

∣

∣

∣
=
∫ T

0

∣

∣

∣
u
(1)
t

∣

∣

∣
dt/T ; TAWSS;

RFI; SI, defined as the fraction of the period during which u(1) is less than 1% of

the peak pulse velocity; RRT; TADII ; OSI; and O:WS.

10.1 Stenosis development

The development of the stenosis is shown in Figures 10.1 and 10.2. In Figure 10.1

the development is seen to occur in layers, similar to that observed in Figure 9.1.

Figure 10.2 shows the development in layers in terms of the normalised parameter

T ∗

s representing the number of sites converted from wet to dry, normalised by the

length of each simulation: Ts = 747. All the simulations, except for the one

108
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Figure 10.1: Stenosis development in layers when the position of the development

is determined by for triggers (a) u(1), (b) |u(1)t |, (c) TAWSS, (d) RFI, (e) SI, (f)
RRT, (g) TADII (h) OSI and (i) O:WS

based in the OSI, show a similar final geometry for the stenosed artery, which is

consistent with that reported in the literature [193–196]. The simulation based

on OSI is presented for a shorter time, due to the stenosis developing around the

limits of the buffer region. Despite the general similarity, there are a number of

differences: both in the shape of the final stenosis; and also its development. For



CHAPTER 10. ALTERNATIVE HAEMODYNAMIC MARKERS 111

example, compared to the others, Figures 10.1 (e) and 10.2 (e) show the stenosis

development extending further into the artery on the ECA and extending less

far along the ICA. Figures 10.1 (g) and 10.2 (g) show that when TADII is used

as a marker the formation occurs fully on the ICA before switching to the ECA.

This is in contrast to the other cases where the development in the ECA occurs

predominantly towards the start of the process.

To further investigate the differences between simulations Figure 10.3 shows

∆T ∗

s defined as T ∗

sX − T ∗

sY , where T ∗

sX is the value of T ∗

s when X = u(1) is the

haemodynamic marker. T ∗

sY is the haemodynamic marker for Y ∈

{ u(1)t , TAWSS, RFI, SI, RRT,TADII , O:WS}. OSI was not considered here since

the behaviour in Figures 10.1 (h) and 10.2 (h) is very different to the other cases.

Figures 10.3 (a) and (b) indicate that the markers u(1), |u(1)t | and TAWSS are all

enabling the stenosis to form in a very similar manner. The other parameters

(RFI, SI, RRT, TADII and O:WS) cause the stenosis to develop in significantly

different manner, compared to u(1). Figure 10.4 shows ∆T ∗

s for these parameters

where X = O:WS and Y ∈ {RFI, SI, RRT and TADII}. Considerable simi-

larity is seen in Figure 10.4 (c) and to a lesser extent in Figure 10.4(a). This

indicates that as a marker for stenosis development O:WS and RRT act in a

very similar manner, with RFI also producing a similar outcome. The results in

Figures 10.1, 10.2, 10.3, 10.4 indicating that using low time-averaged near-wall

velocity, time-averaged tangential near-wall velocity and TAWSS to determine

how and where the stenosis develops all give a virtually identical outcome, and

so can be used interchangeably as markers for stenosis formation. The results

obtained using RRT and the ratio O:WS also showed considerable similarity to

each other and so these two markers can also be applied interchangeably. These

two sets of markers act in, along with RFI, SI and TADII , although predicting

different progression for the stenosis, all predict similar final geometries. OSI,

on the other hand, predicts a significantly different process which is in contrast
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(f) RRT
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Figure 10.2: Stenosis development for markers (a) u(1), (b) |u(1)t |, (c) TAWSS, (d)
RFI, (e) SI, (f) RRT, (g) TADII , (h) OSI and (i) O:WS

with observations in the literature [193–196]. This suggests that although the

OSI can be considered important in determining where the stenosis will develop,

it is not on its own a marker for stenosis development; and must be combined

with other haemodynamic properties, such as TAWSS in a combined parameter

such as O:WS. Since the OSI parameter does not predict a realistic stenosis, it

will not be considered further in this chapter.
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(e) Y =RRT
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(f) Y =TADII
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Figure 10.3: ∆T ∗

s , where X = u(1) and (a) Y=|u(1)t |, (b) Y = TAWSS, (c) Y =
RFI, (d) Y = SI, (e) Y = RRT, (f) Y = TADII and (g) Y = O:WS.

