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It is well-known that human social interactions generate synchrony phenomena which

are often unconscious. If the interaction between individuals is based on rhythmic

movements, synchronized and coordinated movements will emerge from the social

synchrony. This paper proposes a plausible model of plastic neural controllers that allows

the emergence of synchronized movements in physical and rhythmical interactions.

The controller is designed with central pattern generators (CPG) based on rhythmic

Rowat-Selverston neurons endowed with neuronal and synaptic Hebbian plasticity. To

demonstrate the interest of the proposed model, the case of handshaking is considered

because it is a very common, both physically and socially, but also, a very complex act in

the point of view of robotics, neuroscience and psychology. Plastic CPGs controllers are

implemented in the joints of a simulated robotic arm that has to learn the frequency

and amplitude of an external force applied to its effector, thus reproducing the act

of handshaking with a human. Results show that the neural and synaptic Hebbian

plasticity are working together leading to a natural and autonomous synchronization

between the arm and the external force even if the frequency is changing during the

movement. Moreover, a power consumption analysis shows that, by offering emergence

of synchronized and coordinated movements, the plasticity mechanisms lead to a

significant decrease in the energy spend by the robot actuators thus generating a more

adaptive and natural human/robot handshake.

Keywords: physical human robot interaction, hebbian learning, central pattern generator (CPG), adaptive behavior,

handshaking, plasticity, neural oscillators

1. INTRODUCTION

For humans, physical and social interpersonal interactions induce gestural and verbal/non-verbal
communications based on rhythmic mechanisms and rhythmic movements. These mechanisms
and the associated synchronization phenomena (limit cycles and clamping) could play a
fundamental role in physical and social interpersonal interactions (Troje et al., 2006; Yonekura
et al., 2012) and could be an emergent feature of the physical and social interactions between
humans who adapt to each other and learn from each interaction, generating synchronization
phenomena and creating conscious or unconscious links between people (Delaherche et al., 2012).
Scientists assume that emotional and social interactions involve a coupling between individuals
which is achieved thanks to neural structures with similar properties as those implicated in
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the neural control of movements. For example, coordination
of oscillatory motions between two individuals (two distinct
brains) obeys the same rules as for inter-limb coordination
within a single individual (single brain) (Schmidt et al., 1990;
Tognoli et al., 2007). Thus, distinct individuals can spontaneously
interact and successfully perform coordinated actions through
an exchange of information by means of their sensorimotor,
cognitive and social underpinnings.

In humans and animals, rhythmic movements rely on
universal sensory-motor mechanisms (Cruse et al., 1998; Cattaert
and Le Ray, 2001; Zehr et al., 2004) and result from learning
processes implying chaotic neural oscillators in central pattern
generators (CPGs). CPGs endowed with plasticity rules allowing
for synchronization with the control body (Shadmehr, 2010), are
also implied both in the generation of discrete and rhythmic
movements (Grillner, 2006).

In human interactions, handshaking is an important and
universally social function allowing social introduction in
various contexts, regulating and maintaining human interactions
(Schiffrin, 1974; Hall and Spencer Hall, 1983; Bernieri and
Petty, 2011; Giannopoulos et al., 2011) but it can also provide
information on the health and emotional state of a person
(Chaplin et al., 2000), which could be useful for assistive robotics.
It is a multimodal physical interaction, socially common but
complex to reproduce with a humanoid robot because it involves
fine and complex movement coordination which engages the
body and gaze throughout the act: from the preparation to the
contact, the locking, the rhythmic and synchronized movement
until the withdrawal of the hands (Walker et al., 2013). How
synchronized motion of two humans arms is established and
maintained is still an open question but some aspects have been
studied in the movement science and neuroscience fields, such as
reaching hands (Lee, 1976; Bastin et al., 2006) and interpersonal
synchronization tasks (Oullier et al., 2008; Dumas et al., 2014).

From a neuroscience point of view, handshaking implies
interpersonal motor coordination and recent research showed
that it also induces the synchronization of the brain activity
of both partners Tognoli et al. (2007). Therefore, it can be
considered as a paradigm for social and physical interactions,
in particular because its multimodality is based on physical
and social clamping of rhythmic movements. Consequently, if
we want humanoid robots to be able to interact properly with
humans, i.e., in a socially acceptable way, shaking hand with
humans like a human is an interesting challenge (Der and
Martius, 2017). It is then necessary to design bio-inspired robot
controllers able to produce rhythmic movements and trigger the
emergence of a synchronization in an interaction such as the
handshaking gesture. One possible way to achieve this consists
in designing robot controllers which are intrinsically rhythmic,
such as CPGs, but which also incorporate synchronization
learning abilities similarly to the plasticity mechanisms involved
in the human motor nervous system for rhythmic movement
production.

Several models of CPGs have been proposed for many years
in order to understand human and animal motor control mostly
aiming at locomotion control in robotics (Ijspeert, 2008; Yu
et al., 2014; Nachstedt et al., 2017). CPGs are neuronal structures

located in the spinal cord and able to generate rhythmic and
discrete activities that can be initiated, modulated and reset by
different kinds of signals: descendant signals from high level
structures located in the MLR (mesencephalic locomotor region)
(Grillner, 2006; Rossignol et al., 2006; Harris-Warrick, 2011)
or afferent sensory feedbacks coming from low levels of the
body (proprioceptive) or from the environment (exteroceptive)
(Marder and Calabrese, 1996; Pearson, 2004). Different levels
of CPG modeling exist from the microscopic level (called also
biophysical model) that takes into account many details in the
biophysical operation of the neurons like the famous Hodgkin-
Huxley model (Hodgkin and Huxley, 1952), to the macroscopic
level that tries to reproduce the functionality of a population
of neurons using non-linear oscillators like Van der Pol (Rowat
and Selverston, 1993; Low et al., 2006), Rayleigh (Mottet and
Bootsma, 1999), or Hopf (Righetti and Ijspeert, 2006; Nachstedt
et al., 2017).

