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ABSTRACT
Random Number Generators (RNG) find use throughout all applications of
computing, from high level statistical modeling all the way down to essential
security primitives. A significant amount of prior work has investigated this
space, as a poorly performing generator can have significant impacts on
algorithms that rely on it. However, recent explosive growth of the Internet of
Things (IoT) has brought forth a class of devices for which common RNG
algorithms may not provide an optimal solution. Furthermore, new hardware
creates opportunities that have not yet been explored with these devices. In this
Dissertation, we present research fostering deeper understanding of and
enrichment of the state of randomness within the context of
resource-constrained devices.

First, we present an exploratory study into methods of generating random
numbers on devices with sensors. We perform a data collection study across 37
Android devices to determine how much random data is consumed, and which
sensors are capable of producing sufficiently entropic data. We use the results
of our analysis to create an experimental framework called SensoRNG, which
serves as a prototype to test the efficacy of a sensor-based RNG. SensoRNG
employs opportunistic collection of data from on-board sensors and applies a
light-weight mixing algorithm to produce random numbers. We evaluate
SensoRNG with the National Institute of Standards and Technology (NIST)
statistical testing suite and demonstrate that a sensor-based RNG can provide
high quality random numbers with only little additional overhead.

Second, we explore the design, implementation, and efficacy of a Collaborative
and Distributed Entropy Transfer protocol (CADET), which explores moving
random number generation from an individual task to a collaborative one.
Through the sharing of excess random data, devices that are unable to meet
their own needs can be aided by contributions from other devices. We
implement and test a proof-of-concept version of CADET on a testbed of 49
Raspberry Pi 3B single-board computers, which have been underclocked to
emulate resource-constrained devices. Through this, we evaluate and
demonstrate the efficacy and baseline performance of remote entropy protocols
of this type, as well as highlight remaining research questions and challenges.

Finally, we design and implement a system called RightNoise, which
automatically profiles the RNG activity of a device by using techniques adapted
from language modeling. First, by performing offline analysis, RightNoise is able
to mine and reconstruct, in the context of a resource-constrained device, the
structure of different activities from raw RNG access logs. After recovering these
patterns, the device is able to profile its own behavior in real time. We give a
thorough evaluation of the algorithms used in RightNoise and show that, with
only five instances of each activity type per log, RightNoise is able to reconstruct
the full set of activities with over 90% accuracy. Furthermore, classification is
very quick, with an average speed of 0.1 seconds per block. We finish this work
by discussing real world application scenarios for RightNoise.
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Understanding and Enriching Randomness Within
Resource-Constrained Devices



Chapter 1

Introduction

Random numbers and the generators thereof are a quietly essential part of the
mainstream computing landscape [111, 87]. The values produced by an RNG
are utilized in a wide variety of applications, ranging from facilitating a positive
user experience all the way down to ensuring the core functionality of low-level
algorithms. Random numbers help create the fun in games and gaming content
(e.g. AI decision making, lotteries, procedural generation, initial configurations),
aid in scientific computing (e.g. Monte Carlomethods, Markovmodels), assist with
core OS and system functionality (e.g. stack pointer randomization, TCP random
backoff), help keep communications and data secure (e.g. public and private
cryptography schemes), and many other applications not listed here [87, 75, 96].

While random number generation is a topic that has been well studied in the
context of traditional computing environments, the rapidly growing landscape of
mobile and Internet of Things (IoT) devices has created a new space for re-
search and exploration [43]. Mobile devices have proliferated and evolved into
all-encompassing personal computers that not only perform familiar tasks, such
as reading documents or browsing the web, but also enable new functionality
that standard computing environments are not equipped to address, such mo-
bile payment and banking, or two-factor authentication. Meanwhile IoT-ready de-
vices serve to extend the sensing capabilities of other devices, enabling previously
“dumb” technologies, such as the car or home, to achieve greater awareness of
their surroundings and become an interactive platform for data. This growing list
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of non-trivial use cases only adds to the argument that these devices must be
treated less as secondary computational devices for users, and more as essen-
tial components of everyday life for those that choose to invest.

