22 research outputs found

    Predictive geohazard mapping using LiDAR and satellite imagery in Missouri and Oklahoma, USA

    Get PDF
    ”Light Detection and Ranging (LiDAR) and satellite imagery have become the most utilized remote sensing technologies for compiling inventories of surficial geologic conditions. Point cloud data obtained from multi-spectral remote sensing methods provide a detailed characterization of the surface features, in particular, the detailed surface manifestations of underlying geologic structures. When combined, point clouds eliminate bias from visual inconsistencies and/or statistical values. This research explores the competence of point clouds derived from LiDAR and Unmanned Aerial Systems (UAS) as a predictive tool in evaluating various geohazards. It combines these data sets with other remote sensing techniques to evaluate the sensitivity of the respective datasets to temporal changes in the earth’s surface (potentially detectable at a centimeter-scale). A two-phase research approach was employed to test several hazard mapping scenarios in three geographic areas in the U.S. Midcontinent as follows: 1) UAS-derived surficial deformations near the epicenter of the 2016 Mw 5.8 Pawnee, Oklahoma earthquake (Paper I); 2) UAS mapping of recent earthquake epicenters in Noble Payne and Pawnee counties of Oklahoma State (Paper II); and, 3) Evaluation of geohazards in Greater Cape Girardeau Southeast Missouri (Paper III). These analyses detected geomorphic changes in the study locations, such as ground subsidence, soil heave and expansion, liquefaction-induced structures, dynamically-induced consolidation, and surface fault rupture. The studies underscore the importance of early hazard identification and providing information to relevant data users to make informed decisions”--Abstract, page iv

    Lessons for Remote Post-earthquake Reconnaissance from the 14 August 2021 Haiti Earthquake

    Get PDF
    On 14th August 2021, a magnitude 7.2 earthquake struck the Tiburon Peninsula in the Caribbean nation of Haiti, approximately 150 km west of the capital Port-au-Prince. Aftershocks up to moment magnitude 5.7 followed and over 1,000 landslides were triggered. These events led to over 2,000 fatalities, 15,000 injuries and more than 137,000 structural failures. The economic impact is of the order of US$1.6 billion. The on-going Covid pandemic and a complex political and security situation in Haiti meant that deploying earthquake engineers from the UK to assess structural damage and identify lessons for future building construction was impractical. Instead, the Earthquake Engineering Field Investigation Team (EEFIT) carried out a hybrid mission, modelled on the previous EEFIT Aegean Mission of 2020. The objectives were: to use open-source information, particularly remote sensing data such as InSAR and Optical/Multispectral imagery, to characterise the earthquake and associated hazards; to understand the observed strong ground motions and compare these to existing seismic codes; to undertake remote structural damage assessments, and to evaluate the applicability of the techniques used for future post-disaster assessments. Remote structural damage assessments were conducted in collaboration with the Structural Extreme Events Reconnaissance (StEER) team, who mobilised a group of local non-experts to rapidly record building damage. The EEFIT team undertook damage assessment for over 2,000 buildings comprising schools, hospitals, churches and housing to investigate the impact of the earthquake on building typologies in Haiti. This paper summarises the mission setup and findings, and discusses the benefits, and difficulties, encountered during this hybrid reconnaissance mission

    Preliminary Magnitude and Distance Damage Thresholds for Light-Frame Wood Buildings in Induced Earthquakes

    Get PDF
    Since 2009, the frequency of (moment) magnitude (Mw) 3.0 earthquakes and larger in the Central United States, and especially Oklahoma (OK), has risen from an average of 2 per year, to 200-700 per year. This increase in seismicity is a result of injection of large quantities of wastewater generated from oil and gas activities deep underground. In this study, damage to built infrastructure from induced earthquakes is investigated through nonlinear dynamic analysis and probabilistic damage assessment for a light-frame wood structure. Specifically, we focus here on investigating the smallest Mw injectioninduced earthquake that may cause damage to the building of interest at various distances from the hypocenter (R). The simulations are based on a two-story multifamily dwelling, which is designed with lateral strength and detailing consistent with modern code requirements in Pawnee, OK. For a Mw 4.5 earthquake, damage is observed at R = 15 km or closer. While for an earthquake R = 3 km from the site, damage is observed 56% of the time at Mw 4.5 and occurs 100% of the time when Mw 5.5 and above.This research was supported by the National Science Foundation under award number 1520846 and by the Civil, Architectural, and Environmental Engineering at the University of Colorado, Boulder

