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Abstract

Additive manufacturing is a dynamic technology with a compelling potential to ad-

vance the manufacturing industry. Despite its capacity to produce intricate designs

in an e�cient manner, industry still has not widely adopted additive manufactur-

ing since its commercialization as a result of its many challenges related to quality

control. The Air Force Research Laboratory (AFRL), Materials and Manufacturing

Directorate, Functional Materials Division, Soft Matter Materials Branch (RXAS)

requires a practical and reliable method for maintaining quality control for the pro-

duction of printed flexible electronics. Height estimation is a crucial component for

maintaining quality control in Material Extrusion Additive Manufacturing (MEAM),

as the fundamental process for constructing any structure relies on the consecutive

layering of precise extrusions. This work presents a computer vision solution to the

problem of height estimation using monocular imagery as applicable to MEAM.
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NON-CONTACT HEIGHT ESTIMATION FOR MATERIAL

EXTRUSION ADDITIVE SYSTEMS VIA MONOCULAR IMAGERY

I. Introduction

1.1 Motivation

Additive manufacturing is an ever-growing field of manufacturing techniques that

is founded on the layer-by-layer construction of three-dimensional structures. The

American Society for Testing and Materials (ASTM) International Committee F42

on Additive Manufacturing Technologies defines it as, “a process of joining materials

to make objects from 3D model data, usually layer upon layer, as opposed to sub-

tractive manufacturing methodologies,” where synonyms include additive fabrication,

additive processes, additive techniques, additive layer manufacturing, layer manufac-

turing, and freeform fabrication [1]. Additive manufacturing provides many benefits

over traditional manufacturing technologies. It lends easy, on-demand customization

of unique products and allows designs that were not possible with previous manu-

facturing techniques [2, 3]; according to National Institute of Standards and Tech-

nology (NIST), it is cost e↵ective for manufacturing small batches with continued

centralized manufacturing as well as provides improved material and machine costs,

build envelope and envelope utilization, build time, energy consumption, and labor

costs over previous technologies [4]; and along with innovations in autonomous mate-

rial discovery, it enables environmental-friendly product design unlike any traditional

manufacturing process [5].

Material extrusion is one of seven additive manufacturing process categories, en-

1



compassing fused deposition modeling and fast filament fabrication, “in which mate-

rial is selectively dispensed through a nozzle or orifice” [1]. Today, material extrusion

systems are highest in demand out of all available additive systems as a result of the

success of Stratasys and their fused deposition modeling [2]. Though it a↵ords all

of the aforementioned benefits, just as with all additive systems, Material Extrusion

Additive Manufacturing (MEAM) introduces its own abundant number of challenges

that lead to product degradation.

1.2 Sponsor

This research is sponsored by the Air Force Research Laboratory (AFRL), Ma-

terials and Manufacturing Directorate, Functional Materials Division, Soft Matter

Materials Branch (RXAS). AFRL/RXAS is highly interested in the optimization of

MEAM, as it is their instrument for producing multi-purposed flexible electronics,

including photovoltaics used in solar energy panels for unmanned aerial systems and

flexible batteries used in pH-level scanners for airmen health meters. More specifi-

cally, they aspire to advance the MEAM process by improving their current system’s

capability of quality assurance.

1.3 Research Topic

The build quality of a product made via MEAM can be defined by its geometri-

cal, mechanical, and physical properties. With respect to real-time control of additive

manufacturing, there are correlations between process parameters and process signa-

tures that a↵ect a product’s quality. Process parameters are either continuously

modifiable (i.e. extrusion rate, toolpath movement, etc.) or predefined (i.e. material

properties, nozzle properties, etc.) inputs to the additive system. Process signatures

are dynamically changing characteristics, which can be observed or measured (i.e.,

2



bonding reaction to environment, unknown factors like alien particle obstruction,

etc.) or are determined through analytical modelling and simulation [6]. Though

some research in online process monitoring and control in metal-based additive man-

ufacturing exists, no research is related to the application of the MEAM process.

As MEAM is distinguished by consecutive layering of extrusions, the height mea-

surement of a single layer is the most fundamental feedback for the quality of a printed

structure. Each extruded layer requires a target height to assure the geometrical suc-

cess of a print, which can ultimately a↵ect its physical and mechanical properties as

well. Currently, AFRL/RXAS relies on manual feedback of a touch probe sensor to

retrieve height measurements for assessing the quality of prints. The current method

for target height acquisition requires one or more initial test prints of a layer by fine-

tuning process parameters to realize a target extrusion height. Even if the target

height is achieved on the first print, the touch probe mechanism is invasive and has

presumably damaged the print with its physical contact. Additionally, this method

requires redundant and ultimately excessive labor. Thus, their current solution for

the basic quality assurance of MEAM is highly ine�cient.

1.4 Research Objective

In order to address the above issues, this thesis presents an alternative solution

for extrusion height estimation in pursuance of a non-invasive and man-hour e�cient

quality assurance process for MEAM additive systems. This study involves multiple

stages to accomplish this solution.

This thesis begins by developing a software application for the automation of ma-

terial extrusion printing. The software provides both manual and automated control

of the entire additive system, with an object-oriented design and command-line in-

terface. The goal is to support portability to other additive systems through the use

3



of various software design principles. It supplies the control-loop feedback necessary

to implement the height estimation capability as well as accommodates extensibility

for implementation of prospective feedback mechanisms.

Utilizing the software application, an experimental testing phase refines the pro-

cess and requirements for data collection; the goal is to acquire the information nec-

essary to build a predictive height estimation model. Through iterative modification

to the design of the experiment, this thesis develops an automation process for the

mass production of extrusions, height information, and imagery data.

The next research objective is to compose an algorithm for extracting height

information from the images collected on sample extrusions. This thesis implements

the photometric stereo surface reconstruction algorithm to translate two-dimensional

images into three-dimensional structures. Then using the samples created in the

experimentation phase, this study builds a predictive model for estimating heights

of extrusions by correlating the calculated depths to height measurements. The key

advancement in this method is that it provides a height estimation mechanism for

online feedback during MEAM prints to allow for non-invasive print correction.

1.5 Assumptions and Limitations

Assuring high levels of quality and consistency of MEAM products is a challeng-

ing task as a consequence of the very large number of correlations between process

parameters and process signatures that a↵ect an extrusion’s outcome. These include

the high complexity of physical phenomena and transformations that result from part

production as well as the lack of formal mathematical and statistical models required

to control the build process outcome and ultimately print quality. In attempt to relax

some of these complications, some assumptions are made to simplify this study.

This study only considers short, single-line prints of a single material in the xy-

4



plane. Di↵erent materials and structures impose challenges with lighting, camera,

and environment configurations, along with print parameters and signatures. This

methodology mitigates the complications these introduce at the expense of creating

a more robust and practical height estimation tool.

There are assumptions related to utilizing the photometric stereo surface re-

construction method, such as imaging with orthographic projection and surface re-

flectance properties. Chapter II discusses these in further detail.

This study is constrained to the hardware limitations of the available MEAM ad-

ditive system and its peripheral devices. Thus, methods chosen are based on the ca-

pabilities of the system (i.e. central placed camera, lighting positions, downsampling

images, etc.). Additionally, the iterative modification to the experimental design, in

tangent to its laborious requirements, limit the quantity and quality of the final data

collection.

1.6 Thesis Organization

This thesis is organized as follows: Chapter II discusses relevant literature leading

to the understanding of the photometric stereo problem formulation as well as reviews

similar attempts to automate control of processes in additive systems. Chapter III

presents the final version for the design of experiment, along with the necessary

techniques involved with preparing for surface reconstruction. It then discusses the

exact methods use to create surface heights and the model designed to predict surface

heights from monocular imagery. Chapter IV analyzes the performance and results

of the developed algorithm. Lastly, Chapter V provides a summary of conclusions

and discusses future research opportunities.
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II. Literature Review

This chapter discusses the relevant literature to developing an algorithm for pre-

dicting heights of Material Extrusion Additive Manufacturing (MEAM) single-line

prints. We explore the evolution of depth perception within the computer vision field

leading to the technique chosen for this study, photometric stereo, with the following

section covering its problem formulation. This chapter also reviews relevant research

in automation of process control in additive systems as well as autonomy in materials

research.

2.1 Depth Perception in Computer Vision

The human brain can recognize faces in photographs with variations in illumina-

tion, viewpoint, and expression. It is able to interpolate the missing information from

a 2D image in order to understand the 3D scene it represents. Researchers have aimed

to recreate the human’s innate ability to perceive depth ever since the invention of the

stereoscope in the 19th Century. The introduction of digital photography empowered

the capturing of optical images and storing such images as electrical signals, or digital

images. With this, depth perception in the field of computer vision has evolved over

the years through a collection of techniques classified within ‘Shape-from-X.’

Fundamentals of Light and Images.