Unfortunately, while hardware continues to undergo rapid iteration and evolu-
tion, the algorithms running on these platforms may lag behind and miss oppor-
tunities to take advantage of new available features. This results in a mismatch
of hardware and algorithm capability; in particular we focus on the subject of ran-
dom number generation. On one hand, mobile devices now come equipped with
a plethora of sensors designed to extract data from the environment around them.
However, mainstream RNG implementations have failed to incorporate these new
sources into their algorithms. Similarly, low-end IoT devices often come with con-
straints on the availability of computational resources, or ready access to sources
of randomness that would be present in a desktop environment (e.g. user in-
put). We find that this mismatch presents an opportunity to revisit the topic of
random number generation within a new class of hardware. Finally, because of
the uniquely single-purpose design of a vast majority of IoT devices, it remains
unclear as to what the expected RNG behaviors and usage patterns in these de-
vices are. This presents an opportunity for deeper research into understanding
the structure of RNG use on these devices to better close the gap between theory
and implementation.

1.1 Problem Statements

In this dissertation, we investigate the topics of cultivating better understanding of
random number use and improving access to random numbers within the context
of mobile and Internet of Things devices. Specifically, we approach the topic from
three directions which try to take advantage of modern developments in hardware
and software.

1) How well can new hardware sensors be leveraged to improve the production
of random numbers on device?
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2) How can we leverage the resources of multiple devices to help improve the
quality of random numbers on resource-constrained devices?

3) What are the characteristics of RNG access patterns within the scope of
resource-constrained devices?

Answers to these questions will aid in better understanding and development of
random number generation algorithms specifically tailored for the devices that
they run on.

1.1.1 Utilizing Hardware Sensors in RNG Algorithms

This work presents an exploratory study into methods of generating random num-
bers on sensor-equipped mobile and IoT devices. We first perform a data collec-
tion study across 37 Android devices to determine two things - how much random
data is consumed by modern devices, and which sensors are capable of pro-
ducing sufficiently random data. We use the results of our analysis to create an
experimental framework called SensoRNG, which serves as a prototype to test
the efficacy of a sensor-based RNG. SensoRNG employs collection of data from
on-board sensors and combines them via a light-weight mixing algorithm to pro-
duce random numbers. We evaluate SensoRNG with the National Institute of
Standards and Technology (NIST) statistical testing suite and demonstrate that
a sensor-based RNG can provide high quality random numbers with only little
additional overhead.

1.1.2 Facilitating Collaborative Random Number Generation

Here, we lay the foundation for a collaborative framework to provide entropy on
demand, which aims to move random number generation from an individual task
to a collaborative one. By treating entropy as a shared resource, devices that are
unable to meet their own needs can be aided by the devices in the network around
them, facilitating improved performance for applications where randomness is re-
quired. We build and evaluate a proof-of-concept version of our protocol, called
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CADET, on a testbed of Raspberry Pi 3B single-board computers, which have
been under clocked to mirror the resource-constraints of IoT devices. Through
this, we demonstrate the viability of the protocol as well as pave the way for future
directions for research in this area.

1.1.3 Investigating and Profiling RNG Access Patterns

Our final work investigates and creates a link between device activities and RNG
access patterns. To do this, we design and implement a system called Right-
Noise, which automatically profiles the RNG activity of a device by using tech-
niques adapted from language modeling. First, by performing offline analysis,
RightNoise is able to mine and reconstruct the structure of different IoT device
activities from raw access logs. After recovering these patterns, the device is
able to profile its own behavior in real time. We give a thorough evaluation of
the algorithms used in RightNoise and show that, with only five instances of each
activity type per log, RightNoise is able to reconstruct the full set of activities with
over 90% accuracy. Furthermore, classification is very quick, with an average
speed of 0.1 seconds per block.

1.2 Contributions

The overall result of this dissertation expands the scope of techniques and knowl-
edge pertaining to random number generation and generators, particularly in de-
vices with resource constraints.

Sensor-Based Random Number Generation for Mobile and IoT Devices.
This work improves the production of random numbers on-device by utilizing new
input sources. We first perform a data collection study on the current state of
random data use and data different hardware sensors can provide. Based on our
analysis of this data, we prototype a system to leverage the noise in hardware
sensors for the production of random numbers. Our main contributions are:

5



• We conduct a data collection study surveying 37 Android devices of varying
hardware capabilities. Our analysis of the data reveals two things: which
sensors are suitable sources of random noise and the demand for random
data in mobile devices. Specifically, we show that random data use tends to
occur in short bursts, but never overwhelming to the RNG.