Between the microscopic and macroscopic levels of modeling,
there exists an intermediary level, called mesoscopic level, which
takes a more realistic biological inspiration but is sufficiently
simplified to study the sensorimotor couplings, oscillation
properties and learning mechanisms involved in the control of
rhythmic tasks. These models are usually based on a pair of
two mutually inhibitory oscillating neurons thus creating a CPG,
called half-center (Grillner and Wallen, 1985), divided into two
parts controlling the extensor and flexor muscles.

The model of half-center CPG for mammal locomotion by
McCrea and Rybak (Rybak et al., 2006) takes inspiration from
biological structures, such as the rhythmic layer, modulating
layer, interneurons, sensory neurons, etc. Its architecture is
divided into three layers: Rhythm Generator layer (composed
of an inhibitory pair of oscillatory neurons), Pattern Formation
layer (composed of inter-neurons) andMotor layer (composed of
Motoneurons). It also takes afferent (proprioceptive) and efferent
(exteroceptive) sensory feedbacks into account. While this model
has been widely used for locomotion (Amrollah and Henaff,
2010; Spardy et al., 2011; Nassour et al., 2014; Danner et al., 2016;
Nachstedt et al., 2017), very few works apply it to the control of
upper limbmovements: to our knowledge, only Teka et al. (2017)
used it to study the reaching movement.

Non-linear oscillator models (also called relaxation-
oscillators) can be used for oscillating neurons in CPGs
because they can synchronize effortlessly with an external signal
provided the frequency of this signal is not too different from the
intrinsic frequency of the oscillator (Pikovsky et al., 2003; Petrič
et al., 2011). Thus, non-linear oscillators are suitable models to
explain and reproduce the synchrony phenomena that emerge in
interpersonal coordination, especially if they are implemented at
the rhythmic level of a CPG. In this case, by acting like a dynamic
attractor, they facilitate the self-synchronization of the CPG with
the dynamic of the limb controlled by the CPG.

During the production of movement coordination, the
Matsuoka oscillating neuron model (Matsuoka, 1987) exhibits
the behavior of a non-linear oscillator and self-synchronization.
This model has been used extensively in robotic locomotion or
human motor control modeling (Taga et al., 1991; Taga, 1998;
Kasuga and Hashimoto, 2005; Degallier and Ijspeert, 2010; Yu
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et al., 2014; Avrin et al., 2017a,b). However, the main problem
of the Matsuoka model is that it cannot produce discrete as
well as rhythmic activities as mentioned in Degallier and Ijspeert
(2010). Indeed, it is now known that, in motor control, discrete
and rhythmic movements are generated by networks of spinal
neurons (Grillner, 2006; Degallier et al., 2011). Consequently,
in order to be biologically plausible, a CPG model must be
able to produce both discrete and rhythmic activities, just
like what has been observed in biological neurons implied in
locomotion production (Marder and Bucher, 2001). Therefore,
CPGs must include oscillating neurons able to operate in discrete
and rhythmic modes depending on one or several parameters.
Unfortunately, although the Matsuoka model is a non linear
oscillator, its nonlinearity is not controllable, meaning the model
doesn’t have a nonlinear parameterizable function allowing
different nonlinear behaviors.

The Rowat-Selverston oscillating neuron model (Rowat and
Selverston, 1993) is able to produce discrete and rhythmic
activities depending of two parameters as it has been
demonstrated in Amrollah and Henaff (2010) and Nassour
et al. (2014). However, only a few studies make use of it (Arikan
and Irfanoglu, 2011). The Rowat-Selverston oscillating neuron is
a generalized Van der Pol oscillator and consequently all known
properties of the Van der Pol can be applied to it, especially the
dynamic Hebbian learning of frequency introduced by Righetti
et al. (2006).

The first originality of this article is to implement Hebbian
mechanisms proposed by Righetti et al. (2006), in a bio-inspired
CPG, which we previously used for biped locomotion (Nassour
et al., 2014), enabling it to learn to synchronize with an external
signal. The second originality resides in using this plastic CPG to
control a simulated robotic armwhich has to learn to synchronize
its oscillatory movements with the frequency of an external force
applied to its effector, thus reproducing the act of handshaking
with a human.

In the first part, we explain how dynamic plasticity is
integrated in our CPGs and present the design of our robot
controller. In the second part, we validate our model by applying
it to the command of a robotic arm interacting physically
rhythmically in simulation. We show that the controller learns
to synchronize with the imposed rhythm in a given frequency
range matching the usual frequencies of handshaking. We also
demonstrate the importance of plasticity to achieve fast and
stable coordination. In the fourth part, we discuss our results and
future prospects.

2. MATERIALS AND METHODS

This section presents the plasticity mechanisms implemented in
the neurons of the CPG and finally, the design of the CPG-based
controller.

2.1. Dynamic Plasticity in CPGs Based on
Rowat-Selverston Neurons
As mentioned above, a non-linear oscillator has the property of
self-synchronization with an oscillating external signal applied as

its input, provided the frequency of this signal is close enough to
the intrinsic frequency of the oscillator. Implementing frequency
learning mechanisms inside a CPG would allow to synchronize
its rhythmic activity with the external signal even if the frequency
of this signal is significantly different from the intrinsic one of
the CPG (Ijspeert, 2008; Yazdani et al., 2017). Therefore, the CPG
could synchronize with themovements, triggering the emergence
of a global coordination between the limbs (Degallier and
Ijspeert, 2010). Righetti et al. (2006) proposed such a frequency
learning model for a Van der Pol oscillator called Dynamic
Hebbian learning. This section demonstrates the application of
this idea to the Rowat-Selverston oscillating neuron model.