Understanding how depth perception is achieved begins with understanding how

the digital image is created. A camera captures an optical image via its lens by sensing

light reflecting from a 3D scene and then projects the image upon a 2D plane. The

optical image is converted to a digital signal by a millions of tiny light sensors, known

as photosites, in the camera (i.e. CCD, CMOS, etc.). The size of the digital signal
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depends on the quantity of the photons emitted from the scene and captured by the

photosites, the bit depth of each photosite, as well as the file format conversion. Each

sensor directly corresponds to individual pixels within the final digital image. This

process for a black and white image can be seen in Figure 1 [7].

Figure 1. Digital image acquisition process.

As the camera in this study utilizes the Red, Green, and Blue (RGB) format, each

photosite has three sensors that only capture the light within the spectrum appro-

priate to their respective color. Thus, the final digital image is divided into three

channels representing the intensity of each color for a given pixel [8]. Utilizing the

maximum image size capable of 1044 by 2048 pixels with the high-quality file for-

mat Tagged Image Format File (TIFF), the final digital image format is stored as a

multi-dimensional array of size 1044 by 2048 by 3 with values ranging between 0 and

255.

Shape-from-X.

The process of achieving depth perception from images using Shape-from-X meth-

ods is better perceived as reverse-engineering the aforementioned image acquisition

process. The range of approaches studied over the years are generally partitioned

into active and passive methods, where each is distinguished by the use of intentional

and controlled illumination in a scene or the lack of, respectively [9]. Additionally,
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each method may utilize single or multiple vantage points. In an introduction to

Shape-from-X, Kyrgyzova identifies a few of the most common methods within each

category (seen in Figure 2) and provides an overview of those indicated in red [7].

Figure 2. Classification of existing Shape-from-X approaches.

It is widely adopted that generally active methods will provide more accurate

surface reconstructions than passive methods when their use is feasible [10]. As

the environment of this study was in a lab that allowed the control of illumination

projection on still objects, passive methods were not considered. Additionally, the

utilized MEAM printer constrained the image collection to a single, centered vantage

point. Thus, we consider Shape-from-Shading as the first feasible approach for surface

reconstruction. However, today the Shape-from-Shading problem is known to be an

ill-posed problem, as a number of studies have shown the solution to not be unique

as a result of [11].

There are a number of reasons that the Shape-from-Shading method is infeasible

for the surface reconstruction application of this study. Research has shown that when

an image of an object with Lambertian reflectance is illuminated by a distant light

source and viewed orthographically, there is an implicit ambiguity in determining its

3D structure, which is known as the Bas-Relief Ambiguity [12]. Additionally, the

problem formulation requires a number of assumptions that make its use impracti-
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cal. The complete list of assumptions necessary for the Shape-from-Shading problem

formulation as stated by Klette, et al. are shown in Figure 3 [13].

Figure 3. List of assumptions necessary for Shape-from-Shading.

These assumptions are reduced by extracting parameters from the scene that are

expected to be known. This can be done by assuming parallel illumination, Lam-

bertian reflection, and constant albedo. Already these assumptions prevent the use

of Shape-from-Shading as the surface reflection of Silver Poly(Methyl Methacrylate)

(Ag-PMMA) is highly specular. Nonetheless, we progress through the Shape-from-

Shading problem formulation in order to gain insight into the method chosen for this

study. To do such, we must first realize the properties of light reflectance and its in-

teraction in a scene in order to fully understand why the camera captures the images

it does.

Shape-from-Shading.

The premise behind Shape-from-Shading is that the 3D shape of an object can

be estimated by using shading in a 2D image. The previous section discussed how
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the imaging process is one that maps light intensities from points in a scene onto in

an image plane, known as the reflectance map. Understanding the physics of how

light reflects from surfaces enables utilizing the reflectance map to reverse engineer

the imaging process in order to extract the shape of an object. It must be noted that

in any surface, one of three behaviors may occur when a surface is illuminated; the

light can reflect, refract, or scatter. This study only considers surface reflection.

The irradiance at a point in an image plane is determined by the radiance intensity

of the corresponding point in the scene. There are two factors that a↵ect the radiance

reflected by the object in the scene. The first is the illumination that falls on that

surface, and the second is the amount of incident illumination that reflects from

the surface. Typically, the radiance emitted from the surface is calculated using a

Bidirectional Reflectance Distribution Function (BRDF). In order to determine the

irradiance of an image using the geometry of the surfaces and the light source position,

we must know the BRDF for the scene surfaces [14]. Only then can we use the BRDF

to calculate the surface normals for each point in the image.

Figure 4. Specular (left) and Lambertian, or di↵use, (right) reflectance.

The appropriate BRDF is completely dependent of the reflection properties of the

surface. Of these, there are Lambertian—or di↵use—reflectance, where incident light

is distributed in all possible surface directions such that equal energy is seen from any

direction, and specular reflectance, where all incident light is illuminated at the same

angle opposite the surface normal. Figure 4 portrays these reflectance properties [15].
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Though it is common to use a combination of both specular and di↵use reflectance

to model reflectance properties of an object, as this is most appropriate for real-

world applications, the classical Shape-from-Shading problem assumes a Lambertian

reflectance.

N = N0 cos ✓ (1)

Thus, Lambert’s cosine law (Equation 1) states that the perceived brightness of a

surface illuminated from a point source is inversely proportional to the angle between

the surface normal and the viewing direction [16]. Assuming perfect di↵use reflection,

the BRDF simplifies to a constant of ⇢d
⇡ I [14], where ⇢d is the surface albedo and I is

the source light intensity, which greatly reduces the surface radiance to Equation 2.

L =
⇢d

⇡
I cos ✓i (2)

Equation 2 is a formulation for the reflectance map L in terms of scene illumination,

surface reflectance, and representation of surface orientation. It can then translate to

Equation 5 using vector components in order to solve for the surface normal.

L =
⇢d

⇡
I ~n · ~s (3)

Figure 5 depicts each of the components necessary to calculate the radiance of a given

point on a Lambertian surface [17]. Given the assumptions made for surface albedo

and light source intensity, the known radiance at each pixel and light source direction

can now render the surface normals in an image. This is the formulation for the

Shape-from-Shading problem.

As mentioned earlier, the Shape-from-Shading method for surface reconstruction

is a less than ideal solution for real-world applications as a consequence of the as-
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Figure 5. Representation of components in surface radiance.

sumptions it requires. Zhang, et al. provide a broad survey of many approaches to

tackle the Shape-from-Shading problem using various optimization techniques, yet

the conclusions of each are rather disappointing, as none of the algorithms discussed

give satisfactory results [18]. However, photometric stereo, an augmentation of the

Shape-from-Shading surface reconstruction method, has shown to provide favorable

results on real-world images [19].

2.2 Photometric Stereo

The method chosen for surface reconstruction in this study is the photometric

stereo technique, adapted for use on high specular surfaces. In order to realize the

problem formulation, the following section walks through the Lambertian photometric

stereo method, which assumes a Lambertian surface as it relates to the aforementioned

surface reconstruction technique. Additionally, it covers several works that utilize

various adaptations to the photometric stereo method and provides rationale for the

final method chosen.

Lambertian Photometric Stereo.

Using the information on shading variation, just as in Shape-from-Shading, the

photometric stereo surface reconstruction method exploits two or more images from
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a fixed camera position along with varying illumination directions per image. Thus,

Shape-from-Shading may be considered a special case of the Lambertian photometric

stereo method when only one image is used for the surface reconstruction and the

surface is assumed to have di↵use reflectance only. It follows then from the reflectance

map for all images, the Shape-from-shading problem is a system of equations to solve

for the surface albedo and surface normals.

8
>>>>>>>>>><

>>>>>>>>>>:

I1 = ⇢dN · L1

I2 = ⇢dN · L2

...

In = ⇢dN · Ln

(4)

Equation 4 represents the systems of equations that now relate to a single pixel in

the captured images. Equation 4 translates into a matrix equation [20].

2

66664

I1
...

In

3

77775

| {z }
I

=

2

66664

L1
T

...

Ln
T

3

77775

| {z }
L

⇢dN

|{z}
G

(5)

If we let G denote the term ⇢dN, we can then solve for each surface normal and surface

albedo per pixel by solving for G. First, Equation 6 shows the progression for how to

manipulate 5 in order to solve for G.

I = LG

LT I = LTLG

G =
�
LTL

��1 �
LT I

�
(6)
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G is then solved for using least squares approximation. Finally, solving for the sur-

face albedo (Equation 7a) ultimately provides the solution for the surface normal

(Equation 7b) at each pixel.

⇢d = kGk (7a)

N =
1

⇢d
G (7b)

This is the complete formulation for the Lambertian photometric stereo problem.

Now we can use the process of the photometric stereo method in conjunction with

more realistic reflectance models to improve the accuracy of the surface normal map.

Specular Photometric Stereo.

Since Woodham’s introduction of photometric stereo in 1980 [21], researchers have

aimed to improve the surface reconstruction method by extending the fixed viewing,

varying illumination across multiple images technique to surfaces with unknown re-

flections, as most real surfaces are neither purely Lambertian nor perfect mirrors.

