1,258 research outputs found

    H2B: Heartbeat-based Secret Key Generation Using Piezo Vibration Sensors

    Full text link
    We present Heartbeats-2-Bits (H2B), which is a system for securely pairing wearable devices by generating a shared secret key from the skin vibrations caused by heartbeat. This work is motivated by potential power saving opportunity arising from the fact that heartbeat intervals can be detected energy-efficiently using inexpensive and power-efficient piezo sensors, which obviates the need to employ complex heartbeat monitors such as Electrocardiogram or Photoplethysmogram. Indeed, our experiments show that piezo sensors can measure heartbeat intervals on many different body locations including chest, wrist, waist, neck and ankle. Unfortunately, we also discover that the heartbeat interval signal captured by piezo vibration sensors has low Signal-to-Noise Ratio (SNR) because they are not designed as precision heartbeat monitors, which becomes the key challenge for H2B. To overcome this problem, we first apply a quantile function-based quantization method to fully extract the useful entropy from the noisy piezo measurements. We then propose a novel Compressive Sensing-based reconciliation method to correct the high bit mismatch rates between the two independently generated keys caused by low SNR. We prototype H2B using off-the-shelf piezo sensors and evaluate its performance on a dataset collected from different body positions of 23 participants. Our results show that H2B has an overwhelming pairing success rate of 95.6%. We also analyze and demonstrate H2B's robustness against three types of attacks. Finally, our power measurements show that H2B is very power-efficient

    Understanding and Enriching Randomness Within Resource-Constrained Devices

    Get PDF
    Random Number Generators (RNG) find use throughout all applications of computing, from high level statistical modeling all the way down to essential security primitives. A significant amount of prior work has investigated this space, as a poorly performing generator can have significant impacts on algorithms that rely on it. However, recent explosive growth of the Internet of Things (IoT) has brought forth a class of devices for which common RNG algorithms may not provide an optimal solution. Furthermore, new hardware creates opportunities that have not yet been explored with these devices. in this Dissertation, we present research fostering deeper understanding of and enrichment of the state of randomness within the context of resource-constrained devices. First, we present an exploratory study into methods of generating random numbers on devices with sensors. We perform a data collection study across 37 android devices to determine how much random data is consumed, and which sensors are capable of producing sufficiently entropic data. We use the results of our analysis to create an experimental framework called SensoRNG, which serves as a prototype to test the efficacy of a sensor-based RNG. SensoRNG employs opportunistic collection of data from on-board sensors and applies a light-weight mixing algorithm to produce random numbers. We evaluate SensoRNG with the National Institute of Standards and Technology (NIST) statistical testing suite and demonstrate that a sensor-based RNG can provide high quality random numbers with only little additional overhead. Second, we explore the design, implementation, and efficacy of a Collaborative and Distributed Entropy Transfer protocol (CADET), which explores moving random number generation from an individual task to a collaborative one. Through the sharing of excess random data, devices that are unable to meet their own needs can be aided by contributions from other devices. We implement and test a proof-of-concept version of CADET on a testbed of 49 Raspberry Pi 3B single-board computers, which have been underclocked to emulate resource-constrained devices. Through this, we evaluate and demonstrate the efficacy and baseline performance of remote entropy protocols of this type, as well as highlight remaining research questions and challenges. Finally, we design and implement a system called RightNoise, which automatically profiles the RNG activity of a device by using techniques adapted from language modeling. First, by performing offline analysis, RightNoise is able to mine and reconstruct, in the context of a resource-constrained device, the structure of different activities from raw RNG access logs. After recovering these patterns, the device is able to profile its own behavior in real time. We give a thorough evaluation of the algorithms used in RightNoise and show that, with only five instances of each activity type per log, RightNoise is able to reconstruct the full set of activities with over 90\% accuracy. Furthermore, classification is very quick, with an average speed of 0.1 seconds per block. We finish this work by discussing real world application scenarios for RightNoise

    RF Energy Harvesting Wireless Networks: Challenges And Opportunities

    Get PDF
    Energy harvesting wireless networks is one of the most researched topics in this decade, both in industry and academia, as it can offer self-sustaining sensor networks. With RF energy harvesting (RF-EH) embedded, the sensors can operate for extended periods by harvesting energy from the environment or by receiving it as an Energy signal from a hybrid base station (HBS). Thus, providing sustainable solutions for managing massive numbers of sensor nodes. However, the biggest hurdle of RF energy is the low energy density due to spreading loss. This paper investigates the RF-EH node hardware and design essentials, performance matrices of RF-EH. Power management in energy harvesting nodes is discussed. Furthermore, an information criticality algorithm is proposed for critical and hazardous use cases. Finally, some of the RF-EH applications and the opportunities of 5G technologies for the RF-EH are introduced