10.2 Geometrical development

To further assess the effect of the different markers, Figure 10.5 shows the area

converted from wall to dry on the ECA and ICA as a function of T ∗

s . On both walls

the curves for u(1), |u(1)t |, TAWSS are consistent with the first two being almost

indistinguishable. The two curves for RRT and O:WS are also very consistent

with each other. The curve for RFI is similar to the RRT/O:WS curves, while

TADII and SI curves are somewhat different than the others.

Another useful way to characterise the stenosis development is through the

diameter of the artery for a number of sections shown in Figure 10.6. In Figure

10.6 the black line shows the geometry of the healthy artery at T ∗

s = 0 and the

red curve the stenosed artery at T ∗

s = 1, when u(1) is used as a marker for the

stenosis development.

The change in diameter along the sections is shown in Figure 10.7, for the

different markers. The curves further highlight the strong similarity of u(1), |u(1)t |

and TAWSS. RRT and O:WS are again shown to be similar; RFI is somewhat
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(a) Y =RFI
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(c) Y =RRT
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(d) Y =TADII

Figure 10.4: ∆T ∗

s , where X = O:WS, (a) Y = RFI, (b) Y = SI, (c) Y = RRT
and (d) = Y = TADII

similar to RRT and O:WS in some regions, while in others difference can be

observed. TADII and SI show a different development.

The effect of the different marker on the haemodynamics is investigated in

Figures 10.8 - 10.10 for the ECA and Figures 10.11 - 10.13, for the ICA. The

haemodynamic properties shown are u(1) in Figures 10.8 and 10.11; RFI in Figures

10.9 and 10.12; and OSI in Figures 10.10 and 10.13. In each of these figures,

results are presented for different markers: (a) u(1) , (b) O:WS, (c) RFI, (d)

SI and (e) TADII . For Figures 10.8-10.13, the results obtained when |u(1)t | and
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Figure 10.5: Area removed from (a) the ECA and (b) the ICA by the developing
stenosis for different markers
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Figure 10.6: Artery sections

TAWSS were used as markers showed the same features when u(1) was used (part

(a)). Also, using RRT as a marker gave similar results to (O:WS) (part (b)).

For this reason, results are not reported for |u(1)t |, TAWSS or RRT. Comparing

Figures 10.8 (a) and 10.8 (b), the same behaviour is observed up to T ∗

s ≃ 0.3;

after this the behaviour differs: in particular the low near-wall velocity region

is maintained in Figure 10.8 (b) for much longer and is still fairly prominent at



CHAPTER 10. ALTERNATIVE HAEMODYNAMIC MARKERS 118

0 0.1 0.2 0.3 0.40.5 0.6 0.7 0.8 0.9 1
T

s

*

6.5

6.6

6.7

6.8

6.9

7
d(

m
m

)

u
(1)

u
t

(1)

TAWSS
RFI
SI
RRT
TAD

II
O:WS

(a) S1

0 0.1 0.2 0.3 0.40.5 0.6 0.7 0.8 0.9 1
T

s

*

6.5

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

d(
m

m
)

u
(1)

u
t

(1)

TAWSS
RFI
SI
RRT
TAD

II
O:WS

(b) S2

0 0.1 0.2 0.3 0.40.5 0.6 0.7 0.8 0.9 1
T

s

*

6.5

7

7.5

8

8.5

9

9.5

d(
m

m
)

u
(1)

u
t

(1)

TAWSS
RFI
SI
RRT
TAD

II
O:WS

(c) S3

0 0.1 0.2 0.3 0.40.5 0.6 0.7 0.8 0.9 1
T

s

*

2

2.5

3

3.5

4

d(
m

m
)

u
(1)

u
t

(1)

TAWSS
RFI
SI
RRT
TAD

II
O:WS

(d) S4

0 0.1 0.2 0.3 0.40.5 0.6 0.7 0.8 0.9 1
T

s

*

4

4.5

5

5.5

6

d(
m

m
)

u
(1)

u
t

(1)

TAWSS
RFI
SI
RRT
TAD

II
O:WS

(e) S5

0 0.1 0.2 0.3 0.40.5 0.6 0.7 0.8 0.9 1
T

s

*

4

4.5

5

5.5

d(
m

m
)

u
(1)

u
t

(1)

TAWSS
RFI
SI
RRT
TAD

II
O:WS

(f) S6

Figure 10.7: Change in artery diameter as the stenosis develops along the sections
a) S1, (b) S2, (c) S3, (d)S4, (e) S5 and (f) S6, for alternative markers.
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T ∗

s = 1.