There have been many works over the years to handle specular reflection in pho-

tometric stereo. Ikeuhi was the first to apply photometric stereo to specular surfaces

with his use of three light sources, each with its own reflectance map, in the form of

lookup tables [22]. He continued his work with Nayar, et al. by creating a ‘photomet-

ric sampling’ technique to calculate the surface orientation as well as both components

for di↵use and specular reflectance [17]. By applying nonlinear regression techniques

to a simplified Torrance-Sparrow reflectance model, Kay and Caelli introduce a simu-

lated annealing algorithm to simultaneously estimate the surface normal and surface

roughness [23]. Also utilizing the Torrance-Sparrow model, Georghiades demonstrates

how to resolve inherent ambiguity in uncalibrated—unknown light source positions—

photometric stereo for a large number of non-Lambertian surfaces by solving for
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reflection coe�cients, surface normals, and light intensities and positions through an

iterative nonlinear optimization process [24]. Shen, et al. create a novel procedure by

first solving for the specular coe�cients and then using these to estimate the di↵use

reflectance and surface normals [25]. Chung and Jia calculate normals and BRDF

parameters for shadow points by using the Ward reflectance model and cast shadow

information [26]. Khanian, et al. target eliminating orthographic projection and

Lambertian surface assumptions in common photometric stereo techniques by uti-

lizing perspective projection and the Blinn-Phong reflectance model, the reflectance

model chosen for this study [15].

Figure 6. The Blinn-Phong illumination model.

The Blinn-Phong model is Blinn’s [27] slight modification to the original reflection

model introduced by Phong [28] in 1975. Today, it is widely adopted in the synthesis

of modern computer graphics, which is why it was chosen for this study. The Phong

model was novel in that it created a more realistic lighting model by introducing a

specular component, creating an additional term in the BRDF. However, Phong’s

model contained a minor computational error that did not account for situations

where the reflection and view directions were greater than 90 degrees. Thus, Blinn

modified the model by creating an additional ‘Half-Angle’ vector, which is the vector

halfway between the viewing and light position vectors (Equation 8).

~H =
~L+ ~V

k~L+ ~V k
(8)
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Now, using the Blinn-Phong reflectance model, Equation 9 becomes our reflectance

map for which we can calculate the surface normals.

I = ⇢d

✓
L ·N

kLkkNk

◆
ld + ⇢s

✓
H ·N

kHkkNk

◆
ls (9)

In the same manner as discussed for Lambertian photometric stereo, Equation 9 can

be transformed into matrix form and then photometric stereo for specular surfaces

becomes a system of equations to solve for the surface normals at each point in the

images.

2.3 Depth Estimation

Depth estimation in computer vision literature is most often found associated

with the problem of stereo vision and its variants, as a disparity between two or more

images of an object allows triangulation of epipolar geometry to obtain its surface and

relative depth [29]. Other techniques, such as vergence, stereo matching, defocus cue,

familiar size, and combinations of each are also popular applications to extract depth

from imagery [30]. In more recent literature, studies have shown success with both

supervised and unsupervised deep learning methods by utilizing convolutional neural

networks to extract features relevant for depth cues in an image [31]. Though it is

more common to find applications of using depth—typically from range imaging—to

estimate or enhance surface normals of an image, depth can be estimated from surface

normals with a strong understanding of image projection in gradient space.

Gradient Space.

Macworth first introduced the concept of gradient space in order to capture the

relationship between surface orientation and image intensity [32]. Gradient space

begins with defining the surface height at each pixel location z as a function of its
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image coordinates (x, y) (Equation 10).

�z = f(x, y) (10)

Under the assumption of orthographic projection, the surface gradient at each coor-

dinate is defined by taking the partial derivative of each surface height with respect

to its image coordinate (Equation 11).

p =
�z

�x
q =

�z

�y
(11)

Now, all such points p and q lay on the pq-plane known as the gradient space,

since every point corresponds to a particular gradient. Each distance of a point (p, q)

from the gradient space origin signifies the slope of the surface at that point and the

direction is the direction of steepest ascent [33]. This function maps each normal of

the surface to a point in gradient space. In other words, at each point on a surface, the

projection of that surface normal intersects in gradient space at point (p, q). Thus,

Equation 12 defines the surface normal as a vector in gradient space [34].

n = [p, q,�1] (12)

Depth from Normals.

The photometric stereo method discussed in Section 2.2 resulted in defining an

object in an image as a collection of normal vectors representing the surface orienta-

tion direction at each point in the image. The goal of depth estimation from surface

normals is to define an object in an image as a collection of relative depths—or

heights—from the image plane. With the definition of the surface normal in terms of

gradient space (Equation 12), we can derive an estimated depth as the components
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p and q are the first partial derivatives of depth z. Thus, the map of surface depths

must minimize Equation 13.

ZZ
(zx � p)2 + (zy � q)2dxdy (13)

Ikeuchi suggests using Euler’s di↵erential equation method to solve this calculus of

variation problem,

r2
z = px + qy (14)

which leads to the simple iterative scheme below.

z
n+1 = z̄

n � ⇢(px + qy) (15)

Here z̄ is the local average depth of a region of depths and ⇢ is the parameter for the

method in how the average is computed over a connected region [35]. Thus, using

the normal map obtained from photometric stereo, Equation 15 can derive the map

of relative depths, or the depth map.

2.4 Autonomy and Automation of Additive Systems

The advent of additive systems introduced a new paradigm for producing arbi-

trarily complex geometries, such as intricate internal features, lattice and honeycomb

structures, etc. for metal-based products. Achieving high levels of quality and re-

peatability when using additive systems to make metal parts has been a challenging

task due to lack of development in process control for additive systems. The following

section demonstrates a few recent advances in the evolution of automation and pro-

cess control in additive systems for the production of metallic products. It concludes

with a review of recent developments in autonomy for materials research.
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Automation and Process Control of Additive Systems.

Powder Bed Fusion (PBF), the additive manufacturing process in which thermal

energy selectively fuses regions of a powder bed, and Directed Energy Deposition

(DED), the additive manufacturing process in which focused thermal energy is used

to fuse materials by melting as they are being deposited, are the two most commonly

used process categories for creating metallic products [1, 36]. The earliest e↵orts

for process control of PBF begin with the commercial laser-based process, Selective

Laser Sintering (SLS). Melvin III, et al. construct a video microscopy system to

provide insight on powder flow behavior and improve the quality of the sintering

process in general [37]. Several authors extend this research further. Berumen, et al.

use a digital camera to monitor the powder coating step for each layer and create

algorithms to detect low or excessive powder feed and coater problems [38]. With

the aid of subsequent image processing, Kleszczynski, et al. create a system using

a high-resolution Charge-Coupled Device (CCD) camera mounted outside the build

chamber that is able to detect errors in process stability (i.e. insu�cient powder,

poor supports, coater damage, etc.) and part quality [39]. Using a Complementary

Metal-Oxide Semiconductor (CMOS) camera and a photodiode coaxially to the laser

beam, Kruth, et al. and Surreys, et al. design and patent a feedback control system,

perform experiments on parts with complex features, and test di↵erent combinations

of scanning patterns [40, 41]. Using this patented system along with a high-speed

CMOS camera and a photodiode, Craeghs, et al. build a feedback controller for laser

power and use it to test part quality in special geometries, like adjacent scan vectors,

overhang, down-facing structures, and acute corners [42, 43, 44].

DED processes are slightly ahead of PBF processes with regards to real-time

process control as a result of the variant DED process laser cladding, intended for

coating existing parts rather than building 3D components, having been developed
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prior to the PBF process [36]. With consideration of the similarity in principle of

DED and PBF processes—the main di↵erence being the feed mechanism—research

on monitoring DED processes has also primarily focused on temperature monitoring

and control. However, a few research e↵orts have investigated monitoring the height

of each layer during fabrication. Iravani-Tabrizipour and Toyserkani use an optical

system composed of three CCD cameras, each positioned at 120 degrees slant relative

to each other and 15 degrees tilt from the substrate plane, along with a recurrent

neural network to measure and monitor the height of each layer during the laser

cladding process [45]. Figure 7 depicts their height estimation system.

Figure 7. Iravani-Tabrizipour and Toyserkani’s optical height estimation system for the
laser cladding process.

Song, et al. continue with a similar three camera system to measure height with the

addition of a pyrometer to measure the melt pool temperature, creating a monitoring

system capable of adjusting the laser power based on height and temperature feedback

[46]. Fathi, et al. and Toyserkani and Khajepour propose a di↵erent approach for

height monitoring and geometry control [47, 48]. They patent a system that uses a

20



single CCD detector mounted normal to the process zone, along with interference and

neutral filters, to detect fluctuation in layer heights as well as estimate the roughness

and ultimately quality of a surface [49].

Autonomy in Materials Research.

Additive systems are an engine for the evolution of materials research. In addition

to the labor of utilizing additive systems, materials research also demands significant

human interaction. Humans facilitate initial hypothesis generation, experimental de-

sign, analysis, interpretation and iterative hypothesis refinement. Understanding the

relevant phenomena of a given material problem often requires numerous experiments,

which slows the research process. The iterative design of experiments requires mod-

ification to subsequent experiments based on prior results. Autonomy in materials

research serves to eliminate the human labor bottleneck in this iterative learning loop,

allowing the exploration of complex experimental parameter spaces.