• We implement SensoRNG, a proof-of-concept RNG which draws random-
ness from hardware sensors. Our framework leverages opportunistic collec-
tion of data to efficiently gather the necessary sensor samples with reduced
overhead. SensoRNG is implemented both as an Android system service,
as well as an Android library for the sake of evaluation.

• We provide an evaluation of SensoRNG on multiple aspects, demonstrating
the viability of a sensor-based RNG as well as evaluating its overhead.

• We discuss and provide insight into our findings, including the strengths and
drawbacks of utilizing a sensor-based RNG in a mobile or IoT context.

Investigating a Collaborative and Distributed Entropy Transfer Protocol
This work moves random number generation from a strictly individual task to

a collaborative one. We design and prototype a Collaborative and Distributed
Entropy Transfer protocol (CADET) which collects randomness from participating
devices in the system. The end result gives resource-constrained devices access
to verified good entropy that can then be used to bolster the performance of their
own RNG algorithms. Our main contributions are:

• To our knowledge, we propose the first general specification and implemen-
tation of an open distributed entropy transfer protocol, CADET, including de-
tails of the packet structure, device hierarchy, data flow, and core function-
ality.

• We provide a thorough evaluation of CADET, documenting its overall perfor-
mance and overhead. We also provide insight into the design decisions, as
well as investigate their effectiveness.
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• We highlight critical results from the evaluation of the protocol in its current
form, discussing its efficacy as well as paths for refinement and growth in
future work.

Automatically Profiling IoT Device Activity by Characterizing RNG Usage
This work investigates outside of the RNG algorithm itself and examines the

actual patterns of requests made to the RNGmodule. We leverage the knowledge
gained by our observations to build an activity profiling tool called RightNoise.
RightNoise automatically analyzes RNG access logs during a particular system
state and extracts meaningful patterns corresponding to different device activities.
This activity profile can be used in a variety of ways, including detecting unwanted
behavior. The main contributions of this work are:

• We perform a targeted user survey to understand the current state of IoT
device adoption.

• We conduct the first (to the author’s knowledge) investigation of RNG access
patterns within the context of two specific devices, providing analysis of the
underlying RNG activity structure.

• We design and implement a profiling tool called RightNoise, which automat-
ically profiles the behavior of a system by analyzing RNG access patterns.

• We provide an evaluation of the various modules in RightNoise by using both
simulated data and data collected from the devices examined in this work.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 presents relevant
background on the subject of random number generation as well as a detailed
survey of related work. In Chapter 3, we present our work on SensoRNG, a pro-
totype random number generation algorithm for mobile and resource-constrained
devices. SensoRNG utilizes on-board hardware sensors as input sources to the
algorithm, helping improve generation on device. In Chapter 4, we treat random
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number generation as a collaborative problem and present our work on a Collabo-
rative and Distributed Entropy Transfer (CADET) protocol. Chapter 5 presents our
investigation into understanding the use of a RNGwithin resource-constrained de-
vices, culminating with the presentation and evaluation of our profiling tool, Right-
Noise. Finally, Chapter 6 summarizes the work presented in this dissertation.
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Chapter 2

Related Work

Previous work related to this dissertation can be divided into several categories,
including studies on existing RNGs, new methods for generating randomness,
methods for remotely retrieving randomness, and the effects of low entropy RNGs.

Studies on the Linux PRNG: The Android PRNG utilizes the Linux PRNG as
part of its current implementation. There has been recent work done outlining the
architecture of the LPRNG by Gutterman et al. [44] in 2006 and Lacharme et al.
[68] in 2012. There are three major sources that Android uses to feed the random
pool of the LPRNG - disk timings, interrupt timings and user touch events. How-
ever, in the study conducted by Ding et al. [21] it was noted that Android tends to
rely heavily on disk events, especially directly after system boot. Furthermore, the
amount of random bits that can be extracted from a single sample of one source
is small, corresponding to 3 bits for disk events and 4 bits for interrupts [68]. Our
study finds that a single sensor sample is able to regularly provide much more.
Another important feature of the LPRNG is the entropy estimation counter asso-
ciated with each pool. These counters are kept for both the random and urandom
pools. A recent analysis performed by Dodis et al. suggests that an attacker
can take advantage of the manner in which these counters are implemented and
potentially compromise the integrity of the output [22]. While our work does not
explicitly investigate the security of PRNGs, we use these works as motivation for
our exploratory study.