This is also evident when comparing Figures 10.9 (a) and (b) and Figures

10.10 (a) and (b) where the regions of significant RFI are similar for T ∗

s < 0.3;

however for T ∗

s > 0.3 there are significant differences with considerably more

reverse flow when O:WS is used as a marker - that is despite the marker acting to

remove areas of low OSI (through enabling the stenosis to develop in such areas),

albeit in conjunction with the TAWSS through O:WS. In each case differences

are also observed when RFI, SI, and TADII are used as markers. Figure 10.8

(c) shows similar behaviour to Figure 10.8 (b) in that the low velocity region

is maintained longer than in Figure 10.8 (a), but the averaged velocity alters

more uniformly. Figure 10.8 (d) shows slightly different behaviour with the low

averaged velocity region ending move abruptly at each y-position. Figure 10.8

(e) also shows a different behaviour, with the initial profile extending to around

T ∗

s = 0.6 before the low velocity region expands downstream. This is due to the

stenosis only forming initially on the ICA, as seen in Figures 10.1 (g), 10.2 (g) and

10.5. Interestingly in Figure 10.1 (g), the stenosis expands further downstream

(y > 50mm) when TADII is used as a marker, compared to Figure 10.1 (a) when

u(1) is used. This can be observed in Figure 10.8 (e) where the low average velocity

region also reaches beyond y = 50mm, for T ∗

s > 0.9. Here the low averaged

velocity region appears to pierce through the higher velocity region in a similar

way to that observed for the ICA in Figure 9.10 (b). The observations for the RFI,

SI and TADII markers are consistent with Figures 10.9 and 10.10, which show

regions of reversible and oscillatory flow associated with the low average-velocity

region.

The behaviour of the haemodynamic wall properties on ICA in Figures 10.11

- 10.13 also demonstrate these same features. That is the u(1), |u(1)t | and TAWSS

marker plots are similar to each other, as are the RRT and O:WS marker plot -

so again only marker u(1) and O:WSS are presented for this group. When SI is
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Figure 10.8: u(1) on outer wall of ECA, over the development of the stenosis when
the applied marker is (a) u(1), (b) O:WS, (c) RFI, (d) SI and (e) TADII .
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Figure 10.9: RFI on outer wall of ECA, over the development of the stenosis
when the applied marker is u(1), (b) O:WS, (c) RFI, (d) SI and (e) TADII .



CHAPTER 10. ALTERNATIVE HAEMODYNAMIC MARKERS 122

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1

35

40

45

50

0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

OSI

(a) u(1)

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1

35

40

45

50

0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

OSI

(b) O:WS

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1

35

40

45

50

0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

OSI

(c) RFI

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1

35

40

45

50

0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

OSI

(d) SI

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1

35

40

45

50

0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

OSI

(e) TADII

Figure 10.10: OSI on outer wall of ECA over the development of the stenosis
when the applied marker is (a) u(1), (b) O:WS, (c) RFI, (d) SI and (e) TADII .
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Figure 10.11: u(1) on outer wall of ICA, over the development of the stenosis
when the applied marker is (a) u(1), (b) O:WS, (c) RFI, (d) SI and (e) TADII .
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Figure 10.12: RFI on outer wall of ICA, over the development of the stenosis
when the applied marker is u(1), (b) O:WS, (c) RFI, (d) SI and (e) TADII .
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Figure 10.13: OSI on outer wall of ICA over the development of the stenosis when
the applied marker is (a) u(1), (b) O:WS, (c) RFI, (d) SI and (e) TADII .
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a marker, Figures 10.11 and 10.12 part (d), the behaviour is different: the low

averaged velocity/inverse/ oscillatory flow is maintained throughout the devel-

opment in a fairly uniform manner. In Figures 10.11 and 10.12 part (e) where

TADII is the marker, the low time averaged velocity initially expands rapidly

downstream (as the stenosis develops on the ICA - see from Figures 10.2 (g) and

10.5 (b)) and then the profile remains fixed for T ∗

s > 0.5. By this time, the TA

tangential velocity is positive (Figure 10.12 (e)), all the oscillatory and reversible

flow is significantly reduced, Figures 10.13 and 10.12 part (e).