Nikolaev, et al. spearhead the development of autonomous systems in material

research. With the introduction of the Autonomous Research System (ARES), they

combine robotics, artificial intelligence, data science and in-situ techniques to vastly

expand the realm of materials development. More specifically, they use ARES for the

enhancement of single-walled Carbon Nanotubes (CNTs) synthesis. They demon-

strate with ARES the ability to traverse a high-dimensional parameter space, varying

multiple growth parameters between experiments, to control CNTs growth rate [50].

Their research encourages application to other materials and processes, allowing a

fundamental change to the materials research process to overcome more complex and

impactful problems.
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2.5 Conclusion

Section 2.1 gave a historical background of depth perception in computer vision

leading with mathematical support for understanding the Shape from Shading prob-

lem. This was then extended to the photometric stereo problem formulation in Section

2.2 to help understand the surface reconstruction and depth estimation techniques

used in this study. Section 2.3 covered additional research in autonomy and automa-

tion of additive systems, providing patented systems for process control in various

additive manufacturing processes other than MEAM and research in autonomous sys-

tems for materials research. With consideration of the assumptions and limitations

covered in Section 1.5, Chapter III provides the complete algorithm for height esti-

mation developed for the MEAM system provided by Air Force Research Laboratory

(AFRL)/Materials and Manufacturing Directorate, Functional Materials Division,

Soft Matter Materials Branch (RXAS).
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III. Methodology

This chapter describes the methods used to acquire estimated heights from monoc-

ular imagery of Material Extrusion Additive Manufacturing (MEAM) prints in order

to empower the printer automation control system to provide both single- and multi-

layered print correction. The algorithm we build is founded on the photometric stereo

computer vision technique, as we use surface reconstruction to create parameters for

the estimation model.

First, we develop the automation control system for the additive system to enable

both successful data collection and model performance testing. Then we create a

dataset through the production of MEAM single-line prints with the capturing of

multiple images with varying light source positions and height measurements for

each. We then created a linear regression model to estimate height measurements and

compare variations in model creation and data collection techniques. We conclude

the chapter with discussing the measures taken to prepare the analysis of the model.

3.1 Automation Control System

The automation control system is responsible for complete systematic control of

the MEAM additive system. It is a closed-loop feedback control system consisting

of sensors and actuator agents. These agents are made up of mechanics elements

within the MEAM printing apparatus as well as the standalone computing system

that interfaces with the master controller. The printing apparatus and standalone

computing system communicate by serial, analog, and digital connections via the

master controller. Ultimately, the user has full control of the MEAM printer using

Python.
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Additive System Architecture.

The MEAM additive system consists of core and peripheral devices. The core

devices are critical and must remain fully operational during use of the system. Failure

of a core device will result in failure of the entire system and potentially physical harm

to the printing apparatus. Peripheral devices are optional for use within the additive

system and provide supportive functionality.

Figure 8. The MEAM printer gantry subsystem.

The core devices of the additive system include the gantry subsystem, the extru-

sion subsystem, the master controller, and the computing system. The gantry sub-

system consists of the mechanical components that provide three-dimensional motion

to the additive system (Figure 8). It is comprised of a single arm providing movement

along the x-axis resting above two slaved arms providing movement along the y-axis.

Resting along the x-axis arm are four miniature arms controlling movement in the

z-axis. All movement is enabled by powered magnets with resistance controlled by

pressured gas. The extrusion subsystem is comprised of a pump that controls the

extrusion rate of a material as well as the nozzle, nozzle tip, and nozzle connection.

The nozzle tip size selected for the experiments performed in this study is 0.25mm

in diameter. The master controller ultimately controls the aforementioned core com-
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ponents through serial, analog, and digital communication. Additionally, the master

controller commands the operation of some peripherals devices. Finally, the last core

component is the computing system, which provides a human interface to the master

controller as well as the operation of peripheral devices not interfaced through the

master controller.

The peripheral devices of the additive system include the touch probe, camera, and

hot plate. The touch probe interfaces through the master controller and provides the

capability of measuring printed extrusion heights via physical touch and electrical

response. The camera interfaces directly into the computing system and provides

optical feedback on printed extrusions via still-frame images. The hot plate is used in

standalone and is set to a constant 60 degrees Celsius throughout experimentation.

Software Architecture.

The software design shown in Figure 9 provides control of the many devices that

make up the additive system. At the lowest level, each Driver interfaces with the

master controller and auxiliary devices to provide direct communication to the com-

puting system. Utilizing the drivers, each Device provides fundamental control over

all core and auxiliary devices. Device functionality is then abstracted to the Process

layer, where processes may control multiple devices to provide both elemental and

combinatorial regulation of the additive system. Finally, the Apparatus cumulates all

processes and devices into a centralized structure for intuitive control of the additive

system through the computing system. With this multi-layered design, the user has

complete control over the additive system through interaction with the computing

system.

Three drivers connect the software design to the physical hardware for the master

controller, camera, and pump. Each Driver interfaces with their respective Dynamic-
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Figure 9. Top-Down software design.

Link Library (DLL) to provide fundamental control of their hardware components.

The A3200 master controller Driver converts Python language to Aerobasic com-

mands, the proprietary coding language that manipulates the Aerotech gantry sub-

system. Examples include getting and setting axes coordinates, providing analog and

digital input and output channels, and starting and stopping motion. Additionally,

the master controller Driver interfaces the Keyence touch probe through the analog

input and digital output channels. The camera Driver utilizes the ctypes Python

module to interface with the uEye camera’s DLL provided by Imaging Development

Systems (IDS). Examples include allocating memory on the computing system to

save image captures, executing image captures, and configuring physical gain settings

on the camera. The pump Driver extends the serial Python module to interface

the Ultimus V High Precision Dispenser. Examples include setting the pressure and

vacuum levels, toggling dispense on and o↵, as well as getting and setting the vacuum

and pressure units. Each driver also provides connection, disconnection, and error

handling capabilities.

At the next level, devices abstract the functionality of the drivers. Figure 10

depicts the hierarchical structure of the Device class and subclass inheritance. Each

device belongs to the Device parent class, which contains three subclasses, ‘Motion,’
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Figure 10. Class inheritance for devices in the software design.

‘Sensor,’ and ‘Pump.’ TheDevice superclass (Level 1 in Figure 10) mandates common

functionality across all devices (i.e. connect, disconnect, command logging, etc.).

Each Device category subclass (Level 2 in Figure 10) mandates common functionality

for motion, sensor, and pump devices. These category subclasses enable plug-and-

play capability for use of the software design on additive systems that utilize di↵erent

hardware components. Thus, with the development of a device-specific subclass (Level

3 in Figure 10) and a corresponding driver, any appropriate additive system device

could be used in this software design.

The remaining levels of the software design provide abstracted authority over the

additive system. A Procedure provides iterative sequence control of device function-

ality. With any given action, the additive system may require use of multiple devices.

The distinction between elemental and regular procedures is that of complexity; el-

emental procedures are simple procedures that occur most often. The Apparatus is

the software equivalent of the entire additive system. It provides the user complete

control of the additive system through combination of procedures, elemental proce-

dures, and devices—the user does not have access to drivers. Though a user does

not need an Experiment to control the additive system, the Experiment provides

automated control of the Apparatus. Thus, we use an Experiment for to collect the

data we need to develop a height estimation model.
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3.2 The Data Collection Process

Utilizing the aforementioned software design, the experimental design is directed

towards collecting data that will satisfy the necessary constraints for each analy-

sis technique discussed in Section 3.4. Automation of the additive system allows

the printing of samples of Silver Poly(Methyl Methacrylate) (Ag-PMMA) and the

gathering of appropriate data on each sample. The experimental design consists

of both physical preparation as well as automated control of the Apparatus via an

Experiment. Figure 11 lists the steps covered throughout this section.

Figure 11. List of steps taken for the collection of data.

Experiment Preparation.

Several measures are taken to fully prepare the additive system to collect the

data necessary to preform relevant analysis techniques. First, configuring the ad-

ditive system allows mass production of single lines of Ag-PMMA with a length of

approximately 5 millimeters. Next, regulating the printing environment promotes

consistent and reliable outcomes to the quality of each sample. Finally, calibrating

the Apparatus enables precise control of the additive system with respect to the

current printing apparatus configuration and environment.
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The apparatus configuration is consistent across multiple trials to create a repeat-

able experiment. A glass substrate with a size of approximately 2 by 3 inches allows

for printing of 50 samples per execution of the experiment. Laminating the surface

with a dark-blue chalk spray prepares the substrate for successful background sub-

traction and regional maxima extraction during the data preprocessing stage. The

environment holds the substrate atop a thermal hot plate, set at 60 degrees Celsius,

in the center of the printing stage. The additive system utilizes three of the four

available z-axis arms, providing nozzle, touch probe, and camera control. To cre-

ate the Ag-PMMA, silver microflakes are suspended in an anisole solvent via bath

sonication. The PMMA is then added to this suspension and dissolution starts by

high-shear mixing. The ink is then left for a couple days to finish dissolving. In

order to prepare the Ag-PMMA for extrusion, it is high-shear mixed for 1 minute.