New Methods for Randomness Generation: Randomness generation in
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IoT devices has typically relied on the LPRNG. However several authors have
proposed alternative methods for harvesting entropy or producing randomness.
Kesley et al. proposed the Yarrow RNG as a general purpose solution, and is
currently used in iOS and OSX [60]. In 2006, McEvoy et al. proposed the Fortuna
PRNG as a cryptographically secure solution for generating random numbers. It
has recently been adopted by FreeBSD [73]. Both of these algorithms could po-
tentially be utilized in an IoT setting, but there has been no investigation into the
potential of overhead.

More recently, Intel has begin adding support for hardware entropy gathering
within the CPUwith their RDRAND instruction [51]. Other work has has suggested
that CPU jitter could serve as a suitable entropy source for generating random
numbers [80, 17]. However, the former is limited to x86 processors while the
latter has not received extensive testing on low-power devices.

With regards to sensors, Francillon et al. proposed amethod for using received
bit errors as a source of randomness in wireless sensor nodes [31]. Lo Re et al.
proposed a method of using the physical measurements collected by large scale
wireless sensor nodes as an input to a TRNG [89]. Our primarily concern in our
work is with randomness extracted from commodity sensors available in mobile
and IoT devices. We use these approaches as motivation for choosing which
hardware sensors to consider for analysis.

Sensor Randomness: The study carried out by Krkovjak et al. [66] inves-
tigates the microphone and camera in smart phones as promising sources of
randomness. Similarly, Suciu et al. [98] study four sensors - the gyroscope, ac-
celerometer, magnetometer, and GPS - to determine the level of randomness that
each might provide. While Krkovjak et al. rely on Shannon entropy to quantify the
non-deterministic nature of the sensors, we perform a deeper analysis to deter-
mine the significance of each bit per sensor sample. For the work by Suciu et al.,
very little insight or information is provided about the utilized analysis methodol-
ogy. The authors also only give a brief overview of how they combined incoming
sensor streams. By comparison, we offer a detailed examination of a breadth of
sensors examined in previous works. We also explicitly outline the architecture
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of our prototype, SensoRNG, and provide a detailed analysis of performance and
power in comparison with the APRNG.

External Entropy Retrieval: Closely related to this work is the idea of re-
mote entropy retrieval. This was first realized with the introduction of HotBits
in 1996 and random.org in 1998. These services provide on-demand random
numbers drawn from radioactive and atmospheric noise respectively [108][87]. A
patent in 2001 put forth the first concrete notion of remote entropy, describing the
process of acquiring additional PRNG seeding information generated on remote
servers and combining it with data already present locally [112]. However actual
implementations of providing entropy on demand are still relatively new. The first
attempt at this type of service came in 2012 by A. Toponce, who set up a single
server for users to pull entropy from [100]. This was followed up by the National
Institute of Standards and Technology (NIST) in 2013, who set up a beacon that
broadcast 512 bit blocks of randomness every minute [82]. However, these bits
were not intended to be used for security purposes. Note, that the NIST random-
ness beacon predates their Entropy as a Service (EaaS) proposal from 2015. In
2014, Canonical, the company behind Ubuntu Linux, announced the pollenate
package. This was designed to help with reseeding the PRNG of Ubuntu virtual
clients from a distributed network of servers which generated random strings [64].
Only in recent years has there been a growth of true EaaS services, such as
netRandom [50]. Compared to these works, we differentiate ourselves in three
key ways: 1) we collect excess entropy from participating devices in the proto-
col; 2) we specify and implement an open, lightweight distribution protocol; 3) our
design is hardware agnostic (i.e., a software-only solution) and specifically ac-
commodates resource-scarce devices; and 4) we provide a full evaluation of the
performance of CADET.

Attacks on Low Entropy RNG States: A related subset of work involves at-
tacks on PRNGs that are low on entropy. Of particular note are boot-time attacks,
when entropy is expected to be the lowest due to the nature of how it is collected. It
has been shown that this period of low entropy can lead to unfavorable outcomes
such as factorable RSA keys [46], predictable TLS keys in virtual environments

11



[90], predictable OpenSSL keys on Android [62], predictable initial RNG outputs
[28], and other yet undiscovered outcomes. These investigations motivate our
work, which aims to provide entropy on demand to ensure the correct operation
of any algorithm relying on random numbers.

