10 research outputs found

    Hebbian Plasticity in CPG Controllers Facilitates Self-Synchronization for Human-Robot Handshaking

    Get PDF
    It is well-known that human social interactions generate synchrony phenomena which are often unconscious. If the interaction between individuals is based on rhythmic movements, synchronized and coordinated movements will emerge from the social synchrony. This paper proposes a plausible model of plastic neural controllers that allows the emergence of synchronized movements in physical and rhythmical interactions. The controller is designed with central pattern generators (CPG) based on rhythmic Rowat-Selverston neurons endowed with neuronal and synaptic Hebbian plasticity. To demonstrate the interest of the proposed model, the case of handshaking is considered because it is a very common, both physically and socially, but also, a very complex act in the point of view of robotics, neuroscience and psychology. Plastic CPGs controllers are implemented in the joints of a simulated robotic arm that has to learn the frequency and amplitude of an external force applied to its effector, thus reproducing the act of handshaking with a human. Results show that the neural and synaptic Hebbian plasticity are working together leading to a natural and autonomous synchronization between the arm and the external force even if the frequency is changing during the movement. Moreover, a power consumption analysis shows that, by offering emergence of synchronized and coordinated movements, the plasticity mechanisms lead to a significant decrease in the energy spend by the robot actuators thus generating a more adaptive and natural human/robot handshake

    Improving Motor Coordination in HRI with Bio-Inspired Controllers

    Get PDF
    International audienceGestural communication is an important aspect of HRI in social, assistance and rehabilitation robotics. Indeed, social synchrony is a key component of interpersonal interactions which affects the interaction at a behavioral level, as well as at a social level. It is therefore paramount for the robot to be able to adapt to its interaction partner, at the risk of experiencing an awkward interaction. Bio-inspired controllers endowed with plasticity mechanisms can be employed in order to make these interactions as natural and enjoyable as possible. Integrating adaptive properties can lead to the emergence of motor coordination and hence to social synchrony. A non-negligible aspect of the work consists in studying humans in HRI to understand human behavior better and design better interactions. On the long term, this could be quite useful for improved robot-assisted motor therapy

    Modeling of human gait control using CPGs

    Get PDF
    International audienceIn this paper, a way of controlling musculoskeletal gait of human using central pattern generators (CPG) is presented. Our controller is able to produce healthy or altered gait in sagittal plane using musculoskeletal model with six joints and sixteen muscles. Controller consists of eight CPGs and it uses five types of sensory feedback. Simulation results in Matlab shows that changing intrinsic parameters of CPGs, model produces different types of gait

    Advances in Human-Robot Handshaking

    Full text link
    The use of social, anthropomorphic robots to support humans in various industries has been on the rise. During Human-Robot Interaction (HRI), physically interactive non-verbal behaviour is key for more natural interactions. Handshaking is one such natural interaction used commonly in many social contexts. It is one of the first non-verbal interactions which takes place and should, therefore, be part of the repertoire of a social robot. In this paper, we explore the existing state of Human-Robot Handshaking and discuss possible ways forward for such physically interactive behaviours.Comment: Accepted at The 12th International Conference on Social Robotics (ICSR 2020) 12 Pages, 1 Figur

    Closed-loop Central Pattern Generator Control of Human Gaits in OpenSim Simulator

    Get PDF
    International audienceIn this paper, a new neuro-musculoskeletal gait simulation platform is presented. This platform is developed to reproduce healthy or altered walking gaits. It is based on an original model of central pattern generator able to generate variable rhythmic signals for controlling biological human leg joints. Output signals of motoneurons are applied to excitation inputs of modelled muscles of the human lower limbs model. Eight central pattern generators control a musculoskeletal model made up of three joints per leg actuated by 44 Hill-type muscle models. Forward dynamics simulation in OpenSim show that it is possible to generate different stable walking gaits by changing parameters of controller. Further work is aimed on development of stable human standing by implementing reflexes

    Closed-loop Central Pattern Generator Control of Human Gaits in OpenSim Simulator

    Get PDF
    International audienceIn this paper, a new neuro-musculoskeletal gait simulation platform is presented. This platform is developed to reproduce healthy or altered walking gaits. It is based on an original model of central pattern generator able to generate variable rhythmic signals for controlling biological human leg joints. Output signals of motoneurons are applied to excitation inputs of modelled muscles of the human lower limbs model. Eight central pattern generators control a musculoskeletal model made up of three joints per leg actuated by 44 Hill-type muscle models. Forward dynamics simulation in OpenSim show that it is possible to generate different stable walking gaits by changing parameters of controller. Further work is aimed on development of stable human standing by implementing reflexes

    Human-Robot Handshaking: A Review

    Full text link
    For some years now, the use of social, anthropomorphic robots in various situations has been on the rise. These are robots developed to interact with humans and are equipped with corresponding extremities. They already support human users in various industries, such as retail, gastronomy, hotels, education and healthcare. During such Human-Robot Interaction (HRI) scenarios, physical touch plays a central role in the various applications of social robots as interactive non-verbal behaviour is a key factor in making the interaction more natural. Shaking hands is a simple, natural interaction used commonly in many social contexts and is seen as a symbol of greeting, farewell and congratulations. In this paper, we take a look at the existing state of Human-Robot Handshaking research, categorise the works based on their focus areas, draw out the major findings of these areas while analysing their pitfalls. We mainly see that some form of synchronisation exists during the different phases of the interaction. In addition to this, we also find that additional factors like gaze, voice facial expressions etc. can affect the perception of a robotic handshake and that internal factors like personality and mood can affect the way in which handshaking behaviours are executed by humans. Based on the findings and insights, we finally discuss possible ways forward for research on such physically interactive behaviours.Comment: Pre-print version. Accepted for publication in the International Journal of Social Robotic

    Hebbian Plasticity in CPG Controllers Facilitates Self-Synchronization for Human-Robot Handshaking

    No full text
    International audienceIt is well-known that human social interactions generate synchrony phenomena which are often unconscious. If the interaction between individuals is based on rhythmic movements, synchronized and coordinated movements will emerge from the social synchrony. This paper proposes a plausible model of plastic neural controllers that allows the emergence of synchronized movements in physical and rhythmical interactions. The controller is designed with central pattern generators (CPG) based on rhythmic Rowat-Selverston neurons endowed with neuronal and synaptic Hebbian plasticity. To demonstrate the interest of the proposed model, the case of handshaking is considered because it is a very common, both physically and socially, but also, a very complex act in the point of view of robotics, neuroscience and psychology. Plastic CPGs controllers are implemented in the joints of a simulated robotic arm that has to learn the frequency and amplitude of an external force applied to its effector, thus reproducing the act of handshaking with a human. Results show that the neural and synaptic Hebbian plasticity are working together leading to a natural and autonomous synchronization between the arm and the external force even if the frequency is changing during the movement. Moreover, a power consumption analysis shows that, by offering emergence of synchronized and coordinated movements, the plasticity mechanisms lead to a significant decrease in the energy spend by the robot actuators thus generating a more adaptive and natural human/robot handshake

    肘関節粘弾性特性分析に基づいた可変粘弾性握手マニピュレータの開発

    Get PDF
    【学位授与の要件】中央大学学位規則第4条第1項【論文審査委員主査】中村 太郎 (中央大学理工学部教授)【論文審査委員副査】平岡 弘之(中央大学理工学部教授)、新妻 実保子(中央大学理工学部准教授)、諸麥 俊司(中央大学理工学部准教授)、万 偉偉(大阪大学准教授)博士(工学)中央大
    corecore