170 research outputs found

    A theory and its metatheory in FS 0

    Get PDF
    Feferman has proposed FS0, a theory of finitary inductive systems, as a framework theory suitable for various purposes, including reasoning both in and about encoded theories. I look here at how practical FS0 really is. I formalise of a sequent calculus presentation of classical propositional logic in FS0 and show this can be used for work in both the theory and the metatheory. the latter is illustrated with a discussion of a proof of Gentzen's Hauptsatz

    Intensional Models for the Theory of Types

    Get PDF
    In this paper we define intensional models for the classical theory of types, thus arriving at an intensional type logic ITL. Intensional models generalize Henkin's general models and have a natural definition. As a class they do not validate the axiom of Extensionality. We give a cut-free sequent calculus for type theory and show completeness of this calculus with respect to the class of intensional models via a model existence theorem. After this we turn our attention to applications. Firstly, it is argued that, since ITL is truly intensional, it can be used to model ascriptions of propositional attitude without predicting logical omniscience. In order to illustrate this a small fragment of English is defined and provided with an ITL semantics. Secondly, it is shown that ITL models contain certain objects that can be identified with possible worlds. Essential elements of modal logic become available within classical type theory once the axiom of Extensionality is given up.Comment: 25 page

    Proof Theory of Finite-valued Logics

    Get PDF
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued first order logics in a general way, and to present some of the more important results in this area. In Systems covered are the resolution calculus, sequent calculus, tableaux, and natural deduction. This report is actually a template, from which all results can be specialized to particular logics

    On the proof-theory of a first-order extension of GL

    Get PDF
    We introduce a first order extension of GL, called ML3, and develop its proof theory via a proxy cut-free sequent calculus GLTS. We prove the highly nontrivial result that cut is a derived rule in GLTS, a result that is unavailable in other known first-order extensions of GL. This leads to proofs of weak reflection and the related conservation result for ML3, as well as proofs for Craig’s interpolation theorem for GLTS. Turning to semantics we prove that ML3 is sound with respect to arithmetical interpretations and that it is also sound and complete with respect to converse well-founded and transitive finite Kripke models. This leads us to expect that a Solovay-like proof of arithmetical completeness of ML3 is possible

    The Basics of Display Calculi

    Get PDF
    The aim of this paper is to introduce and explain display calculi for a variety of logics. We provide a survey of key results concerning such calculi, though we focus mainly on the global cut elimination theorem. Propositional, first-order, and modal display calculi are considered and their properties detailed

    Proof-theoretic validity

    Get PDF
    This work is supported by Research Grant AH/F018398/1 (Foundations of Logical Consequence) from the Arts and Humanities Research Council, UK.The idea of proof-theoretic validity originated in the work of Gerhard Gentzen, when he suggested that the meaning of each logical expression was encapsulated in its introduction-rules, and that the elimination-rules were justified by the meaning so given. It was developed by Dag Prawitz in a series of articles in the early 1970s, and by Michael Dummett in his William James lectures of 1976, later published as The Logical Basis of Metaphysics. The idea had been attacked in 1960 by Arthur Prior under the soubriquet 'analytic validity'. Logical truths and logical consequences are deemed analytically valid by virtue of following, in a way which the present paper clarifies, from the meaning of the logical constants. But different logics are based on different rules, confer different meanings and so validate different theorems and consequences, some of which are arguably not true or valid at all. It seems to follow that some analytic statements are in fact false. The moral is that we must be careful what rules we adopt and what meanings we use our rules to determine.PostprintNon peer reviewe

    Proof theory of epistemic logics

    Get PDF
    • …
    corecore