10.3 Conclusion

In terms of a marker for the stenosis development, the near-wall time averaged

velocity u(1), its tangential magnitude |u(1)t | and the TAWSS all produce very

similar stenosis development and the resulting haemodynamic wall parameters

are affected in a very similar manner. Markers RRT and O:WS also produced

similar stenosis development and the associated haemodynamic parameters are

similar to each other.

RFI, SI and TADII markers produce noticeable differences between each other

and between the two sets of parameters described above (u(1), |u(1)t |, TAWSS, and

RRT, O:WS). In each case the stenosis develops in a slightly different way and

the near wall haemodynamic behaviour is also different. Despite the differences

in formation, the form of the stenosis on both the ECA and ICA is similar for

each of the markers and consistent with observations in the literature [193–196].

This suggests that each of these haemodynamic properties are good markers for

stenosis development.

In contrast, when OSI is used as a marker, the stenosis is formed in a signif-

icantly different manner which is not consistent with literature observations. It

can thereafter be concluded that OSI on its own is not a good marker for steno-
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sis development. Low near wall velocity, as measured through u(1) produced a

realistic stenosis formation as did O:WS. Although differences were observed be-

tween the stenosis development when u(1) and O:WS were used as markers, both

produced results consistent with literature and so it is not possible to determine

which marker is superior; however, the similarity suggests that considering OSI in

conjunction with the TAWSS at least in terms of the O:WS parameter considered

here, does not produce a significant advantage over using low TAWSS on its own,

or indeed low near wall velocity.

Details of imaged stenosed geometries in the literature are varied, due to the

natural differences between individuals. Additionally, images in the literature

focus on particular stages of development, rather than following the progression

of the disease. Thus it is not possible to differentiate between the differences

observed here between the markers, although it is clear that the choice of marker

can have a noticeable affect on the near-wall haemodynamics.



Chapter 11

Effect of non-Newtonian properties

on stenosis development

11.1 Introduction

A number of studies have considered the non-Newtonian nature of the blood

flow [43, 106, 107, 140–143, 145, 200–203]. Some have concluded that it makes

little difference to the simulation results [107, 140, 141, 143, 200–202, 204]; while

others suggest that the effect is important [43, 142, 203]. Here we consider how

simulating the non-Newtonian nature of blood influences the stenosis development

model described in Chapter 6. Two cases were considered; one using a Newtonian

model and the second using the C-Y model described in Section 3.4.

11.2 Stenosis development

Results of the simulations are presented in Figures 11.1 and 11.2 when TAWSS

and O:WS are used as markers respectively. In Chapter 10 it was noted that time

averaged near-wall velocity, u(1) and TAWSS were similar markers for stenosis

development. This was also seen in Chapter 6 through the definition of u(1).

128
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Figure 11.1: Layer development of the stenosis using TAWSS as a marker for (a)
the Newtonian model and (b) the non-Newtonian C-Y model.
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Figure 11.2: Layer development of the stenosis using O:WS as a marker for (a)
the Newtonian model and (b) the non-Newtonian C-Y model.

In the non-Newtonian case this relationship no longer holds since the velocity

gradient is no longer proportional to the TAWSS. Here TAWSS was preferred

over the TA velocity since this incorporates the non-Newtonian nature of the

blood in terms of the changed haemodynamics and also the variable viscosity
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at the wall. In Figures 11.1 and 11.2 the overall formation of the stenosis is

similar for both the Newtonian and the non-Newtonian models; however some

differences can be observed. On the ECA, in Figure 11.1 the second, third and

fourth layers do not significantly increase the stenosed region for the Newtonian

case; while for the non-Newtonian case there is a significant difference between

the first and last layers. Differences are also evident on the ICA where the

second layer develops more significantly in the non-Newtonian model. However,

these differences do not significantly affect the final stenosed geometry and are no
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Figure 11.3: Stenosis development using TAWSS as a marker for (a) Newtonian
model and (b) Non-Newtonian C-Y model and (c) their comparison.
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greater than the differences between the two different markers (TAWSS in Figure