2.1.1. Recall of Righetti’s Model for Dynamic Hebbian

Learning Into Van der Pol Oscillators
The free form (i.e., without any input signal applied) of the Van
der Pol oscillator can be written as :

ẋ = y

ẏ = −α
(

x2 − p
)

y− ω2x
(1)

where y is the output of the oscillator, p amplitude of y, α controls
the degree of nonlinearity of the system and ω mainly influences
the frequency of the oscillator.
When the Van der Pol oscillator is forced by an oscillating input
signal F(t) the model can be written as:

ẋ = y+ ǫF

ẏ = −α
(

x2 − p
)

y− ω2x
(2)

where ǫ can be seen as a gain or a weight.
In order to synchronize the oscillator with the input F(t) (see

Righetti et al., 2006 for details), proposed to learn the frequency
of the oscillator following a Hebbian learning rule :

ω̇ = ǫF
y

√

x2 + y2
(3)

They showed that this rule allows the oscillator to change its
intrinsic frequency to synchronize with the oscillating signal F(t).
The oscillator preserves the learned frequency, even after the
input signal is cut. It has been applied to the Hopf oscillator and
the Fitzhugh-Nagumo oscillator.

2.1.2. Van der Pol Form of Rowat-Selverston Neuron
The free form of the Rowat-Selverston model of a cellular neuron
is described by the equations (see Rowat and Selverston, 1993 for
details):

τmV̇ + V − Af tanh

(

σf

Af
V

)

+ q = 0 (4a)

τsq̇ = −q+ σsV (4b)

with V being the cellular membrane potential, q the slow
current, τm the time constant of the cellular membrane, τs is the
time constant of slow current activation (τm ≪ τs), σs and σf

Frontiers in Neurorobotics | www.frontiersin.org 3 June 2018 | Volume 12 | Article 29

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Jouaiti et al. Plasticity in CPG for Human-Robot Handshaking

represent respectively the conductance of slow and fast currents,
Af influences the amplitude of V .
Because Rowat-Selverston is a generalized Van der Pol oscillator,
its equations can be rewritten in a Van der Pol form such as in
Equation (1). To do that, Equation (4a) can be differentiated, and
q̇ replaced by the expression given in Equation (4b).
We can thus obtain a new expression of the unforced Rowat-
Selverston oscillator. In order to identify a Righetti learning rule
in the Rowat-Selverston neuron model, we must liken this model
to a Van der Pol oscillator expressed by Equation (1). To do that,
we approximate the tanh function to a linear one, tanh(x) ≈ x,
thus yielding:

τmV̈ +
(

τm

τs
+ 1− σf +

σ 3
f

A2
f

V2

)

V̇ +
1+ σs

τs
V −

σf

τs
V = 0 (5)

We’re well aware that approximating tanh(x) to x may seem far-
fetch and exceedingly inaccurate. Here, we are only trying to
identify a Hebbian rule and experiments validate our attempt.
It may very well be that, other rules, based on other far-fetched
assumptions, are valid too.
By setting, V̇ = y, we can transform the model into the following
unforced Van der Pol form see the Appendix for the detailed
calculations:

V̇ = y

ẏ =
−σ 3

f

τmA
2
f

(

V2 −
A2
f
(σf τs − τm − τs)

τsσ
3
f

)

y−
1+ σs − σf

τsτm
V

(6)

By comparing this equation to Equation (1), we can finally
identify the Van der Pol parameters ω, α and p of the unforced
Rowat-Selverston oscillating neuron:

ω =

√

1+ σs − σf

τsτm
; α =

σ 3
f

τmA
2
f

;

p =
A2
f
(τs(σf − 1)− τm)

τsσ
3
f

;with σf < 1+ σs (7)

2.1.3. Implementing Dynamic Hebbian Learning Into

the Rowat-Selverston Neuron
When an external signal F(t) is applied to the Rowat-Selverston
oscillating neuron, the neuron potential V becomes:

V̇ = y+ ǫF (8)

where the gain ǫ can be considered like a synaptic weight. Thus,
the principle of Hebbian dynamic rule proposed by Righetti et al.
(2006) can be applied on the parameters of the Rowat-Selverston
model to learn the frequency of F(t).

As shown in Rowat and Selverston (1993), the frequency of
the neuron oscillations depends only on τm, τs, σf , and σs: if σf
is fixed above a given threshold θf = 1 + τm

τs
≈ 1 (τm ≪ τs),

σs controls two modes depending on another threshold θs. If
σs < θs, there are no oscillations [intrinsic mode called “plateau

potentials” in Marder and Bucher (2001)]. On the other hand, for
σs > θs, the neuron produces a rhythmic signal [intrinsic mode
called “endogenous bursting” in Marder and Bucher (2001)]
whose frequency depends on τm, τs, and σs.

Following the idea of Righetti et al. (2006), we propose
to implement dynamic Hebbian learning of the oscillations
frequency by learning σs depending on the signal F(t) applied
to the neuron and weighted by ǫ. Thus, neural plasticity for
frequency learning can be obtained by deriving the expression of
ω2 from 7 :

σ̇s = 2ω̇ωτmτs = 2ω̇
√

τmτs

√

1+ σs − σf (9)

By applying the dynamic Hebbian learning rule proposed by
Righetti et al. (2006) to Equation (3), we obtain :

σ̇s = 2ǫF
√

τmτs

√

1+ σs − σf
y

√

V2 + y2
; σf < 1+ σs

(10)
We can see that this learning rule depends on the CPG time
constants. The presence of σs on the right side of the equation,
makes it a closed loop ensuring that the end value of σs does not
depend on its initial value.