Internet of Things Standardization: Recent efforts have tried to standardize
software used across low-profile IoT devices to improve interoperability. Google
has proposed their Android ThingsTM platform as a standard executing environ-
ment for IoT devices [39]. Similarly, the Google WeaveTM communication protocol
allows for these devices to more easily communicate through a unified language
[41]. Other instances of unified protocols and platforms exist, such as Mozilla’s
Things Gateway [79], Open Habitat [29], or Home Assistant [7]. Should there be
widespread adoption of a unified IoT platform or architecture standard in the fu-
ture, this could pave the way for IoT devices to participate in a variety of useful
distributed services, such as a distributed entropy system like CADET.

Intrusion Detection in IoT: A close class of work to ours is the idea of detect-
ing anomalies in IoT devices, where an anomaly is any kind of unwanted behavior.
Two closely intertwined categories for addressing this are intrusion detection sys-
tems (IDS) and behavior analysis. With regards to IDS, there have been a wide
variety of approaches. Chen et. al propose using Complex Event Processing to
determine the significance of different events in IoT real time [55]. Pacheco et.
al present work on showing how a fusion between Intrusion Detection Systems
and Anomaly Behavior Analysis can be combined to provide a security framework
for smart architectures, like homes or buildings [83]. In a similar vein, Arrington
et. al utilize a fusion of behavior analysis and intrusion detection, taking inspira-
tion from immunity-based algorithms [6]. Amin et. al propose a hybrid signature-
based and anomaly-based IDS system for sensor networks, called RIDES [2].
Many works have focused specifically on a class of ubiquitous computing devices
running on 6LoWPAN technology. Kasinathan et. al has produced multiple works
which construct a detection system on top of 6LoWPAN to bolster the security of
IoT devices[58, 59]. Raza et. al proposed a system called SVELTE to mitigate
several different attacks on 6LoWPAN IoT networks [88]. Le et. al consider the
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use of a topology attack against 6LoWPAN networks, and design an IDS system to
defend against it. While we do not explicitly build an Intrusion Detection System in
our work, the analysis we provide can be used to implement one by automatically
classifying unrecognized system behavior at the RNG access level.

Behavioral Analysis of IoT: In the vein of behavioral analysis, several works
discussed above utilize behavioral techniques in order to achieve their goal. In
addition to that, Pacheco et. al present a method on securing IoT devices by ap-
plying the discrete wavelet transform to detect behavioral anomalies [84]. Hodo
et. al use analysis of packet traces by an Artificial Neural Network (ANN) to thwart
the effectiveness of Distributed Denial of Service attacks in IoT devices [48]. Zhou
et. al considers the classification and analysis of different types of multimedia traf-
fic, such as security camera video feeds, and uses the results to help secure the
transmission of the data [115]. Yu et. al discuss at length potential methods for
learning device behaviors in IoT in order to better mitigate attacks taking advan-
tage of unpatched software [113]. Jia et. al create a platform called ContexIoT,
which relies on application context in IoT devices to create a more robust per-
mission system in the device[54]. Simpson et. al propose utilizing traffic analysis
on an hub device or router in order to safeguard IoT devices with known vulner-
abilities [94]. Our paper is most similar to these works in the fact that we utilize
behavioral analysis. However, we are the first to utilize RNG access patterns as
an information channel to classify IoT device behavior.
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Chapter 3

Toward Sensor-Based Random

Number Generation for Mobile and

IoT Devices

The importance of Random Number Generators (RNG) to various computing ap-
plications is well understood. To ensure a quality level of output, high-entropy
sources should be utilized as input. However, the algorithms used have not yet
fully evolved to utilize newer technology. Even the Android Pseudo RandomNum-
ber Generator (APRNG) merely builds atop the Linux RNG to produce random
numbers. This work presents an exploratory study into methods of generating
random numbers on sensor-equipped mobile and IoT devices. We first perform
a data collection study across 37 Android devices to determine two things - how
much random data is consumed by modern devices, and which sensors are ca-
pable of producing sufficiently random data.