11.1 and O:WS in Figure 11.2). These differences are also evident in Figure 11.3,

11.4 which show, for markers TAWSS and O:WS respectively, the development

of the stenosis for both the Newtonian and non-Newtonian models, and also a

comparison between the two. Particularly in Figures 11.3(c) and 11.4(c) which

show the differences ∆T ∗

s = T ∗

sN − T ∗

sCY for the Newtonian and non-Newtonian

model. The differences observed in Figures 11.3(c) and 11.4(c) are generally small;

however are significantly larger than the differences observed in Figure 10.3(a)
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Figure 11.4: Stenosis development using O:WS as a marker for (a) Newtonian
model and (b) Non-Newtonian C-Y model and (c) their comparison.
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and (b). A red/orange line is present through the ECA side corresponding to the

differences in the layers discussed for Figure 11.1 (a). There is also a light blue

region near the wall for the ICA region in Figure 11.4 - this corresponds to the

differences in layer 2 observed in Figure 11.1 (b). Figure 11.5 shows how the area
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Figure 11.5: Area removed from (a)the ECA and (b) the ICA by the developing
stenosis using TAWSS and O:WS as markers for both the Newtonian and Non-
Newtonian C-Y models.

in the ECA and ICA, corresponding to sites converted from fluid to wall, grows

with T ∗

s . Although the final level of stenosis development is seen to be similar in

Figures 11.5 (a) and (b), there are noticeable differences for 0.2 ≤ T ∗

s < 0.6 and

0.8 ≤ T ∗

s ≤ 1. The first of these is due to the differences observed in Figures 11.1,

and 11.3 and 11.4 and the second, while smaller, again represents a difference in

the development. Figure 11.6 shows differences in the rate at which the artery

is being occluded on the artery sections shown in Figure 10.6. These differences

are fairly small; but they do show the development being altered due to the

non-Newtonian nature of the blood.

These observed changes in the artery geometry can potentially alter the

haemodynamics in the artery. To investigate this the wall parameters, u(1), u(1)t ,

OSI, RRT and RFI, are shown in Figure 11.7 for the ECA and in Figure 11.8

for the ICA. Figures 11.7 (a) and (b), for the ECA, show initial changes in the
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Figure 11.6: Change in artery diameter as the stenosis develops along the sections
a) S1, (b) S2, (c) S3, (d)S4, (e) S5 and (f) S6 using TAWSS and O:WS as a marker
for both the Newtonian and Non-Newtonian models.
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near-wall velocity, with the low velocity region expanding in the downstream di-

rection. Differences are observed for T ∗

s > 0.3, where the non-Newtonian shows

a region of lower velocity, particularly, in range A: 39mm < y < 45mm. This

region is also evident in Figures 11.7 (c) and (d) where an additional difference

is also observed in that the initial region where u
(1)
t is negative- representing

significant reversed flow during the period- which is initially present in range B

42mm < y < 47mm, is maintained for a shorter time in the non-Newtonian case.

The OSI and RRT are presented in Figures 11.7 (e) and (f) and 11.7 (g) and (h)

respectively. A comparison of both show an increased value of both in range A

for 0.25 < T ∗

s < 0.5 in the case of the non-Newtonian simulations. In range B the

values of OSI and RRT are initially higher for the non-Newtonian simulations,

but they reduce slightly sooner and less sharply at T ∗

s ≃ 0.2. The RFI, shown

in Figures 11.7 (i) and (j) displays the most significant differences between the

Newtonian and non-Newtonian simulations in region B, for T ∗

s < 0.2, RFI is sig-

nificantly lower. In region A, the RFI is maintained at a slightly higher value in

the non-Newtonian simulations for 0.43 < T ∗

s < 0.6.