The nozzle loaded with the prepared material has a tip of size 0.25 millimeter inner

diameter and connects to the additive system pump.

The touch probe rests on the second z-axis arm and requires no further preparation

aside from calibration. The camera is mounted perpendicular to the printing stage on

the third z-axis arm with its working distance, the distance from the plane in focus,

set at approximately 93 millimeters. Attached to the camera is a mount providing

Figure 12. Visual of light source mount (left) and a list of spherical coordinates for
each light source direction (right).
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varying locations for light source placement. Light sources are placed such that the

slant and tilt of each light source direction with respect to the substrate surface follow

those shown in Figure 12. This configuration covers the optimal tilt of 54.74 degrees,

as recommended by Drbohlav and Chantler [51].

The regulation of the environment involves minimizing variables that adversely

a↵ect the quality of the data collected. In order to reduce the ambient lighting

and consequently strengthen the e↵ect of the directional lighting used, the additive

system’s integrated lights were disabled. Loose particles (i.e. hairs, dust, etc.) in

the printing environment can cause undesired print structure formations by causing

build up, blockage, or even smearing of the material extrusion. Thus, prior to every

trial, the substrate is thoroughly cleaned using methoxybenzene, or anisole, a readily

available solvent known to decrease the viscosity of Ag-PMMA. Additionally, a dump

well filled with anisole is added to the printing stage to allow nozzle tip rinsing between

printing of samples.

The calibration of the devices in use for the experiment is necessary for each

execution of a given trial. This process involves aligning the positions of the nozzle

tip, touch probe, and camera within approximately 10 microns accuracy. Additionally,

the weight of the Ag-PMMA must be calibrated to control precise extrusion within

approximately 1 milligram. At the start of every trial, the touch probe is calibrated

with the height of the printing stage. Additionally, the center point for each sample

location on the substrate’s surface is measured in order to provide height correction

to each z-axis position. This practice accounts for variability in the substrate surface

height. Finally, the camera physical gains are calibrated in order to capture the widest

range of values across each Red, Green, and Blue (RGB) channel while avoiding over

saturation with consideration of each light direction. Given the material reflection

and background absorption, the camera was set with a master gain of 0%, gain on the
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red channel of 30%, gain on the green channel of 0%, and gain on the blue channel

of 35%. It must be noted that camera gains were manually adjusted and less than

optimal settings for each light source angle were chosen in order to satisfy the constant

light intensity constraint of the classic photometric stereo technique as mentioned in

Chapter 2.

Sample Collection.

The software implementation of the experiment automation control sequence be-

gins with defining the Apparatus to follow the aforementioned printing apparatus

configuration. Upon completion of the aforementioned calibration steps, the data

collection commences. The following steps loop over all 50 samples per trial. First,

Figure 13. Series of height measurements taken by order.

nine height measurements are gathered via the touch probe, following the progression

shown in Figure 13, on the empty substrate for each sample’s projected location.

Additionally, images are captured at each projected sample location in the first light

31



source position (✓=0,�=30). Next, the lines are printed using the cleanse-print cycle

previously mentioned. Print parameters vary across the xy-grid of samples.

In the x-direction, the nozzle tip height increases and in the y-direction the nozzle

trace speed increases, where tip height is the distance between the nozzle tip and the

substrate surface at extrusion and trace speed is the movement speed of the nozzle.

As the target height of each sample remains constant at 10 microns and the extrusion

rate of dispense, or pressure, remains constant at 200 Patm, the variation in tip height

results in varied print speed to produce the target wet print height. These varying

parameter settings, along with environment di↵erences at time of print, deliver a

variety of print outcomes resulting in a collection of unique samples. Upon completion

of printing the samples, the system waits five minutes to allow the extrusions to

cure. The dried print height di↵ers from the target wet print height depending on

the volume fraction of solids in the material (⇡ 24 %) and other factors relating to

how it cures. Then using the progression from Figure 13, height measurements are

gathered for each sample. Finally, high-resolution RGB images (1044 by 2048 pixels)

are captured for each of the light source positions according to Figure 12.

Raw images and height measurements were captured for over 500 samples across

12 trials. Many samples were discarded due to structural damage as a result of the

wide spread of printing parameters. Additionally, modification of the data collection

process resulted in the removal of samples from earlier trials. After removal of a few

samples due to image preprocessing failure, the total data collection comprises of 187

samples.

3.3 Data Preprocessing

The data preprocessing phase involves preparing the data for the photometric

stereo surface reconstruction method. Image processing and extrusion height extrac-
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tion is performed to reduce noise in the input parameters and define target values,

respectively. Additionally, the images are downsampled to reduce the computational

complexity of the analysis technique.

Image Processing.

As the input images are RGB and have a height of 1044 pixels and a width of

2048 pixels, the raw data begins with a dimension size of (1044, 2048, 3). To remove

background noise from each image, masks are created to extract the foreground of

each image and thus highlighting the pixel region of interest for each image. Starting

(a) The original image is converted to gray-
scale and cropped to remove excessive noise.

(b) The absolute di↵erential is taken from the
the foreground and background image captures.

(c) Median and disk filters smooth the sample’s
rigidity and noise in the background.

(d) The contour of the sample is extracted via
binary adaptive and bitwise-NOT thresholds.

(e) The mask is calculated after closing the con-
tour, removing small objects, and filling holes.

(f) The mask is applied to the original image to
superimpose the sample on a black background.

Figure 14. Intermediate phases of the image processing task.
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with a collection of six images—one for each light source position—mask generation

begins with converting the images (both empty substrate and printed extrusion) at

the first light source position (✓=0,�=45) to grayscale by taking the average of all

three channels. We then crop the image region of interest to remove excess background

noise. Then the absolute di↵erential is calculated between the printed extrusion image

and the empty substrate, e↵ectively removing predominant artifacts and substantial

noise. The mask is then generated after using a combination of median and disk filters

as well as binary adaptive and bitwise-NOT thresholding on the absolute di↵erential.

Figure 14 displays the results of each of these steps. Each of the images are then

resized to half of their original resolution to reduce computational complexity for

surface normal and depth calculations and ultimately increase the e�ciency of the

height estimation algorithm. Finally, background is added to create a square aspect

ration. Thus, a final image has a dimension size of (545, 545, 3).

Height Extraction.

The goal of the height extraction step is to define three extrusion heights from the

total of 18 raw height measurements. Because touch probe measures with a precision

of 10 microns and at that level of accuracy, the substrate is an asymmetrical surface,

three rows of measurements are taken to calculate the average height of the lower and

upper bounds of the printed extrusion. As seen in Figure 13, the printed structure

covers probes (1), (2), and (3). For the empty substrate measurements, these probes

are marginally di↵erent from the measurements gathered at their corresponding outer

probes and define the lower bound of the extrusion. For the second set of touch probe

measurements, the printed structure probes will have a several micron increase, with

quantity depending on the structural outcome of the print, defining the upper bound

of the extrusion. Once the upper and lower bounds of the extrusion are defined,
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three height measurements are defined by taking the absolute di↵erence between the

bounds. Additionally, the average height of the extrusion is also saved for single

target evaluation.

Figure 15. Visual of the region bounds for each sample with indications of touch probe
imprints.

A limitation of this study is that the touch probe measures imprecise regions of

the extrusion in the x� y plane. For any given sample, the three heights calculated

are assumed to be located along the extrusion’s center x-point and at the center

y-point for each third of the extrusion. Figure 15 depicts a sample split into three

regions and portrays the limitation of this assumption, where the visible touch probe

imprints from height measurement contact are not located in the center of each region.

The location of each touch probe contact on the line varies by sample as a result of

the automation of collecting 50 varying samples per trial. Additionally, the heights

calculated are assumed to be the maximum height at each point measured, which

despite the e↵orts of curing, is not necessarily the case as the touch probe will return

the height measurement of the bottom of the imprint from the probe tip.
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3.4 Height Estimation Algorithm

Per discussion in the previous chapter, we use the well-studied computer vision

technique of photometric stereo in order to recreate the three-dimensional scene cap-

tured in a two-dimensional image. First, we calculate the surface normal for each pixel

of every sample. Then using the surface normals we calculate an estimated depth for

the regions corresponding to the touch probe measurement locations. Finally, we use

these regions of depth measurements as parameters for a linear regression model in

order to predict heights from images.

Figure 16. 12 images labeled by degree of slant (T := ✓) and tilt (P := �) for their
corresponding light source direction for a single sample.
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Photometric Stereo and Depth Estimation.

The photometric stereo algorithm starts with 12 preprocessed images, each image

captured with the light source positions indicated in Figure 12. Figure 16 shows each

of the 12 preprocessed images corresponding to their labeled light source direction.

Using the image irradiance equation for the Blinn-Phong model (Equation 9), least

squares approximation allows the computation of the surface normals and albedos for

each pixel coordinate.

Figure 17. A contour plot showing the full depth map of a sample.

Then using Equation 15, the surface normal map is converted to a depth map.