We use the results of our analysis to create an experimental framework called
SensoRNG, which serves as a prototype to test the efficacy of a sensor-based
RNG. SensoRNG employs collection of data from on-board sensors and com-
bines them via a light-weight mixing algorithm to produce random numbers. We
evaluate the quality of SensoRNG by using the National Institute of Standards
and Technology (NIST) statistical testing suite, demonstrating that a sensor-based
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RNG can provide high quality random numbers with only little additional overhead.

3.1 Introduction

Random numbers and the generators thereof are an essential part of the main-
stream computing landscape [111, 87]. The values produced by an RNG are
utilized in a wide variety of applications, from OS-level functionality (stack pointer
randomization), facilitating games and gaming content (AI decision making, lotter-
ies, procedural generation), scientific computing (Monte Carlo, Markov models),
and computer security (cryptographic key generation)[87, 75, 96].

While random number generation is a topic that has been well studied in the
context of traditional computing environments, the rapidly growing mobile and In-
ternet of Things (IoT) landscape has created a new space for research and explo-
ration [43]. Mobile devices have proliferated and evolved into all-encompassing
personal computers that not only perform familiar tasks, but also enable new func-
tionality that standard computing environments are not equipped to address, such
mobile payment and banking, or two-factor authentication. Meanwhile IoT-ready
devices serve to extend the sensing capabilities of other devices, enabling pre-
viously “dumb” technologies, such as the car or home, to become aware of their
surroundings. This growing list of non-trivial use cases only adds to the demand
for quality random numbers in a various contexts.

Many current RNG implementations either directly use - or are built on top
of - the Linux PRNG (LPRNG), which draws its randomness from system level
events and user input [107, 68]. However the LPRNG has difficulty extracting
large amounts of entropy from these events, and instead relies on a large amount
of mathematical mixing to produce random numbers [44]. To address this, there
has been growing support for integrating hardware-based RNGs or alternative en-
tropy sources in recent devices, such as with Intel RDRAND [5, 51]. However it is
impossible for legacy devices to take advantage of newer hardware. Furthermore,
hardware is susceptible to problems such as bias, degradation, or back doors -
all of which are typically more difficult to fix should they arise.
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As a compromise between these two approaches, previous work has looked
into extracting randomness from different sensors, such as the accelerometer or
camera [66, 98]. However, these works are limited in their approach. Some are
simply limited in the number of sensors they examine [66, 98, 93], in the scope of
their analysis, or have analysis methods not suited for implementation in a mobile
or IoT context. Others have not considered the impact of changing environmental
contexts or hardware [66, 98, 93, 21]. Furthermore, very few works consider the
overhead of using sensors as an input source in terms of power use and CPU
overhead [66, 106].

Based on the limitations of previous work, we chose the following research
questions to address with our exploratory study.

RQ1) Which sensors in modern mobile or IoT devices are capable of providing
randomness, and how much?

RQ2) What is the demand for randomness in the context of a mobile system?

RQ3) How does sensor hardware diversity impact the effectiveness of a sensor-
based RNG?

RQ4) What kind of overhead does a sensor-based RNG impose on a mobile or
IoT system?

In summary, the major contributions of our work are as follows:

1) We conduct a data collection study surveying 37 Android devices of varying
hardware capabilities. Our analysis of the data reveals two things: which
sensors are suitable sources of random noise and the demand for random
data in mobile devices. Specifically, we show that random data use tends to
occur in short bursts, but never overwhelming to the RNG.

2) We implement SensoRNG, a proof-of-concept RNG which draws random-
ness from hardware sensors. Our framework leverages opportunistic collec-
tion of data to efficiently gather the necessary sensor samples with reduced
overhead. SensoRNG is implemented both as an Android system service,
as well as an Android library for the sake of evaluation.
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3) We provide an evaluation of SensoRNG on multiple aspects, demonstrating
the viability of a sensor-based RNG as well as evaluating its overhead.

4) We discuss and provide insight into our findings, including the strengths and
drawbacks of utilizing a sensor-based RNG.