This gives an effect of using a non-Newtonian model where the reverse flow

in the region downstream of the stenosis development is significantly reduced in

terms of the time averaged near-wall tangential velocity, u(1)t , in Figure 11.7 (d);

the percentage of the period where the flow is reversed, RFI in Figure 11.7 (i);

as well as a small reduction in the time over which high values of OSI, Figure

11.7 (f), and RRT, Figure 11.7 (h) are maintained. Despite this picture of the

overall reduction in reversal/oscillatory flow, Figures 11.7 (f) and (h) also show

a slight increase in the magnitude of OSI and RRT in region A. Additionally

around the upstream development of the stenosis, there is a difference in the

near-wall velocity relative to the Newtonian case. Figure 11.8 shows the same

haemodynamic properties in the ICA. Again, there is considerable similarity in

the results from the Newtonian and non-Newtonian simulations. There are also



CHAPTER 11. NON-NEWTONIAN MODEL 135

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1

35

40

45

50

0.030
0.028
0.026
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010

_
u (1)(m/s)

(a) u(1) for Newtonian model

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1

35

40

45

50

0.030
0.028
0.026
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010

_
u (1)(m/s)

(b) u(1) for C-Y model

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1

35

40

45

50

0.030
0.025
0.020
0.015
0.010
0.005
0.000

­0.005

_
u t

(1)(m/s)

(c) u
(1)
t for Newtonian model

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1

35

40

45

50

0.030
0.025
0.020
0.015
0.010
0.005
0.000

­0.005

_
u t

(1)(m/s)

(d) u
(1)
t for C-Y model

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1

35

40

45

50

0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

OSI

(e) OSI for Newtonian model

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1

35

40

45

50

0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

OSI

(f) OSI for C-Y model



CHAPTER 11. NON-NEWTONIAN MODEL 136

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8

35

40

45

50

24
22
20
18
16
14
12
10
8
6
4
2

RRT

(g) RRT for Newtonian model

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8

35

40

45

50

24
22
20
18
16
14
12
10
8
6
4
2

RRT

(h) RRT for C-Y model

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1

35

40

45

50

0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

RFI

(i) RFI for Newtonian model

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1

35

40

45

50

0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

RFI

(j) RFI for C-Y model

Figure 11.7: Near-wall haemodynamics over the development of the stenosis using

TAWSS as a marker: (a) and (b) u(1); (c) and (d) u(1)t ; (e) and (f) OSI; (g) and
(h) RRT; and (i) and (j) RFI, on the outer wall of the ECA, using a Newtonian
model (left column) and non-Newtonian C-Y model (right column).

a number of differences comparing Figures 11.8 (a) and (b), the time averaged

near-wall velocity is somewhat lower for the non-Newtonian simulation, partic-

ularly for T ∗

s < 0.5. In the same region in Figures 11.8 (c) and (d); both the

magnitude and the extent of negative tangential near-wall flow are reduced for

the non-Newtonian model. The magnitude of the OSI in Figures 11.8 (e) and (f)

are similar between the Newtonian and non-Newtonian simulations; however the

OSI reduces earlier for the non-Newtonian case, suggesting that the oscillatory



CHAPTER 11. NON-NEWTONIAN MODEL 137

Ts

y(
m

m
)

0 0.2 0.4 0.6 0.8 1
40

50

60

0.030
0.028
0.026
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010

_
u (1)(m/s)

(a) u(1) for Newtonian model

Ts

y(
m

m
)

0 0.2 0.4 0.6 0.8 1
40

50

60

0.030
0.028
0.026
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010

_
u (1)(m/s)

(b) u(1) for C-Y model

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1
40

45

50

55

60

65

0.030
0.025
0.020
0.015
0.010
0.005
0.000

­0.005

_
u t

(1)(m/s)

(c) u
(1)
t for Newtonian model

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1
40

45

50

55

60

65

0.030
0.025
0.020
0.015
0.010
0.005
0.000

­0.005

_
u t

(1)(m/s)

(d) u
(1)
t for C-Y model

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1
40

45

50

55

60

65

0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

OSI

(e) OSI for Newtonian model

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1
40

45

50

55

60

65

0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

OSI

(f) OSI for C-Y model



CHAPTER 11. NON-NEWTONIAN MODEL 138

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1
40

45

50

55

60

65

24
22
20
18
16
14
12
10
8
6
4
2

RRT

(g) RRT for Newtonian model

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1
40

45

50

55

60

65

24
22
20
18
16
14
12
10
8
6
4
2

RRT

(h) RRT for C-Y model

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1
40

45

50

55

60

65

0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

RFI

(i) RFI for Newtonian model

Ts
*

y(
m

m
)