Recall that Equation 15 requires an iterative process of using the average depth for

a region of connected points. Several methods were tested to include using solely

vertical neighbors and solely horizontal neighbors. After quality checking the results

of each, a combination both vertical and horizontal neighbors starting with the surface

normal’s most center coordinate showed on average a more accurate 3D structure true

to sample’s surface. As depth’s are relative distances to the lowest point in the image,

structural integrity as a result of each method were compared by human evaluation.

Using the same sample from Figure 16, Figure 17 portrays a contour plot of the
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depths calculated for the entire extrusion surface.

As each sample has three measured heights (Figure 15), which indicate truth data

for each extrusion, the depth map is also split into three regions and then averaged

to return three discrete measurements of the sample’s depth. However, the area

for each region is restricted by a quarter of the longest dimension of each region.

This technique is chosen to remove excessive fallo↵ at the sample’s boundaries and

consequently produce a more accurate depth average for each region of the sample.

(a) (b)

Figure 18. A mask image depicting the region coordinates for each average depth
measurement (a) and the application of that mask to the sample’s depth map (b).

Finally, the average of each region is saved along with its respective touch probe mea-

surement to give each sample three data points: a measured height and an estimated

depth per region.

Prediction Model.

Thus far, the height estimation algorithm is able to correlate depth values from the

calculated depth map to the true height values measured via touch probe. In order

to create a predictive model, the data points collected thus far are used in linear

regression model. Although up to this point there are 561 data points (187 samples

⇥ 3 data points per sample), the upper and lower region data points are discarded for
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each sample. This decision results from the inconsistent touch probe measurement

accuracy due to the automation of the data collection process. Consider Figure 19.

Figure 19. 3D bar chart representing an entire trial of samples height measurements
via touch probe.

Though generally the height measurements show a pattern of decline from the start

of a printed extrusion to its finish, there are frequent cases of deviation from this

pattern. Additionally, almost all depth followed the structural patterns of those

shown in Figure 20. These commonalities in depth map structures do not always align

correctly with the pattern of the height measurement patterns. Thus, to minimize

such disorientation and inconsistency, only the data points for the center point height

measurement and depth calculation are entered into the final dataset for the prediction

model. Chapter IV provides further analysis and implications of this manifestation.

The 187 observations are split into a nontest and test dataset by 80 and 20 per-
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Figure 20. Examples of common cases of depth map structures across sample set.

cent, respectively. Thus, the nontest set consists of 149 observations and the test set

consists of 38 observations. Using a k-fold cross validation technique on the nontest

dataset, a polyfit transform method allows evaluating multiple linear regression mod-

els. A small dataset enables quick testing of numerous models. Polynomials to the

degree of 8 are evaluated using ten di↵erent training/test splits, controlled by regu-

lating the random state seed. Models are compared by lowest Mean Squared Error

(MSE) and the highest performing model is selected.

Using the selected model, the model is evaluated by various statistical measures, to

include an Analysis of Variance (ANOVA) report. Chapter IV provides analysis and

discussion of the model’s performance. Finally, the model is saved and integrated into

the height estimation algorithm. The height estimation algorithm is then prepared

for integration into the MEAM additive system’s computing system to support online

prediction of estimated heights via imagery.

3.5 Summary

Software is developed for the mass production of samples to be used for analysis

via the designed height estimation algorithm. The data necessary to create and

refine the algorithm is collected and preprocessed. Photometric stereo is used to
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create a three-dimensional reconstruction of the extrusions, depth is estimated for

each extrusion using the surface normals, and a linear regression model is created to

predict estimated heights.

41



IV. Results & Analysis

This chapter provides the results and analysis of the height estimation algorithm

for the Material Extrusion Additive Manufacturing (MEAM) system. Each method

used to design the algorithm is assessed and critiqued. First, we review the software

design and assess based on common software design criteria. Next, we evaluate the

e�cacy of the experimental design and data collection as well as the preparation of

the data. Then we examine the photometric stereo and depth estimation methods

and critique for improvement. Finally, we survey the resulting sample population and

review performance and results of the predictive height estimation model.

4.1 Software Design Review

Though the design lacks formal requirements, usability and utility were primary

concerns for the development of the software design, as well as maintainability for its

intended longevity. Deraman and Layzell define primary and secondary categories of

criteria for producing maintainable software. The intent of their criteria is to reduce

the e↵ort for understanding the software, reduce the e↵ort for corrective maintenance

of the software, allow software to accept changes in the future, and promote simplicity

of maintenance tasks [52]. The following section reviews the software design for the

MEAM system and estimates compliance with each of Deraman and Layzell’s groups

of software design criteria for maintainability.

Primary Criteria.

Real-world modeling, independence of specification modeling, explicitness, and

modularity help determine the ease of adaptive maintenance throughout the soft-

ware’s lifetime [52].
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• Real-world modeling: The software design anticipates current and future re-

quirements by utilizing a real-world model. The software architecture embodies

the additive system’s architecture. Through object-oriented design and hier-

archical control, it contains driver and device classes that directly mirror the

MEAM system’s functional flow.

• Independence of specification modeling: As no written requirements are pro-

vided, no concrete models for specification are created for the software design.

However, each of the specification models influence decisions made for the soft-

ware design. For example, the process and entity models are contained within

the software architecture (Figure 9), and task and human-computer interface

models manifest with the Apparatus class through the command-line interface.

• Explicitness: Not every decision in the development process is formally stated

and explicitly recorded. This is a shortfall in the software development process

likely due to the informality of design requirements.

• Modularity: The software design is highly modular as the hierarchical archi-

tecture promotes functional decomposition. Additionally, the object-oriented

paradigm promotes abstraction, encapsulation, and inheritance, all of which

increase the software’s flexibility.

Secondary Criteria.

Data dictionary, uniformity, prototyping, user involvement, documentation, and

computer-aided tools ultimately determine the quality of the software [52].

• Data dictionary: The software application does not have a data dictionary.

Though, implicitly through C library documentation from the proprietary de-

vices, each of the drivers developed have loose data dictionaries.
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• Uniformity: The software design practices strict uniformity with data struc-

tures. For example, a requirements attribute is implemented on every Procedure

and Device parent class, enforcing various elements and related information to

exist within each of the child classes.

• Prototyping: The software design fully supports prototyping with the user’s

ability to interact with the additive system through communication directly to

the Device child classes. In fact, this practice is encouraged in order to give the

user the ability to venture with functions to best equip their experiment.

• User involvement: User involvement was minimal during the software develop-

ment.

• Documentation: The software is documented with primitive coding comments.

Not all functions and classes are properly commented and the format is not

standard. No additional documentation outside of coding comments exists.

• Computer-aided tools: The software application is purely command-line and

script dependent. However, the software design is ready for Graphical User

Interface (GUI) implementation. This feature is out of scope for this study and

available for future work.

4.2 Experimental Design and Data Collection Review

The design of the experiment and quality of the data are crucial for the fruition

of the height estimation algorithm. There are several successes and shortcomings of

the design of experiment that a↵ected the quality of the data collected. Overall, the

experiment designed for data collection was advantageous given some constraints and

limitations.
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Constraints and Limitations.

The most prominent limitation of the experiment is the fixed central camera posi-

tion constraint. The additive system currently only supports a single camera mounted

parallel to the z-axis. Through iterative testing of the experimental design and pho-

tometric stereo results, creation of a multi-positioned mount is considered to support

stereo vision techniques. This option is averted as a result of the inability to assure

precise camera placement between execution of trials.

The experiment needed to be repeatable and reliable to assure consistency and

reliability in the quality of the data and ultimately the height estimation algorithm. In

order to assure this high level of precision and consistency between trials, the additive

system required a professional mechanical mount to control the camera’s position,

which was not available at the time of this study. The implications of this constraint

is that it limited the capability of the system solely to the collection of imagery from a

fixed position. Not only this, but the viewing direction is perpendicular to the image

plane, which requires the use of solely shading cues to estimate depth. Thus, the

study could not test various surface reconstruction and depth estimation techniques

to compare to the photometric stereo method.

Another significant limitation of the experimental design is the lack of a method

for gathering true depth measurements. Without this ability, this study lacks the

ability to evaluate the accuracy of the depth maps produced from the photometric

stereo method. One method to mitigate this limitation would be use range imaging

in tangent to monocular imaging similar to the works of Mou and Zhu [53].

Shortcomings.

The experimental design mass produced extrusions with little human intervention.

The only required labor per a trial is to move the light source position since the
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light source mount has fixed positions. As a result of mass production with little

moderation, many trials produced sample failures. Figure 21 shows a few examples

Figure 21. Failed samples due to extrusion abnormalities.

of sample failures. In attempt to prevent these failed cases, the nozzle cleansing well

was added to the print automation. At the expense of an extended trial completion

duration, the well helps maintain the Silver Poly(Methyl Methacrylate) (Ag-PMMA)

viscosity to promote constant extrusion rate.

Successes.

Despite the limitations and shortcomings, the final iteration of the experimen-

tal design provided an almost fully automated mass production of sample extrusions.

With the addition of an automated light source placement capability, as well as an ad-

equate height estimation mechanism, the experiment would be able to fully automate

the data collection and maintain the quality of the printed samples.
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4.3 Data Preprocessing Review

Image Processing.

