2,502 research outputs found

    BOMEX bulletin, no. 5

    Get PDF
    Transition of BOMEX to BOMAP with objectives and structur

    Sensors

    Get PDF

    Airborne lidar experiments at the Savannah River Plant

    Get PDF
    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed

    Suitability of Low Cost Commercial Off-the-Shelf Aerial Platforms and Consumer Grade Digital Cameras for Small Format Aerial Photography

    Get PDF
    Many research projects require the use of aerial images. Wetlands evaluation, crop monitoring, wildfire management, environmental change detection, and forest inventory are but a few of the applications of aerial imagery. Low altitude Small Format Aerial Photography (SFAP) is a bridge between satellite and man-carrying aircraft image acquisition and ground-based photography. The author’s project evaluates digital images acquired using low cost commercial digital cameras and standard model airplanes to determine their suitability for remote sensing applications. Images from two different sites were obtained. Several photo missions were flown over each site, acquiring images in the visible and near infrared electromagnetic bands. Images were sorted and analyzed to select those with the least distortion, and blended together with Microsoft Image Composite Editor. By selecting images taken within minutes apart, radiometric qualities of the images were virtually identical, yielding no blend lines in the composites. A commercial image stitching program, Autopano Pro, was purchased during the later stages of this study. Autopano Pro was often able to mosaic photos that the free Image Composite Editor was unable to combine. Using telemetry data from an onboard data logger, images were evaluated to calculate scale and spatial resolution. ERDAS ER Mapper and ESRI ArcGIS were used to rectify composite images. Despite the limitations inherent in consumer grade equipment, images of high spatial resolution were obtained. Mosaics of as many as 38 images were created, and the author was able to record detailed aerial images of forest and wetland areas where foot travel was impractical or impossible

    Study of selenodetic measurements for early apollo mission final report

    Get PDF
    Selenodetic measurements for early Apollo missio

    Applications of Side Scan and Parametric Echosounders for Mapping Shallow Seagrass Habitats and Their Associated Organic Carbon

    Get PDF
    Despite a global valuation of $1.9 trillion seagrass habitats world-wide are in decline—directly impacting the large soil carbon stocks associated with seagrasses. Many methods exist to measure the health of seagrass habitats, yet few apply to shallow coastal ecosystems. Those that do lack spatial resolution (satellite surveys) or do not provide continuous data across large areas (point-based surveys). Furthermore, carbon content of these ecosystems is largely limited to destructive and time-consuming soil core sampling. Side scan and parametric acoustics represent a unique technological opportunity to study habitat coverage and carbon content of vegetated coastal habitats (\u3c 3 m depth). This study presents proof of concept for applications of recreational side scan and parametric sub-bottom profiling sonars in mapping both habitat coverage and organic carbon distribution in shallow seagrass habitats, and explores how these methods might be improved in future applications

    Detection of flooded urban areas in high resolution Synthetic Aperture Radar images using double scattering

    Get PDF
    Flooding is a particular hazard in urban areas worldwide due to the increased risks to life and property in these regions. Synthetic Aperture Radar (SAR) sensors are often used to image flooding because of their all-weather day-night capability, and now possess sufficient resolution to image urban flooding. The flood extents extracted from the images may be used for flood relief management and improved urban flood inundation modelling. A difficulty with using SAR for urban flood detection is that, due to its side-looking nature, substantial areas of urban ground surface may not be visible to the SAR due to radar layover and shadow caused by buildings and taller vegetation. This paper investigates whether urban flooding can be detected in layover regions (where flooding may not normally be apparent) using double scattering between the (possibly flooded) ground surface and the walls of adjacent buildings. The method estimates double scattering strengths using a SAR image in conjunction with a high resolution LiDAR (Light Detection and Ranging) height map of the urban area. A SAR simulator is applied to the LiDAR data to generate maps of layover and shadow, and estimate the positions of double scattering curves in the SAR image. Observations of double scattering strengths were compared to the predictions from an electromagnetic scattering model, for both the case of a single image containing flooding, and a change detection case in which the flooded image was compared to an un-flooded image of the same area acquired with the same radar parameters. The method proved successful in detecting double scattering due to flooding in the single-image case, for which flooded double scattering curves were detected with 100% classification accuracy (albeit using a small sample set) and un-flooded curves with 91% classification accuracy. The same measures of success were achieved using change detection between flooded and un-flooded images. Depending on the particular flooding situation, the method could lead to improved detection of flooding in urban areas

    Radar data processing and analysis

    Get PDF
    Digitized four-channel radar images corresponding to particular areas from the Phoenix and Huntington test sites were generated in conjunction with prior experiments performed to collect X- and L-band synthetic aperture radar imagery of these two areas. The methods for generating this imagery are documented. A secondary objective was the investigation of digital processing techniques for extraction of information from the multiband radar image data. Following the digitization, the remaining resources permitted a preliminary machine analysis to be performed on portions of the radar image data. The results, although necessarily limited, are reported

    The 1993-1994 Surge Of Bering Glacier, Alaska Observed With Satellite Synthetic Aperture Radar

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 1996Sequential synthetic aperture radar (SAR) images acquired by the First European Remote Sensing Satellite (ERS-1) were employed for observation of the 1993-'94 surge of Bering Glacier, Alaska. Evidence of accelerated motion became visible in late April 1993. Subsequently the surge front propagated down-glacier at a mean velocity of 90 m/day between 19 May and 25 August, reaching most of the 34 km perimeter of the terminus by shortly after 25 August. The calving terminus then advanced rapidly into proglacial Vitus Lake at a maximum rate, during 9 August to 18 October, of 19 m/day in its central area. The propagating surge front consisted of a distributed region of undulations and bulges on the glacier surface having heights, estimated from SAR data, of 40 to 110 m and widths varying from 0.7 to 1.5 km. The measurements were made using terrain-corrected, geocoded and coregistered images. <p

    Non-Contact Height Estimation for Material Extrusion Additive Systems via Monocular Imagery

    Get PDF
    Additive manufacturing is a dynamic technology with a compelling potential to advance the manufacturing industry. Despite its capacity to produce intricate designs in an efficient manner, industry still has not widely adopted additive manufacturing since its commercialization as a result of its many challenges related to quality control. The Air Force Research Laboratory (AFRL), Materials and Manufacturing Directorate, Functional Materials Division, Soft Matter Materials Branch (RXAS) requires a practical and reliable method for maintaining quality control for the production of printed flexible electronics. Height estimation is a crucial component for maintaining quality control in Material Extrusion Additive Manufacturing (MEAM), as the fundamental process for constructing any structure relies on the consecutive layering of precise extrusions. This work presents a computer vision solution to the problem of height estimation using monocular imagery as applicable to MEAM
    • …
    corecore