0 0.2 0.4 0.6 0.8 1
40

45

50

55

60

65

0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

RFI

(j) RFI for C-Y model

Figure 11.8: Near-wall haemodynamics over the development of the stenosis using

TAWSS as a marker: (a) and (b) u(1); (c) and (d) u(1)t ; (e) and (f) OSI; (g) and
(h) RRT; and (i) and (j) RFI, on the outer wall of the ICA, using a Newtonian
model (left column) and non-Newtonian C-Y model (right column).

nature of the flow reduces more rapidly. This is mirrored in Figures 11.8 (g) and

(h), where the magnitudes are similar, but the RRT reduces earlier for the non-

Newtonian case. Figures 11.8 (i) and (j) show the most striking differences: they

both show a similar region where reversible flow is occurring; however there is a

marked difference in the percentage of the period where reversible flow occurs.

In the Newtonian case there is a region 48mm < y < 53mm, where the flow is

reversed for over 60% of the period which is maintained until T ∗

s ≃ 0.6. In the
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non-Newtonian case reversible flow typically occurs for no more than 45% of the

period and is typically around 30% of the period, for 48mm < y < 53mm and

T ∗

s < 0.6.

11.3 Conclusion

The stenosis formed using both the Newtonian and Non-Newtonian model were

fairly similar in terms of the final shape of the geometry; however small differences

were observed both in the final geometry and the formation. Differences were also

observed in the near wall haemodynamics between the two models. In both the

ECA and the ICA the non-Newtonian model reduces the reversible flow in terms

of both the special region where it occurs, and its magnitude. There is also a

small reduction in the near-wall TA velocity and the oscillatory nature of the flow

measured through the OSI.
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Conclusions

The lattice Boltzmann method was applied to model stenosis development in the

carotid artery.

12.1 Stenosis model

The main aim of this thesis has been to develop a model to simulate the growth

of a stenosis in the carotid artery, based on the local haemodynamics. To this

end, a model was developed based on the time averaged near wall velocity. The

model involved two lattice-based parameters and the model was evaluated to find

a range for these parameters over which the stenosis developed in an independent

manner. Using parameters in this range the model was able to replicate stenosed

geometries similar to MRI images in the literature; with haemodynamics with

the same features as have been observed in alternative CFD [199] and also in

experimental results in a phantom [197–199].

12.2 Wall haemodynamics

After establishing the viability of the model, it was used to provide details of how

the haemodynamics changes during stenosis development. The results indicated

140
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how the instantaneous near wall velocity and WSS vary over a period at various

stages of stenosis development. Time averaged wall quantities relating to the

velocity, TAWSS, OSI, RRT, RFI and O:WS, the ratio of OSI:TAWSS, were

considered in terms of how they change as the stenosis forms. As the stenosis

develops it progresses mainly downstream in such a way that regions of low TA

velocity, low TAWSS, high OSI and high RRT are maintained around the leading

edge. As the stenosis grows it develops in the region where low velocity and

vortex motion was observed in the healthy artery, thus reducing and eventually

eliminating the vortex motion.

12.3 Haemodynamic markers

The original model used the position of minimum time averaged near-wall velocity

as a marker for stenosis development. Alternative haemodynamic markers were

considered. When the oscillatory shear index (OSI) was applied as a marker,

the stenosis was found to develop in a significantly different manner to all the

other markers considered, and was also different to literature examples of imaged

arteries with different levels of stenosis. Regions of high OSI are known to occur

in regions of the artery where autherosclerosis occurs. These two features are

often considered to be related making OSI a marker for stenosis development.

However, the simulations presented here indicate that OSI on its own is not a

good marker for stenosis development. For all the other markers considered, the

resulting geometry was comparable with literature observations [193–196], but

with noticeable differences between some of the markers. Although differences

were observed, none of the stenoses produced were non-realistic and so it was not

possible to differentiate between the suitability of the different markers. Within

these markers the time-averaged near-wall velocity magnitude, the time-average

of the magnitude of the tangential component of this velocity and the TAWSS
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were all found to act in an almost identical manner. Two other markers O:WS

and RRT also produced very similar stenosis development.