2.1.4. Plasticity for Afferent and Efferent Signals
Additionally, to improve the control realized by the CPG, we
propose to learn the amplitude of neuronal oscillations by
learning Af depending on F(t), and to maintain the strength of
sensitivity of F(t) efficient enough with a learning mechanism
of ǫ.

2.1.4.1. Neuronal Plasticity for Amplitude Learning
Af determines the amplitude of the output of the CPG (efferent
signal) and thus the amplitude of velocity orders applied to the
motors.WhenAf is high, σs will oscillate globally before reaching

stability. In Equation 4, the expression Af tanh(
σf
Af
V) influences

the amplitude of V and consequently the CPG output. If the
amplitude is too big, the CPG becomes unstable due to the rapid
switchings of the sigmoid function of interneurons located in the
pattern formation layer, and if it is too small, the output of the
CPG doesn’t have enough energy. Adapting the amplitude of the
neuron oscillations in accordance with the applied signal F(t)
could solve that. One solution consists in minimizing the error
between the quadratic values of F(t) and the argument of tanh()
in equation 4 to match the amplitude of V with F(t) :

Ȧf = −µ





(

ν
σfV

Af

)2

− F2



 (11)

where ν is a scale factor and µ a learning step.
The presence of Af in the equation makes it a closed loop,

guarantying the same end value for Af no matter the initial value.
Empirically, we found that 20 was the best value for ν. Since Af is
not a constant any more, its derivative should appear in equation
5. This case was studied and the same result with an additional

term
V3σ 3

f

A3
f

Ȧf was obtained. Ȧf being extremely small, this last

term can be neglected and thus, yields the same result. So this
case won’t be detailed here any further.
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2.1.4.2. Synaptic Plasticity for Sensitivity Learning
ǫ acts like a learning step for σs (local oscillation) and determines
how much σs will oscillate when a new input signal is applied
before reaching stability. As a consequence, a small ǫ will allow
for a more robust and stable learning but will require more time
to reach stability, if the interaction doesn’t last long enough, it
may never be reached. On the other hand, a large ǫ will lead
to a more unstable learning but the final σs may be reached.
The parameter ǫ also acts as a synaptic weight to the afferent
signal F(t) that feedbacks to the CPG. In Equation 10, we’re really
only interested in the frequency of F(t) and its magnitude is not
relevant.

So, ǫ can be considered as a synaptic weight that could enable
the CPG to better sense the external signal F(t) by normalizing it
to magnitude 1. Besides, it was empirically determined that if ǫF
is too small (< 1), σs changes are too slow and may never reach
a stable final value and when ǫF is too big (> 1), σs becomes
unstable. Optimal results are obtained when the amplitude of
product ǫF equals 1. From there, a learning equation of ǫ can be
based also on an error of quadratic values pondered by a variable
gain that limits extreme values of F(t):

ǫ̇ = λ tanh(ξF)
(

1− (ǫF)2
)

(12)

with ξ an empirically determined gain ensuring that the term
inside the tanh is big enough (in our case, ξ = 100 yields good
results). This term guaranties that learning occurs only when F(t)
is not zero.

Here, it could be argued that there is no need for learning
ǫ, that manually determining the optimal value of ǫ beforehand
would be sufficient. By all means, this could be done but the
system would be less versatile and this would be ignoring the
fact that the amplitude of the input varies over time. Even if the
amplitude seldom varies so drastically, so that the ǫ wouldn’t
be valid any more, it isn’t the optimal value for ǫ and the
system could be performing better, especially if the input signal
varies over time. In that case, ǫ would be suitable for a range

of frequencies but if the frequency becomes too low or too
high, the system won’t behave as expected, thus requiring an
adaptive ǫ.

2.2. Designing the CPGs-Based Controller
An architecture based on CPGs is designed, according to
the McCrea and Rybak model, to control a robot interacting
physically with a human partner. The robot is a Mico robotic
arm from Kinova company (Figure 1). One CPG controls the
joint motor by applying velocity orders (efferent signals) and
receives proprioceptive feedbacks (afferent signals) from the
joint: torque and velocity (Figure 1). The equations for the
generic CPG are the following, with i ∈ N, designating the
joint id.

For the coupled Rhythm Generator cells:

V̇i{E,F} = yi{E,F} −Winhib

yi{E,F}

1+ e
−4yi{F,E}

+ ǫi{E,F}Fi (13)

ẏi{E,F} =
1

τm

(

σf −
τm

τs
− 1− σf tanh

2

(

σf

Afi

Vi{E,F}

))

yi{E,F}

−
1+ σsi{E,F}

τsτm
Vi{E,F} + (14)

Afi{E,F}

τsτm
tanh

(

σf

Afi{E,F}

Vi{E,F}

)

The term in Winhib models the mutual inhibition between the
rhythmic cells for the extensor and the flexor.