    Lessons for Remote Post-earthquake Reconnaissance from the 14 August 2021 Haiti Earthquake

    Get PDF
    On 14th August 2021, a magnitude 7.2 earthquake struck the Tiburon Peninsula in the Caribbean nation of Haiti, approximately 150 km west of the capital Port-au-Prince. Aftershocks up to moment magnitude 5.7 followed and over 1,000 landslides were triggered. These events led to over 2,000 fatalities, 15,000 injuries and more than 137,000 structural failures. The economic impact is of the order of US$1.6 billion. The on-going Covid pandemic and a complex political and security situation in Haiti meant that deploying earthquake engineers from the UK to assess structural damage and identify lessons for future building construction was impractical. Instead, the Earthquake Engineering Field Investigation Team (EEFIT) carried out a hybrid mission, modelled on the previous EEFIT Aegean Mission of 2020. The objectives were: to use open-source information, particularly remote sensing data such as InSAR and Optical/Multispectral imagery, to characterise the earthquake and associated hazards; to understand the observed strong ground motions and compare these to existing seismic codes; to undertake remote structural damage assessments, and to evaluate the applicability of the techniques used for future post-disaster assessments. Remote structural damage assessments were conducted in collaboration with the Structural Extreme Events Reconnaissance (StEER) team, who mobilised a group of local non-experts to rapidly record building damage. The EEFIT team undertook damage assessment for over 2,000 buildings comprising schools, hospitals, churches and housing to investigate the impact of the earthquake on building typologies in Haiti. This paper summarises the mission setup and findings, and discusses the benefits, and difficulties, encountered during this hybrid reconnaissance mission.</jats:p

    Lessons for Remote Post-earthquake Reconnaissance from the 14 August 2021 Haiti Earthquake

    Get PDF
    On 14th August 2021, a magnitude 7.2 earthquake struck the Tiburon Peninsula in the Caribbean nation of Haiti, approximately 150 km west of the capital Port-au-Prince. Aftershocks up to moment magnitude 5.7 followed and over 1,000 landslides were triggered. These events led to over 2,000 fatalities, 15,000 injuries and more than 137,000 structural failures. The economic impact is of the order of US$1.6 billion. The on-going Covid pandemic and a complex political and security situation in Haiti meant that deploying earthquake engineers from the UK to assess structural damage and identify lessons for future building construction was impractical. Instead, the Earthquake Engineering Field Investigation Team (EEFIT) carried out a hybrid mission, modelled on the previous EEFIT Aegean Mission of 2020. The objectives were: to use open-source information, particularly remote sensing data such as InSAR and Optical/Multispectral imagery, to characterise the earthquake and associated hazards; to understand the observed strong ground motions and compare these to existing seismic codes; to undertake remote structural damage assessments, and to evaluate the applicability of the techniques used for future post-disaster assessments. Remote structural damage assessments were conducted in collaboration with the Structural Extreme Events Reconnaissance (StEER) team, who mobilised a group of local non-experts to rapidly record building damage. The EEFIT team undertook damage assessment for over 2,000 buildings comprising schools, hospitals, churches and housing to investigate the impact of the earthquake on building typologies in Haiti. This paper summarises the mission setup and findings, and discusses the benefits, and difficulties, encountered during this hybrid reconnaissance mission.</jats:p

    Geo-engineered induced seismicity and the effects on federal infrastructure

    Get PDF
    “The study of human-induced seismicity and the effects on civil engineering systems are not completely understood or often studied. Moreover, existing studies are focused on the cause of the seismicity and not on the potential damage to infrastructure from these seismic events. There are recent studies that are beginning to focus on shallow induced seismic activity and the effects on infrastructure by establishing innovative ways to quantify that damage. These studies that focus on the potential damage neglect to included considerations for small magnitude cluster events. As geo-induced seismic events increase, soil fatigue becomes of greater concern to structures within the seismic zone. Short duration impulse loads affect foundations and structures to the point of potential failure. Although these events can be almost unnoticeable at first, over time have the capability to become a larger issue that has the potential to fail. There is a need for quantitative data to identify potential risk to structures from induced seismic events as well as a need to reassess and potentially modify existing risk assessment evaluations of infrastructure, most importantly critical infrastructure. The U.S. Army Corps of Engineers (USACE) is responsible for hydroelectric power, flood protection, recreational areas, navigational channels and water supply along the waterways that were either constructed prior to seismic design requirements or designed to a lower seismic level than current seismic activity. The potential damage from human-induced seismic activity is becoming more urgent as the increase in seismic events occur”--Abstract, page iv
    corecore