12.4 Non-Newtonian model

Simulations were also run using the non-Newtonian C-Y model. This was done

for two markers TAWSS and O:WS. In both cases differences were observed be-

tween the Newtonian and non-Newtonian models in terms of both the manner in

which the stenosis developed and the near-wall haemodynamics. Although these

variations in the quantities of measure were not large, they did indicate that in-

cluding the non-Newtonian nature of blood, through the C-Y model, does have

an influence on the modelling of the stenosis.

12.5 Future Directions

In this thesis, attention has primarily been given to modelling stenosis devel-

opment in a human carotid artery. This has been due to the susceptibility of

the carotid bifurcation to atherosclerosis. There are a number of other arteries

which are similarly susceptible to this disease, in particular the human aorta.

The comparison of haemodynamics between stenosed and stented arteries could

be a further area for research.

The C-Y model has been used in this Thesis to simulate the non-Newtonian

blood. This is a commonly used model for simulating the blood flow; however, it

is not the only one and alternatives could be considered.

Development of a 3D model would enable the secondary flows in the artery

to be assessed and their effect on stenosis development to be evaluated.



Appendix A

A.1 Hamiltonian of a system

At a microdynamic scale, a fluid can be resembled to a N-particle system, de-

scribed by a Hamiltonian of the N-particle system, H = H (x,p, t) [52], with

(x,p) the coordinates of a 3N space in a momentum phase system such that

x = (x1, ...,xN) are the 3N coordinates of a spatial system and p = (p1, ...,pN)

are the 3N coordinates of a conjugate momentum system. H is the total energy of

the system, sum of kinetic energy and the potential energy due to particles inter-

actions. With respect to the Hamiltonian of the system, the motion of particles

can be described by:

ẋi =
∂H

∂pi

(A.1)

where pi is the momentum and xi is the position in the 3-D space of the i particle,

correspondingly with i = 1, .., N and

ṗi =
∂H

∂xi
(A.2)

A.2 Collision integral

The Q (f, f) is the collision integral describing the two particles situation accom-

panying their collision. It is set assuming that a two-particles system of input

143
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velocities (u,u1) is moving after the collision with a pair of (output) velocities

(u′,u′

1). The differential cross-section σ (Ω) results from the two-particles colli-

sion. The Q (f, f) is expressed as:

Q (f, f) =

∫

du

∫

dΩσ (Ω) |u− u1| [f(u′)f(u′

1)− f(u)f(u1)] (A.3)

A.3 Summation properties

Σieixeiy = 6e2δxy, (A.4)

with δxy the Kronecher delta:

δxy =











1 x = y

0 x 6= y

A.4 Chapman-Enskog expansion

The Chapman-Enskog expansion for a function pi is written:

pi = Σ∞

n=0ǫ
n+1pni = p

(0)
i + ǫp

(1)
i + ǫ2p

(2)
i + ...., (A.5)

with ǫ = tc
U

L
the ratio of the free path to the characteristic length [21,52] called

the Knudsen number. However after considering an integer n′ such that n′+m =

n, the pni is equivalent to:

p
(n)
i = Σ

(n−1)
m=0 ∂

(m)
t p

(n−1−m)
i . (A.6)

However, in case of using the terms peqi and pneqi we re-write the eq. A.5:

pi = peqi + pneqi , (A.7)
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with p(eq)i = p
(0)
i and p(neq)i = ǫp

(1)
i + ǫp

(2)
i + ..+ ǫ(n−1)p

(n−1)
i

Product rules may be used in the Chapman-Enskog expansion to write a

derivative: ∂ρuαuβ

∂t1
.

Assuming that we have a distribution function fi = fi (x(a).t(a)), we can

write the total differential of fi in a as:

dfi
da

=

(

∂fi
∂t

)

dt

da
+

(

∂fi
∂xa

)

dxa
da

− 1

τ

(

fi − f
(0)
i

)

. (A.8)

A.5 Ethic Review
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