3.2 Background

A random number generator is effectively a black box that takes input and pro-
duces unpredictable numbers within some defined range. RNGs can be classified
into two main categories - Pseudo-Random Number Generators (PRNGs) and
True Random Number Generators (TRNGs). A PRNG is a complicated mathe-
matical function that simulates randomness and is designed to be exceptionally
difficult to reverse engineer based on output alone. The randomness of a PRNG
stems from some random source, often referred to as a seed. A TRNG relies
on an input source that is shown to exhibit random tendencies, such as radioac-
tive decay or atmospheric noise, to produce values. Mathematically proving that
a stream of bits produced by an RNG is truly random is effectively impossible.
However it can be strongly suggested through rigorous statistical testing that a
stream exhibits properties similar to what would be expected from a probability
distribution [91].

3.2.1 Entropy

Entropy is a standard metric in information theory that measures the uncertainty
of events in a probability space [26]. In the context of RNGs, we utilize entropy
(in part) to describe how random a given stream of values is. To take an explicit
measurement, we utilize the standard Shannon Entropy formula

H(P ) = −
n∑

i=1

pi ∗ log2(pi)
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where pi is the probability of a given event in P occurring. In the case of a ran-
dom bit stream, the events in the probability space are all length k binary strings,
and the probability of an individual event is equal to the number of instances that
a particular string appears as a sub-sequence of the original bit stream. Shannon
entropy is calculated against a uniform distribution and is reported in a unit of bits.

3.2.2 Applications

Random numbers have a wide range of application scenarios, from high-level user
level applications to-low level system functions. High level applications fields such
as scientific computing use random numbers when performing simulations. For
example, an RNG could be used to initialize the parameters at the beginning of an
experiment, or perform a sampling from potential items during. At the OS level,
random numbers see use in various constructs such as Address Space Layout
Randomization (ASLR), stack canaries, establishing network connections, and
much more.

While the applications of random numbers are relatively straightforward, the
consequences of a poor RNG vary from application to application. For something
as simple as a game of chance, it can simply lead to a poor user experience. In a
scientific simulation, this can lead to lost time, or even indications of false trends
within the data. On the other hand, a poor RNG feeding security algorithms can
result in device vulnerability to attacks or data breaches.

3.2.3 The Linux PRNG

Figure 3.1 details the architecture of the Linux Pseudorandom Number Generator
(LPRNG). The LPRNG draws its randomness from three main sources: user in-
put (mouse and keyboard for desktops, touchscreen events for phones), interrupt
request (IRQ) inter-arrival timings, and disk read/write timings. These events are
collected into two pools and then fed into two output pools as needed. When the
non-blocking pool /dev/urandom is read from, it will attempt to provide random-
ness from either the non-blocking pool or pull in fresh randomness from the input
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Figure 3.1: The Linux PRNG framework. User input events correspond to keyboard and mouse
input, or user touch events for mobile devices.

pool. If there is none available, it will use stale data from the non-blocking pool in
order to produce randomness on demand.

At its core, the Android PRNG (APRNG) is an extension of the Linux PRNG, uti-
lizing random data from /dev/urandom and hashing it to produce random values.
The APRNG consists of two main parts: the EntropyMixer, and the SecureRandom
front end. The purpose of the EntropyMixer is to preserve the current state of
/dev/urandom on shutdown and restore it on boot. Additionally, it occasionally
writes device-specific data to /dev/urandom such as the current time and the serial
number. The other component, SecureRandom, acts as a front-end to the current
PRNG algorithm SHA1PRNG, and is the current provider of cryptographically-secure
random numbers for Android OS.

3.3 Data Collection Study

This section covers the details of our data collection study, in which we gather in-
formation about random number use and the different types of sensors in modern
mobile and IoT devices. We target Android for ease of collection from a variety of
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sensors and devices, all of which run on top of the Linux kernel.

3.3.1 Study Overview

Modern Android devices come equipped with hardware sensors that are available
for a variety of tasks. For example, many devices come with a microphone to
enable the user to make calls and record audio, or an accelerometer to detect
device orientation. With respect to a sensor-based RNG, we are interested in
three sensor properties: the sample size (how many bits are needed to represent
the sample data), the sensor resolution (the smallest change in value that a sensor
can detect), and the sampling rate (how fast a sensor can report samples). Ideally,
wewant all of these attributes to be as large as possible. Because Android devices
are produced by a number of manufacturers and span a wide range of capabilities,
they are an ideal platform to explore the potential impacts of hardware diversity.