The terms σsi{E,F}
, Afi{E,F}

, and ǫi{E,F} are defined by Equations

(10–12) respectively.
Inter-neurons of pattern formation layer (neuron PF), sensory

neurons (neuron SN) for afferent feedbacks and motoneurons
(neurons MN) for efferent signals, are defined as a sigmoid
function (Debnath et al., 2014; Nassour et al., 2014):

FIGURE 1 | Principle and details of the CPG architecture for controlling the robotic arm. (Left) Simulation of the robot arm that interacts physically with a “virtual

human hand” simulated by a ball in motion. Each CPG controls one joint motor velocity. (Right) Generic CPG for one joint and its afferent feedbacks from the robot.
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FIGURE 2 | (Left) Evolution of σs2E , σs2F , σs3E , and σs3F for various values ofW. The initial value is 10 for each σs. (Right) Evolution of σs3E and σs3F for various initial

values (in red, 10; in blue, 100; in green, 300). The σs have not been distinguished because we’re only interested in the tendency and not in the individual behaviors.

PF(Vi{E,F} ) = PFi{E,F} =
1

1+ e
−Vi{E,F}

2

(15)

SNs(vmesi ) = SNi,s =
1

1+ eαsvmes
(16)

MN(PFi{E,F} , SNi,s) = MNi{E,F} =
1

1+ e
αm

(

PFi{E,F}−SNi,s

) (17)

With αs = −0.061342 and αm = 3. These coefficients were
chosen to match the parameters of the robot. For instance, the
sigmoid slope of the sensory neuron is determined by the range
of values of the speed.

3. SIMULATION OF HUMAN-ROBOT
HANDSHAKING: RESULTS

In this section, we will first present our results with a handshake
simulation, then we will study the parameters influence and
finally, we will demonstrate the importance of neuronal and
synaptic plasticity.

The simulations have been run in the V-REP Simulation
software with the Kinova Mico robotic arm. The V-REP
simulator cannot realistically compute grasping with a human
hand, so we simulate the handshaking gesture with a ball placed
inside the gripper. The ball is defined as a static object not
subjected to gravity that, unless stated otherwise, moves up and
down according to a 2Hz sinusoidal signal of amplitude 0.16 m.
This frequency is coherent for handshaking according to previous
experiments dedicated to the study on handshaking between
humans (Tagne et al., 2016). Since both objects are collidable, the
ball exerts a force on the fingers of the gripper, forcing the arm
to move along (see Figure 1). Reaching and grasping details are
irrelevant to this work and won’t be detailed here.

The Mico arm has seven degrees of freedom, but Tagne et al.
(2016) showed that arms are moving in the sagittal plan. In the
current setup, only the shoulder and elbow (joints 2 and 3 of
the Mico robot) are controlled for handshaking simulation, the
five other joints are hence locked and unable to move. At the
beginning of the simulation, the robot isn’t subjected to any
external force (other than gravity). The robotic arm raises toward
the ball and grasps it. Then, by applying a sinusoidal signal to
the ball, it must move in the vertical plane, thus applying a
perturbation to the robotic arm. Finally, the ball is released and
the interaction stops.

In all simulations here, the robotic arm raises toward the ball
between t = 0 and t = 0.68s, then the interaction starts. The
length of the interaction varies depending on the test conducted.
Finally, when the ball is released, the behavior of the robotic
arm is observed during ten more seconds before the simulation
stops. Sensory feedbacks are taken into account during the whole
process and are fed as an input to the CPG.

3.1. Role of Feedbacks and Mutual
Inhibition on Plasticity
The choice of the parameters is a crucial step, when
inappropriately chosen, the system may not behave as expected
or the results may be subpar. So, in order to select the best
parameters for the CPG, the role and influence of each parameter
were studied.

To have an oscillating system, Rowat and Selverston (1993)
determined that σf > 1 + τm

τs
and a ratio τm/τs of at least

10 is required. Actually, because of our newly derived learning
rule (Equation (10)), we also require σf < 1 + σs, and best
results are now achieved with σf = 1. For greater σf , the
system is too unstable, and for smaller values, the learning
of σs slows down because the neurons are in non-rhythmic
behavior.

Frontiers in Neurorobotics | www.frontiersin.org 6 June 2018 | Volume 12 | Article 29

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Jouaiti et al. Plasticity in CPG for Human-Robot Handshaking

FIGURE 3 | Comparison of different efferent articular signals to the CPG during handshaking: position (Left), velocity (Middle), and torque (Right). Evolution of σs
(top) (σS2E (blue), σS2F (red), σS3E (purple) and σS3F (green)), F (t) in red (middle and bottom), and articular velocity in blue.

3.1.1. Inhibition Influence on Plasticity
We previously stated that the natural frequency of the oscillator
is determined by τm, τs, σf and σs only. However, the natural
frequency also depends on W. The higher W, the lower the
frequency, hence the higher σs needs to be to compensate.
Figure 2 shows that the value of W influences the final value of
σs and below W = 0.05, the result is roughly the same. We can
observe a slight demarcation for W = 0.05 and above. For W ≥
1, the system isn’t able to oscillate (Rowat and Selverston, 1997).

The initial value of σs doesn’t change the final value reached
(see Figure 2). For very high or very low values, the final σs may
never be reached if the interaction does not last long enough.

3.1.2. Effect of Afferent Sensory Feedbacks on

Plasticity
Tests were carried out to determine which articular sensory
information is best suited to our purpose and yields the best
result in term of synchronization. Figure 3 shows the comparison
between articular position, articular velocity and articular torque
as feedback. Position and velocity feedback offer very bad results.
Both are neither able to adapt nor synchronize in spite of
our best attempts to find better parameter values. Finally force
feedback shows the best results. Furthermore, handshaking is
a social gesture and as such, provides information about the
interaction partner: firmness of grip, strength, vigor. This data
can be used to infer personality traits (Chaplin et al., 2000) and
can only be sensibly obtained from force feedback. So, the torque
measured in the joint will be the afferent input of our CPG for
synchronization.

