1,360 research outputs found

    Minors and dimension

    Full text link
    It has been known for 30 years that posets with bounded height and with cover graphs of bounded maximum degree have bounded dimension. Recently, Streib and Trotter proved that dimension is bounded for posets with bounded height and planar cover graphs, and Joret et al. proved that dimension is bounded for posets with bounded height and with cover graphs of bounded tree-width. In this paper, it is proved that posets of bounded height whose cover graphs exclude a fixed topological minor have bounded dimension. This generalizes all the aforementioned results and verifies a conjecture of Joret et al. The proof relies on the Robertson-Seymour and Grohe-Marx graph structure theorems.Comment: Updated reference

    Topological minors of cover graphs and dimension

    Full text link
    We show that posets of bounded height whose cover graphs exclude a fixed graph as a topological minor have bounded dimension. This result was already proven by Walczak. However, our argument is entirely combinatorial and does not rely on structural decomposition theorems. Given a poset with large dimension but bounded height, we directly find a large clique subdivision in its cover graph. Therefore, our proof is accessible to readers not familiar with topological graph theory, and it allows us to provide explicit upper bounds on the dimension. With the introduced tools we show a second result that is supporting a conjectured generalization of the previous result. We prove that (k+k)(k+k)-free posets whose cover graphs exclude a fixed graph as a topological minor contain only standard examples of size bounded in terms of kk.Comment: revised versio

    On-line coloring between two lines

    Get PDF
    We study on-line colorings of certain graphs given as intersection graphs of objects "between two lines", i.e., there is a pair of horizontal lines such that each object of the representation is a connected set contained in the strip between the lines and touches both. Some of the graph classes admitting such a representation are permutation graphs (segments), interval graphs (axis-aligned rectangles), trapezoid graphs (trapezoids) and cocomparability graphs (simple curves). We present an on-line algorithm coloring graphs given by convex sets between two lines that uses O(ω3)O(\omega^3) colors on graphs with maximum clique size ω\omega. In contrast intersection graphs of segments attached to a single line may force any on-line coloring algorithm to use an arbitrary number of colors even when ω=2\omega=2. The {\em left-of} relation makes the complement of intersection graphs of objects between two lines into a poset. As an aside we discuss the relation of the class C\mathcal{C} of posets obtained from convex sets between two lines with some other classes of posets: all 22-dimensional posets and all posets of height 22 are in C\mathcal{C} but there is a 33-dimensional poset of height 33 that does not belong to C\mathcal{C}. We also show that the on-line coloring problem for curves between two lines is as hard as the on-line chain partition problem for arbitrary posets.Comment: grant support adde

    Tree-width and dimension

    Full text link
    Over the last 30 years, researchers have investigated connections between dimension for posets and planarity for graphs. Here we extend this line of research to the structural graph theory parameter tree-width by proving that the dimension of a finite poset is bounded in terms of its height and the tree-width of its cover graph.Comment: Updates on solutions of problems and on bibliograph

    Dimension of posets with planar cover graphs excluding two long incomparable chains

    Full text link
    It has been known for more than 40 years that there are posets with planar cover graphs and arbitrarily large dimension. Recently, Streib and Trotter proved that such posets must have large height. In fact, all known constructions of such posets have two large disjoint chains with all points in one chain incomparable with all points in the other. Gutowski and Krawczyk conjectured that this feature is necessary. More formally, they conjectured that for every k1k\geq 1, there is a constant dd such that if PP is a poset with a planar cover graph and PP excludes k+k\mathbf{k}+\mathbf{k}, then dim(P)d\dim(P)\leq d. We settle their conjecture in the affirmative. We also discuss possibilities of generalizing the result by relaxing the condition that the cover graph is planar.Comment: New section on connections with graph minors, small correction

    Nowhere Dense Graph Classes and Dimension

    Full text link
    Nowhere dense graph classes provide one of the least restrictive notions of sparsity for graphs. Several equivalent characterizations of nowhere dense classes have been obtained over the years, using a wide range of combinatorial objects. In this paper we establish a new characterization of nowhere dense classes, in terms of poset dimension: A monotone graph class is nowhere dense if and only if for every h1h \geq 1 and every ϵ>0\epsilon > 0, posets of height at most hh with nn elements and whose cover graphs are in the class have dimension O(nϵ)\mathcal{O}(n^{\epsilon}).Comment: v4: Minor changes suggested by a refere

    On the Duality of Semiantichains and Unichain Coverings

    Full text link
    We study a min-max relation conjectured by Saks and West: For any two posets PP and QQ the size of a maximum semiantichain and the size of a minimum unichain covering in the product P×QP\times Q are equal. For positive we state conditions on PP and QQ that imply the min-max relation. Based on these conditions we identify some new families of posets where the conjecture holds and get easy proofs for several instances where the conjecture had been verified before. However, we also have examples showing that in general the min-max relation is false, i.e., we disprove the Saks-West conjecture.Comment: 10 pages, 3 figure

    The Queue-Number of Posets of Bounded Width or Height

    Full text link
    Heath and Pemmaraju conjectured that the queue-number of a poset is bounded by its width and if the poset is planar then also by its height. We show that there are planar posets whose queue-number is larger than their height, refuting the second conjecture. On the other hand, we show that any poset of width 22 has queue-number at most 22, thus confirming the first conjecture in the first non-trivial case. Moreover, we improve the previously best known bounds and show that planar posets of width ww have queue-number at most 3w23w-2 while any planar poset with 00 and 11 has queue-number at most its width.Comment: 14 pages, 10 figures, Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018
    corecore