The image preprocessing is prosperous for extrusions without abnormalities. How-

ever, it is not absolutely robust, which resulted in its failure in many cases. Many

samples of imperfect extrusions were lost due to the strict bounds set by the image

processing input parameters. Figure 22 depicts the image processing sequence for an

extrusion with abnormal structural integrity. In this example, the nozzle experienced

Figure 22. Image processing failure on an abnormal extrusion.

interference, likely due to particle build up, and the extrusion rate was not consistent

across the sample. Thus, the exterior is coarse and the result of the image processing

sequence returns an invalid mask, rendering an otherwise serviceable sample useless.

The fix to this issue does not rely on simple tweaks to the filters and threshold input

parameters, as the values chosen for the input parameters are most consistent with

the majority of the sample population. Regulating this issue would require intelligent

detection of the overall image intensity and correction of coarse print boundaries in

order to ensure a closed max after filters and thresholds are applied.
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Height Extraction.

The height extraction technique is straightforward, as it simply derives height

measurements from a saved JavaScript Object Notation (JSON) file. It must be

noted that the validity of the height measurements are questionable as result of the

automation of a mass number of samples per data collection trial. Recall Figure

19. Many height measurements are near zero. For samples closest to the x- and y

axes, these measurements are logical due to the near zero tip height print parameters.

However, the pattern of near zero measurements remain throughout the entire print,

which suggests that some touch probe measurements may have missed contact with

the printed extrusion. This circumstance is probable considering the automation

technique used to gather height measurements in rapid succession. Additionally, the

samples’ area of extrusion are not consistent across each sample.

As previously mentioned, the height measurements are calculated at the lowest

point of the probe imprint. This marginal error in true height to measured height

ultimately a↵ects the accuracy of the height estimation algorithm, which is not repre-

sented by model testing. Thus, even if the height estimation model perfectly estimated

the measured heights from the depth calculations, an unknown marginal error still

exists.

4.4 Photometric Stereo and Depth Estimation Review

The following sections evaluate the photometric stereo method used for surface

reconstruction as well as the depth estimation method used to create data for the

height estimation model.
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Photometric Stereo.

The photometric stereo method was successful at extracting each sample’s surface

orientation by calculating the normal vectors for each coordinate of a sample set of

images. We can assess the quality of the surface normal calculations by observing

a map of the surface normals. Using the same sample extrusion images shown in

Figure 16, Figure 23 displays a map of the surface normals using Red, Green, and

Blue (RGB) encoding as well as a plot of the surface normal values across the width

of the sample.

Figure 23. A normal map representing a sample’s surface orientation (left) and a 2D
visual of the normals across the width of the sample (right).

Even though the normal map is a 2D image, it is capable of depicting the 3D array

of surface normal values calculated from the photometric stereo method. The RGB

color channels in the map correspond to the respective z, y, and x unit vector values

of the surface normals at each pixel coordinate. The normal map color encoding is

compatible with the structural formation of the extrusion. There is no representation

of color for the green channel. This is coherent because of the orientation of the

viewing plane being directly parallel to the image plane; rather, the images were
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taken with the camera perpendicular to the printing substrate. The z vector values

are also consistent with the line’s structure; at the upper tip of the extrusion the

yellow color indicates the northern fallo↵ and at the lower tip of the extrusion the

red color indicates the southern fallo↵. Finally, the pink color on the right side

of the extrusion is a result of the strong blue encoding—a positive x normal unit

vector—mixing with the red encoding of the z. The left side of the extrusion does

not experience color encoding in the x-direction, as the unit normals are negative

values. This representation accurately depicts the arch shape of the extrusion across

its width. The scatter plot in Figure 23 is a two-dimensional representation of this

same color encoding pattern previously described for a single row of the normal unit

vector values, which is indicated by the black line on the normal map.

Depth Estimation.

The depth estimation method was successful at deriving each sample’s relative

distance from the viewing plane by using the normal unit vectors to calculate the

depth from neighboring pixels at each coordinate across the array of surface normals.

Despite the e↵orts of using spare matrices, the iterative process of comparing both

vertically and horizontally neighboring pixels (Equation 15) is highly computationally

demanding, which warrants the need to downsample the original images to half their

captured resolution. Computing the depth maps on the original image resolutions

resulted in runtimes greater than ten minutes per sample. However, these results were

obtained on the computing system used to create the height estimation algorithm,

which has significantly greater processing power than the MEAM printer’s computing

system. Thus, in order to promote a practical solution for online height estimation,

the original images are downsampled. Downsampling the images to half their original

resolution reduces the runtime of the depth estimation algorithm to approximately
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15 seconds per sample on the development computing system.

In the same manner as with the surface normals, we can evaluate the worth of

the calculated depths by observing the depth map. Again, using the same sample,

Figure 24 displays both a two-dimensional and three-dimensional view of the esti-

mated relative depths from the viewing plane, as well as one of the original images

for reference.

Figure 24. A sample extrusion (top) and depth maps representing its estimated depth
in both 2D (bottom left) and 3D (bottom right) representations.

The depth map shows a relatively accurate depiction of the surface architecture of

the sample extrusion. It lacks detail in the definition of its curvature, which is best

portrayed by the lack of a cavity in the lower region. Additionally, the depth map
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displays minute noise, exhibited by the spikes in the 3D representation. Despite these

deficiencies, the algorithm does attempt to recognize depth variation across the length

of the line. The original image shows a larger mass of extrusion at the start of the

print (y ⇡ 450) than at the finish of the print (y ⇡ 100), giving visual cue of a decrease

in height in the same direction. Figure 25 best shows this with its two-dimensional

plots of depth values along both the length and width of the extrusion.

Figure 25. 2D visuals of the estimated depths across the width (top) and the length
(bottom) of the sample.

In addition, Figure 25 also shows why the areas for computing the average depth in

a region, as discussed in Section 3.4, were reduced. As expected, the depths at each

end of both the 2D length and width plots show drastic fallo↵. Figure 26 shows the

contour plot of the extrusion’s estimated depth split by regions.
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Figure 26. A sample’s 3D visual of depth by region.

Again, the e↵ect of the average depth calculated is better seen with the two-dimensional

plots of the depth by length and width. Figure 27 shows the depths by length and

width with indications of region boundaries. The depths in the shaded regions of

interest are selected for regional depth values.

Figure 27. 2D visuals of the estimated depths across the width (left) and the length
(right) of the sample with region indicators.

This technique is a robust method for producing three accurate values for the rel-

ative depth of each sample. Despite this, the computed relative depth values do

not adequately represent the measured height values. For example, this sample’s

height measurements are 48.93 µm, 35.23 µm, and 9.05 µm, but its respective depth

values are 0.82%, 0.90%, and 0.72%. Though this example does follow an appropriate
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decreasing order, the slope of descent between the second and third measurements

do not correlate. This sample is showcased because this occurrence is most common

amongst the sample population. However, there are many samples that do not sustain

the decreasing order but rather have mismatching slopes of change between height

measurement and estimated depth. Thus, this adversely a↵ects the capacity of the

height estimation algorithm, as the predictive model will unfavorably predict heights

on skewed data.

Additional Considerations.

In addition to the negative impacts discussed in the previous section, the height

estimation algorithm is negatively a↵ected by the fact that the depth estimates are

relative percentages calculated on a per sample basis. The depth estimation algorithm

does not consider the depths of the population. The implications of this are that the

weights of the depth values are significantly dishonest as extrusions of smaller mass

will receive similar relative depths to extrusions of larger mass. Thus, the estimated

depths do not drastically di↵er between samples printed at lower tip height settings

from samples printed at higher tip height settings. Again, this adversely impacts the

capacity of the predictive model discussed in the next section because it is not able

to accurately discern between samples of di↵erent dimensions.

4.5 Predictive Model Review

The following section reviews the process for creating the height prediction model.

First, various statistical tools allow the analysis of the input data. Using a training

and validation sample set, along with various analytical methods, the model is selected

for the height estimation algorithm. Finally, we review the performance of the model

on the test dataset.
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Data Visualization.

The input data into the regression model is comparably simple as there is only

a single parameter, the estimated depths. Recall the dataset is reduced to one-third

its size by extracting only the middle depth values. This leaves the data population

to 187 samples with a single relationship between each sample: depth and height.

Figure 28 shows the data distributions for each of the split regions.

Figure 28. Scatter plots showing the data distribution for each average depth plotted
against its measured height.

Region 3 has the highest Pearson correlation coe�cient of 0.61, which shows that

it has the strongest linear relationship. Though this would suggest Region 3 as the

best option for model height prediction, the correlation is artificial as a result of the

numerous near-zero height measurements. Region 1’s correlation is -0.15, meaning

it does not have a linear relationship, and consequently its relationship to depth is

unintelligible. Thus, the only sensible region to use for the height estimation model

is Region 2, despite its weak correlation to depth with a coe�cient of 0.44. Figure

29 shows another look at the data distribution for Region 2. The depth histogram is

inconsistent with the height histogram, which shows large imbalance and reinforces

the conclusion of weak linear correlation. Nonetheless, we attempt to fit a nonlinear

model to the data using multiple linear regression.
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Figure 29. Distribution histograms of Region 2 depths and heights.