3.2. Analyze of the Simulated Handshake
The simulation lasts 50 s. The interaction starts at t = 0.68s and
lasts until t = 40s when the gripper opens and releases the ball.

In this case, only frequency adaptation (σs learning) is enabled, ǫ
and Af remain constant. The parameters used for the simulation
are as follows: ǫ = 0.02 for the shoulder CPG (joint 2), ǫ = 0.03
for the elbow CPG (joint 3), τm = 0.35, τs = 3.5, W = 0.005,
σf = 1.0 and Af = 0.05.

3.2.1. Emergence of Synchrony in Handshaking
The simulated act of handshaking can be divided into four phases
among which two specific phases appear showing the emergence
of synchronization of movement during contact :

• Preparation phase. We won’t dwell on this phase, as it offers
nothing of interest to this work. At t = 0s, the arm is at rest.
Between t = 0 and t = 0.68s, the arm raises toward the ball
which places itself inside the gripper.

• Transitory phase: contact and learning synchronization.

When the interaction starts, i.e., when the ball starts moving
up and down, we can observe, in Figure 4, a massive increase
in the torque measured in the joints (200 N.m for joint 2
and 120 N.m for joint 3). The magnitude stays the same for
roughly 7 s, while the intrinsic frequency of the oscillator
changes until it matches the input frequency. This can be
further evidenced by observing the speed command s sent to
the joints, or even the evolution of σs (see Figure 5). When
the interaction starts, they start increasing, all following the
same direction, though some are slightly slower than others,
they finally catch up around t = 20 s. This phase offers two
distinctive behaviors: when the force is saturated and the σs
increase rapidly; when the force exerted has decreased but F
and s still aren’t synchronized and the σs slow down, hinting at
stabilization.

• Locking phase:mutual synchronization.When the transitory
phase is over, the force exerted on the arm decreases and F and
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FIGURE 4 | Evolution of torque Fi (input of the CPG i) and si control speed, for each joint during the human-robot handshake.

FIGURE 5 | On the left, evolution of σS2E (blue), σS2F (red), σS3E (purple) and σS3F (green). Note that the two σs for each joint are completely merged, so only one is

clearly visible on the plot. On the right, evolution of φ3E and φ3F during the experiment for the extensor and flexor of the second joint.

FIGURE 6 | (Left) Phase portrait in the (V, y) plan for each CPG. (Right) Phase portrait (velocity vs position) of the second and third articulations, during the same

simulation. The red dot indicates the start and the green one, the end of the experiment.
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FIGURE 7 | Here, σs doesn’t learn and remains constant at 10. Top figure represents the evolution of σs, frequency of F and φ. Below are the force applied on the

joint in red and send velocity in blue, and at the bottom, the mechanical work provided by each joint.

s can be observed to be perfectly synchronized and in phase
(Figure 4). From then onwards, the torque amplitude stays
mainly stable at 50 N.m for joint 2 and 25 N.M for joint 3,
this shows that the arm learned the movement, it oscillates at
the right frequency on its own and the ball isn’t forcing on it so
much. Besides, we can observe that the σs also reach stability,
from t = 12s onwards (by considering a response time at 5%
of the final value). The σs for both joints are now completely
merged and stable around 192.

• Withdrawal phase. Finally the interaction stops at t = 40s
and the ball is released so there isn’t any force exerted on
the arm. We can see that the arm goes on oscillating at
the frequency learned during the interaction, though with a
smaller amplitude. The σs also remain stable, showing that the
new value has indeed been learned. This oscillation could be
stopped by setting the value of σf below 1.

3.2.2. Inter-limb Coordination
Inter-limb coordination can be observed thanks to φE and φF

which represent the phase difference of the flexor and extensor
motoneuron output, respectively of both CPGs (see Figure 5):

φ{E,F} = θ(V2{E,F} , y2{E,F})− θ(V3{E,F} , y3{E,F}) (18)

with θ(V , y) the phase of the CPG:

θ(V , y) = sign(V) acos(
−y

√

V2 + y2
) (19)

Both φ start at t = 0. Similarly, to our previous observations,
during the transitory phase, φ3E increases while φ3F decreases.
After that, the φ reach stability around π and −π , from t = 20s
onwards and retain the same value after the interaction stops at
t = 40s.

3.2.3. Dynamic Stability of Synchronization
Dynamic stability of synchronization can be observed through
the phase portrait of the CPGs (V-y) and robot articulations
(angular velocity-angular position). On the CPG output phase
portraits (see Figure 6), three different cycles can be observed.
First, the starting cycle (most inner circle), when the rhythmic
cells oscillate at their own intrinsic frequency. Then, the
interaction cycle (most outer circle) when the human and the
robot are interacting. Finally, the middle circle is the end cycle.
On the other hand, on the position-velocity phase portraits we
can clearly distinguish two cycles. The outer cycle corresponds to
the interaction part, while the inner cycle is the “arm released”
part. The cycle does not change in shape, but changes in size (due
to the amplitude decreasing) when the arm is released. This cycles
apparition shows that the system is stable, and thus the frequency
is learned.

3.3. Plasticity Leads to Frequency
Adaptation
In this study, the frequency of the ball movement varies
following Heaviside functions simulating different types of
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FIGURE 8 | σs learns. Top figure represents the evolution of σs, φ and frequency of F. Below are the torque measured on the joint (red) and send velocity (blue), and

at the bottom, the mechanical work provided by each joint.