    ENTROPY ANALYSIS OF DATA COLLECTED FROM INERTIAL MEASUREMENT UNIT OF CYBER-PHYSICAL SYSTEM UNDER NON-DISTURBED CONDITIONS

    Get PDF
    Nowadays cyber-physical systems are widely used for many purposes. We consider the provision of information security of data channels in such systems. Cryptographic data security approach based on random sequences is commonly used to solve this task. Its reliability depends on quality of random data being used, thus truly random sequences are preferable for application. Truly random data generation is a time-consuming process and it requires entropy sources of physical nature. The goal of the paper presented is to research methods and approaches of collecting random numbers using inertial measurement unit as a part of cyber-physical system. Method. Quality assessment of a binary sequence was carried out during the research by determination of random sequence statistical characteristics.Main Results. Research results have shown up that raw data collected from onboard inertial sensors possess lack of entropy under non-disturbed conditions, therefore an additional post-processing is required. Practical Relevance. The results of the research can be used to obtain random sequences for on board cyber-physical systems equipped with inertial measurement units without the use of additional devices. It is planned to collect data from a flying unmanned aerial system in future to apply extractors and to utilize other methods in order to improve quality of a binary sequenc

    SecuCode: Intrinsic PUF Entangled Secure Wireless Code Dissemination for Computational RFID Devices

    Full text link
    The simplicity of deployment and perpetual operation of energy harvesting devices provides a compelling proposition for a new class of edge devices for the Internet of Things. In particular, Computational Radio Frequency Identification (CRFID) devices are an emerging class of battery-free, computational, sensing enhanced devices that harvest all of their energy for operation. Despite wireless connectivity and powering, secure wireless firmware updates remains an open challenge for CRFID devices due to: intermittent powering, limited computational capabilities, and the absence of a supervisory operating system. We present, for the first time, a secure wireless code dissemination (SecuCode) mechanism for CRFIDs by entangling a device intrinsic hardware security primitive Static Random Access Memory Physical Unclonable Function (SRAM PUF) to a firmware update protocol. The design of SecuCode: i) overcomes the resource-constrained and intermittently powered nature of the CRFID devices; ii) is fully compatible with existing communication protocols employed by CRFID devices in particular, ISO-18000-6C protocol; and ii) is built upon a standard and industry compliant firmware compilation and update method realized by extending a recent framework for firmware updates provided by Texas Instruments. We build an end-to-end SecuCode implementation and conduct extensive experiments to demonstrate standards compliance, evaluate performance and security.Comment: Accepted to the IEEE Transactions on Dependable and Secure Computin

    Data Collection and Information Freshness in Energy Harvesting Networks

    Get PDF
    An Internet of Things (IoT) network consists of multiple devices with sensor(s), and one or more access points or gateways. These devices monitor and sample targets, such as valuable assets, before transmitting their samples to an access point or the cloud for storage or/and analysis. A critical issue is that devices have limited energy, which constrains their operational lifetime. To this end, researchers have proposed various solutions to extend the lifetime of devices. A popular solution involves optimizing the duty cycle of devices; equivalently, the ratio of their active and inactive/sleep time. Another solution is to employ energy harvesting technologies. Specifically, devices rely on one or more energy sources such as wind, solar or Radio Frequency (RF) signals to power their operations. Apart from energy, another fundamental problem is the limited spectrum shared by devices. This means they must take turns to transmit to a gateway. Equivalently, they need a transmission schedule that determines when they transmit their samples to a gateway. To this end, this thesis addresses three novel device/sensor selection problems. It first aims to determine the best devices to transmit in each time slot in an RF Energy-Harvesting Wireless Sensor Network (EH-WSN) in order to maximize throughput or sum-rate. Briefly, a Hybrid Access Point (HAP) is responsible for charging devices via downlink RF energy transfer. After that, the HAP selects a subset of devices to transmit their data. A key challenge is that the HAP has neither channel state information nor energy level information of device. In this respect, this thesis outlines two centralized algorithms that are based on cross-entropy optimization and Gibbs sampling. Next, this thesis considers information freshness when selecting devices, where the HAP aims to minimize the average Age of Information (AoI) of samples from devices. Specifically, the HAP must select devices to sample and transmit frequently. Further, it must select devices without channel state information. To this end, this thesis outlines a decentralized Q-learning algorithm that allows the HAP to select devices according to their AoI. Lastly, this thesis considers targets with time-varying states. As before, the aim is to determine the best set of devices to be active in each frame in order to monitor targets. However, the aim is to optimize a novel metric called the age of incorrect information. Further, devices cooperate with one another to monitor target(s). To choose the best set of devices and minimize the said metric, this thesis proposes two decentralized algorithms, i.e., a decentralized Q-learning algorithm and a novel state space free learning algorithm. Different from the decentralized Q-learning algorithm, the state space free learning algorithm does not require devices to store Q-tables, which record the expected reward of actions taken by devices
    • …
    corecore