Model Selection.

In order to utilize multiple linear regression, artificial parameters are created by

generating a new feature matrix consisting of all the polynomial combinations of the

depth parameter with a degree up to 8. Thus, the number of input parameters to

each model depends on which polynomial is tested. The depth values then follow

Equation 16.

X 3

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Depth

Depth+Depth
2

Depth+Depth
2 +Depth

3

...
...

...

Depth+Depth
2 + ... +Depth

8

(16)
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Using the training and validation set, each of the eight models are evaluated using

the Mean Squared Error (MSE) as the performance measurement. The MSE statistic

is favorable, as it explains how close the fitted regression line for each model is to

the prediction data points. It does this by calculating the error distances from each

point to the regression line and then squares this value to penalize greater errors

more heavily. Figure 30 displays the results of testing each model across 50 di↵erent

training and validation set variations using random seeds to control the composition

of each sample set.

Figure 30. Metric comparison of the performance of the models tested via cross-
validation.

Over the 5-fold cross-validation method, the quadratic and sextic models tied for

having the lowest scoring MSE at 16 random seeds each. The average MSE across

each polynomial model are almost identical. The quadratic model is chosen not

only because it slightly outperforms the sextic model, but having a lower polynomial
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order model encourages generalizing the model by preventing the heavy overfitting

of the model on the training data. The average MSE values across all models are

extraordinarily high, which indicates that all of the models tested are performing

relatively unsatisfactory on all variations of the training set.

Model Testing.

Using the entire nontest dataset (combination of both training and validation sets),

the final model is trained using the quadratic polynomial order to make predictions

on the test dataset. Figure 31 provides a complete summary of the performance of

the final model including relevant statistical measures.

Figure 31. Summary of statistical measures on the final prediction model.

This ordinary least squares regression report provides an abundance of information on

the salience of the height predictive model. The R2 and Adjusted-R2 are measures of

overall performance of the model, and suggest the model explains approximately 50%

of the variation in the depth estimations. The Adjusted-R2 value being marginally

lower than the multiple R2 suggests the additional polynomial terms do not adversely

a↵ect the model. We can confirm this with the p-values (P > |t|) all being under
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0.05, which statistically supports their relevance. Hence, the coe�cients for each de-

pendent variable are not near zero and we can reject the null hypothesis. Finally,

the conditional number is large at 1.41e+05, which suggests strong multicollinear-

ity between the dependent variables. This is logical, as the dependent variables are

artificially conceived from a single dependent variable. Many of the other statistics

shown are measures of residual spatial autocorrelation (ensuring residuals are spa-

tially random), model stationarity (model’s consistent relationship to the dependent

variables), model bias (whether residuals are normally distributed), and model signif-

icance (overall statistical significance). Figure 32 shows a plot of the residual errors

for each prediction on the test dataset.

Figure 32. Plot of the residual errors on the test data.

From the residual plot, we can see that the model has low bias but high variance.

This is seen with the near-zero average residual error but large residual error disparity.

Thus, the model is predicting heights consistently but inaccurately. Additionally, the

residual plot shows a larger prediction error for smaller measured samples than larger

measured samples. This trend is consistent with the relative depth estimation limi-

tation. Because depths are calculated relative to each sample, the smaller measured
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samples are penalized more by higher depth estimations.

4.6 Summary

This chapter reviewed the methods used to create a height estimation algorithm

for monocular imagery. Given the limitations involved with these methods, each

of the software, experimental, and algorithmic designs have successes and failures

that influence the final height estimation tool. The prediction model is analyzed

using strong statistical techniques and assess for on its overall relevance. The final

height estimation method has a strong algorithmic process and but shows lackluster

performance on test data.
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V. Conclusion

Additive systems provide many benefits over traditional technologies for the man-

ufacturing of metallic products by lending a cost-e↵ective and environment-friendly

engine for the quick customization of unique parts. The technology’s cutting-edge

innovation has spearheaded an outbreak of research across many of the additive man-

ufacturing processes. However, there remains a need for automation and process

control of Material Extrusion Additive Manufacturing (MEAM) systems in order to

increase the overall level of quality assurance in industrialized printing. The primary

goal of this study was to provide a non-contact height estimation mechanism for Air

Force Research Laboratory (AFRL)/Materials and Manufacturing Directorate, Func-

tional Materials Division, Soft Matter Materials Branch (RXAS) in order to increase

their MEAM system’s product quality assurance.

In attempt to create a height estimation mechanism for AFRL/RXAS, a software

system, depth estimation algorithm, and multiple linear regression model were cre-

ated. The software system is a fully functional, hardware robust design; it is designed

to support automation and process control of the additive system. Due to hardware

constraints, the height estimation algorithm is limited to the use of the photometric

stereo method for surface reconstruction and depth estimation. Using a fixed camera

position confines the algorithm to calculating relative depth for each sample. This

implication along with the mass production of extrusions through an iteration of ex-

perimental design negatively a↵ects the quality of the data collection. Consequently,

the predictive model constructed in this study is unable to produce height estimations

with the level of accuracy demanded by the MEAM system.
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5.1 Research Conclusions

Despite the under-performing predictive model, this research contributes in explo-

ration of process control for quality assurance in MEAM systems. This study draws

the following conclusions:

• The design of a process monitoring tool for height estimation via imagery re-

quires absolute depth calculations. Photometric stereo surface reconstruction is

an inadequate technique for this endeavor as it provides relative depth. Tech-

niques such as stereo vision or range imaging are better suited for the problem

of height estimation in additive systems.

• Viewing angles perpendicular to the printing substrate are not su�cient for

height estimation from monocular imagery because they constrain the gathering

of depth information to shading cues. Viewing angles with appropriate angles

of tilt provide relative distance cues and empower vergence, object placement

relation, and familiar size depth estimation techniques. Additionally, tilted

viewing angles provide information on the detail of both the top and sides of

extrusions.

• Mass production of samples jeopardize the quality of extrusions. Though this

method may be unavoidable for a number of machine learning research appli-

cations in the MEAM field, real-time collection of data is credibly more appro-

priate than its in-situ counterparts. High availability of powerful computing

systems in today’s industry lends the proposition for use of video systems over

still images.

• Furthermore, the prevalence of the Convolutional Neural Network (CNN) in

modern research along with their profound results on computer vision tasks
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warrants the use of deep learning techniques over the classic depth perception

techniques discussed in Chapter II.

5.2 Future Work

As a system whose success is substantially dependent on the transient, physical

e↵ects of both the printing environment and extrusion material(s) properties, in ad-

dition to the technology-specific limitations of the system, the printing process and

signature parameter space for production optimization is extremely large. Thus, the

opportunities for optimization of additive systems are truly limitless. Below are few

research opportunities closely related to the aim for non-contact height estimation in

MEAM.

• The most immediate work to follow is the design of an adequate predictive al-

gorithm for height estimation. Whether it be stereo vision or ranging imaging,

relative distance cues or CNNs, the first step to quality assurance is height esti-

mation of single extrusion layer. The ability to measure a single extrusion layer

without contact with a high confidence interval is paramount for the growth of

MEAM. Only then can the process parameter and signature space expand to

more complex structures and materials.

• Though there are several viable avenues to pursue for a height estimation al-

gorithm, the work of Iravani-Tabrizipour and Toyserkani is promising for the

application of MEAM. Utilizing three Charge-Coupled Device (CCD) cameras

with interference filters and lenses, their algorithm which combines an image-

based tracking protocol and a recurrent neural network to extract the clad

height in real-time is able to detect the clad height independent from clad paths

in the laser cladding process with about 12% maximum error [45]. Exploiting a
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trinocular optical system with tilted viewing angles empowers a height estima-

tion algorithm with strong depth cues encompassing the entirety of a printed

structure for an accurate stereo vision implementation. Though the authors

employ an Elman Recurrent Neural Network (RNN) to detect any dynamic dis-

turbances in the network inputs generated by noise in the images, other feature

extraction algorithms, such as a CNN, are equally viable approaches.

• Once the height estimation algorithm has a high confidence interval feasible

for production, it can be integrated into the computing system to enable a

closed-loop control system. The premise behind how this is accomplished is

that the height estimator will calculate a height from a given image—or set

of images. This value is then compared to the target height defined in the

software apparatus’s toolpath generation. For single-layer print correction, the

estimated height will be used to adjust the print parameter settings depending

on if the calculated height is greater than or less than the target height. The

single-layer must then be reprinted using the adjusted settings. For multi-layer

print correction, subsequent layer print parameter settings are adjusted in a

likewise manner. However, multi-layer print correction can adjust at runtime

to allow real-time correction of the print.

5.3 Final Remarks

As automation and process control become more pervasive in MEAM, so too will

the additive manufacturing process in common industry. Despite the lessons learned,

this study equipped AFRL/RXAS with a software solution capable of integrating

process monitoring tools for the automation of print correction. This product readies

the United States Air Force with the capacity to adapt with the evolution of additive

systems and rapid prototyping.
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