FIGURE 9 | On the left, the simulation without plasticity. On top, the evolution of σs and φ. On the bottom, in red the force exerted on each joint and in blue the

command velocity.

human handshakes: 2Hz between 0.68 and 35 s, then 1Hz
between 35 and 70 s, then 2Hz between 70 and 100 s, finally
2.5Hz between 100 and 120 s. To demonstrate the importance of

frequency adaptation for synchronization, a first simulation was
run without learning σs (σs would thus remain constant at 10),
while a second was run with σs learning enabled.
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FIGURE 10 | The simulation with neuronal plasticity. On top, the evolution of σs and φ, below the evolution of Af and ǫ. On the bottom, in red the force exerted on

each joint and in blue the command velocity.

Results show that the GPG controller which doesn’t learn σs
synchronizes with the perturbation signal thanks to its property
of natural synchronization, but since it doesn’t learn the new
frequency, it doesn’t reach stability, i.e. the system oscillates at
the right frequency, but only because the interaction forces it to.
The signals F and s are neither in phase nor in anti-phase, which
would be stable regimen. This leads the system to always provide
maximum effort throughout the whole interaction, and the force
to be constantly saturated. This can be observed on the bottom
of Figure 7 by the important mechanical work provided by the
joints.

On the contrary, when the system learns σs, we can see that
σs indeed adapts to each new frequency and we can observe
that the torque and CPG output are synchronized and in phase
(Figure 8). The decrease in force, which we previously witnessed
in our simple handshaking experiment, occurs here too. In this
case, the mechanical work provided by the joints (see bottom
of Figure 8) is consequently much less important since the force
happens to be saturated only during the transition phases.

3.4. Plasticity Decreases the Energy Spend
by the Robot
It is interesting to study the role of neuronal plasticity (σs and
Af ) and synaptic plasticity (ǫ), on the energy spend by the robot
for synchronization. Since last section has shown the positive
effects of learning σs on the mechanical work provided by the
motors, this section won’t talk about σs learning any more, which
will be always enabled. So when employing the terms without
plasticity, the reader shall understand without any plasticity (Af

nor ǫ learning) but σs learning.
Again, the frequency of the ball movement varies throughout

the interaction: 2Hz between 0.68 and 35 s, then 1Hz between 35

and 70 s, then 2Hz between 70 and 100 s, finally 2.5Hz between
100 and 120 s. The parameter values are the same as in section
3.2.

Moreover, for the first simulation (without plasticity), Af =
0.05, ǫ = 0.01 for joint 2 and ǫ = 0.02 for joint 3. For the second
simulation (with neuronal plasticity), λ = 2.10−3, µ2 = 5.10−6

and µ3 = 8.10−6.
Results from simulations are evaluated first energetically

and second by synchronization time. To calculate the power
consumption of the system, we compute the work provided by
each joint with following equation:

W =
∑

t

|Ft1θt| (20)

The synchronization time is defined by the 5% response time for
both σs to reach the stability value, for each different frequency
value.

First, it should be noticed from Figure 9 that the system
without plasticity doesn’t do too well in the lower frequency
1Hz. Indeed, after decreasing, the force increases again and the
σs of the different joints never merge. These two phenomena,
which by the way are also to be found in the simulation with
only Af plasticity, are due to the value of ǫ which, while
suitable for the other frequencies, is too small to get good results
at 1Hz.

We can also see that the force applied on the joints
of the system is much lower when plasticity is applied
(Figure 10). The force also decreases faster, this can be correlated
with the evolution of the σs which is steeper during the
transitions but slows down a little before reaching the new
stability value. Those observations suggest that, although the
synchronization times may appear similar in the Table 1, the
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TABLE 1 | Comparison table for various simulations with or without neuronal

plasticity.

Frequency → 2Hz 1Hz 2Hz 2.5Hz

Plasticity τ1 (s) τ2 (s) τ3 (s) τ4 (s) W2 (J) W3 (J)

None 12.82 25 6.3 6.5 4,144.69 3,683.31

Af 12.82 25 6.3 7 3,459.06 3,553.71

ǫ 6.82 30 5.7 8.5 2,744.99 2,041.26

Af + ǫ 6.82 32 5.5 8 2,101.04 1,737.47

τi is the time required so that σs stabilizes at the i
th frequency change.

transitory phase might be shorter, and hence synchronization
faster, with plasticity. Furthermore, let us remark that, although
the synchronization time appears much smaller without ǫ

plasticity for 1Hz, the validity of the measure for the
other two cases could be discussed, since the σs never
merge.

In Table 1, Wi represents the sum of the mechanical work
provided by joint i during the simulation (synchronization times
have been already explained so we won’t dwell on the subject any
further). We can see that learning the amplitude Af decreases the
work noticeably for joint 2, but only slightly for joint 3. Besides,
learning ǫ alone decreases the work further and the artifacts
mentioned before disappear. Finally the association of both ǫ and
Af learning yields the best results by virtually halving the original
work value.

4. DISCUSSION AND CONCLUSION

In this paper, we implemented Hebbian mechanisms in a bio-
inspired CPG, thus enabling it to learn to synchronize with an
external signal. Furthermore, we used this plastic CPG to control
a simulated robotic arm which had to learn to synchronize its
oscillatory movements to the frequency of an external force
applied on its effector.

We also underlined the relevance of force feedback, which
not only yields much better results than velocity and position
feedback but is also able to provide useful information, such
as firmness of grip, strength, vigor. Such data, as evidenced in
Chaplin et al. (2000) can be used to assess personality traits of the
handshaking partner. This knowledge would allow the robot to
adapt to different personalities (introvert, extrovert...), and thus
make the interaction more enjoyable.

The analysis of synchronization phenomena clearly shows two
main phases: the transitory phase where the system adapts and
learns and the permanent phase where the system has retained
the learning and is stable. Our best synchronization time is 6.82
s which is quite long for a handshake. Let us underline that we
did not put the system in the best conditions to achieve faster
coordination, the initial σs (10, 0.44Hz) being quite different
from the final value (192, 2Hz). Our main concern here was to
show the capacity of the CPG to adapt even to very different
frequencies from its own. , the Mico robot is not compliant
and thus offers too much resistance to any perturbation. As
a matter of fact, most robots are not designed for such tasks:

lacking force/torque sensors, and the robot controllers can also be
inadequate, providing only position control. So, putting the CPG
in better initial conditions and using a more compliant robot
would undoubtedly lead to a much faster synchronization.

Moreover, we demonstrated the importance of neuronal
and synaptic plasticity which leads to a natural, global
synchronization and adapts the neuronal architecture to a wider
range of arm dynamics in physical interaction. On the one
hand, we showed that learning σs is paramount to have an
adaptive system robust to frequency changes. On the other
hand, this system can be improved further by learning the
amplitude Af and the synaptic weight ǫ and hence considerably
decreases the power consumption. We showed that local
plasticity mechanisms trigger the emergence of a global adaptive
stable behavior. In conclusion, it is our belief that plasticity
is essential in designing a versatile and reliable bio-inspired
controller.

Concerning the methodology followed in this work, it could
obviously be argued that a single neuron can simply be used for
each joint instead of a whole CPG. Let us answer that we wish
to be as biologically close as possible, so our approach uses a
mesoscopic model based on Rybak and McCrea’s work (Rybak
et al., 2006). Apart from that, a CPG offers more possibilities than
a simple neuron due to its structure that creates a more robust
and stable attractor.

Furthermore, the CPG model used for the rhythmic arm
movement during physical interaction is the same as for walking,
proving its versatility. On top of that, it should be noted that
no dynamic model of the robot was used to control it. The
dynamic control of the rhythmic movements relies solely on the
natural synchronization abilities of the CPG. This makes the
CPG-based control particularly interesting since it can very easily
be adapted to another set of joints. Indeed, our simulation was
only concerned with handshaking but this plastic CPG model
could be applied to any rhythmic movements: walking, waving,
cleaning, drumming.

Here, we use the well-known slave-master paradigm
where one actor of the interaction imposes its frequency
upon the other but we’re also interested in studying how
two robots would adapt to each other. In the future, we plan
on extending the CPG architecture to more than two joints.
Using a simulator obviously entails its share of limitations
and our oversimplified handshake oversees a lot of subtleties
present in human-robot interactions. Our controller will
be validated with a real compliant robotic arm interacting
with a human. Additionally, in order to better understand
handshaking and hence, better reproduce it with robots, we
will continue our study of handshaking, its synchronization
phenomena and societal impact by performing human
psychological/physiological studies.
Our code can be found at http://doi.org/10.5281/zenodo.1222100
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APPENDIX

Mathematical Details for Section 2.2.2
Let us recall the Rowat Selverston equations:

τmV̇ + V − Af tanh

(

σf

Af
V

)

+ q = 0 (21a)

τsq̇ = −q+ σsV (21b)

Equation (21a) can be differentiated, yielding:

τmV̈ + V̇ − σf

(

1− tanh2
(

σf

Af
V

))

V̇ + q̇ = 0 (22)

and q̇ replaced by the expression given in equation (21b):

τmV̈+ V̇−σf

(

1− tanh2
(

σf

Af
V

))

V̇+
1

τs
(σsV−q) = 0 (23)

Then we replace q by its expression from equation (21a):

τmV̈ + V̇ − σf

(

1− tanh2
(

σf

Af
V

))

V̇ +
σs

τs
V +

1

τs
V +

τm

τs

V̇ −
Af

τs
tanh

(

σf

Af
V

)

= 0 (24)

and group the terms:

τmV̈ +
(

τm

τs
+ 1− σf + σf tanh

2

(

σf

Af
V

))

V̇ +
1+ σs

τs
V −

Af

τs
tanh

(

σf

Af
V

)

= 0 (25)

Frontiers in Neurorobotics | www.frontiersin.org 15 June 2018 | Volume 12 | Article 29

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Hebbian Plasticity in CPG Controllers Facilitates Self-Synchronization for Human-Robot Handshaking
	1. Introduction
	2. Materials and Methods
	2.1. Dynamic Plasticity in CPGs Based on Rowat-Selverston Neurons
	2.1.1. Recall of Righetti's Model for Dynamic Hebbian Learning Into Van der Pol Oscillators
	2.1.2. Van der Pol Form of Rowat-Selverston Neuron
	2.1.3. Implementing Dynamic Hebbian Learning Into the Rowat-Selverston Neuron
	2.1.4. Plasticity for Afferent and Efferent Signals
	2.1.4.1. Neuronal Plasticity for Amplitude Learning
	2.1.4.2. Synaptic Plasticity for Sensitivity Learning


	2.2. Designing the CPGs-Based Controller

	3. Simulation of Human-Robot Handshaking: Results
	3.1. Role of Feedbacks and Mutual Inhibition on Plasticity
	3.1.1. Inhibition Influence on Plasticity
	3.1.2. Effect of Afferent Sensory Feedbacks on Plasticity

	3.2. Analyze of the Simulated Handshake
	3.2.1. Emergence of Synchrony in Handshaking
	3.2.2. Inter-limb Coordination
	3.2.3. Dynamic Stability of Synchronization

	3.3. Plasticity Leads to Frequency Adaptation
	3.4. Plasticity Decreases the Energy Spend by the Robot

	4. Discussion and Conclusion
	Author Contributions
	References
	Appendix
	Mathematical Details for Section 2.2.2