Sensor Name Length (bits) # Axes Samples/second
Microphone 16 1 44100

Accelerometer 32 3 5
Magnetometer 32 3 5

Gyroscope 32 3 5
Radios 32 1 2
GPS 64 2 Variable

Camera 32 1 Variable

Table 3.1: Summary of the sensors chosen for study. GPS sample rate depends on movement,
while camera sample rate depends on hardware.

Sensor Data: For our data collection study, we chose to include seven sen-
sors commonly found in Android devices. Table 3.1 summarizes the sample size
and rates for each sensor. Sensors with multiple axes (e.g., Accelerometer with x,
y, and z directions) display the sample size for a single axis only. These sensors
were selected based on availability and the accessibility from an Android appli-
cation. Documentation for interfacing with Android sensors can be found at the
Android developer website [36].

Entropy Counter Data: The Linux PRNG tracks the amount of data avail-
able to the system when generating a random value. This amount is accessed
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through the file /proc/sys/kernel/random/entropy_avail, referred to as the en-
tropy counter. The entropy counter is an estimate of the number of bits of ran-
domness currently stored in the main LPRNG input pool, and will increment and
decrement accordingly when entropy is either added or removed. The maximum
amount of random data that can be stored at any time is 4096 bits. We sample
the entropy counter every 0.25 seconds.

3.3.2 SensorPass Application

To facilitate data collection, we implemented and distributed an Android applica-
tion called SensorPass on the Google Play store, targeted at devices running at
least Android 4.0.0. SensorPass consists of two major components - the front-
end for the user to interact with and the back-end responsible for automating data
collection. Figure 3.2 shows two screens of the user front-end.

Figure 3.2: Screenshots of the SensorPass application used for data collection.
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The back-end to SensorPass is implemented as an Android Service, and con-
sists of a number of auxiliary classes that collect data from each sensor. Collec-
tion is scheduled to execute every hour, determined by when the application is
first launched. Data is collected from each sensor for three minutes, after which
the service automatically stops collection and attempts to send data to our server.
We only attempt to send over a Wi-Fi connection to avoid unnecessary use of a
user’s mobile data plan.

Due to the method in which Android implements the camera API, it is only
possible to gather camera data from the current active application screen. This is
understandable from the standpoint of privacy, as malicious apps could covertly
capture images or video without alerting the user being aware. Therefore, we
rely on asking participants to manually collect camera data by using a toggle in
the options menu. When the user presses the toggle, we collect preview frames
until exactly 1MB of data has accumulated, after which collection is automatically
halted.

Legal Notice: This user study was approved by the Institutional Review Board
(IRB) at the College of William andMary with PHSC protocol number PHSC-2014-
07-22-9695-gzhou. Users were aware that data was being collected for research
purposes, and all user data was kept anonymous.

Collection Statistics: Table 3.2 summarizes the data collected over the
course of the study. In total we collected data from 37 devices running versions of
Android ranging from 4.0.0 (“Ice-Cream Sandwich”) to 4.4.4 (“Kit-Kat”). The total
amount of data collected is 6.5GB. We note that a majority of the data collected
comes from the microphone. This is because the sampling rate of the microphone
is orders of magnitudes higher than that of the other sensors. We also note that
the amount of data collected from the GPS is very low. This could be due to two
factors. First, users may not have turned on their GPS during collection, resulting
in no values being reported. We also only collect data when the user’s location
has changed more than one meter, as interval polling resulted in too many dupli-
cate values. Under this strategy, a stationary user would only report one or two
values.
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Sensor Total Data (Kb) Num. Traces
Microphone 6,320,048 2288

Accelerometer 62,296 2313
Magnetometer 55,024 2306

Gyroscope 53,064 2182
Radios 48,356 2311
GPS 2,560 2315

Camera 144,036 69

Table 3.2: Summary of Sensor Data collected from SensorPass.

3.3.3 Analysis Methodology and Tools

Sensor Data: The main objective in analyzing the sensor data is to find where
sufficient randomness can be extracted from the samples for further use. As il-
lustrated in Figure 3.3, our approach takes a bit-wise investigation of each sensor
by treating successive samples in each bit position as individual data streams.
We chose this analysis method for two reasons. First, directly examining the raw
bits requires the least amount of computation, as opposed to performing more
tailored analysis for each sensor. This also eases the burden of processing when
using the data in an RNG implementation. Secondly, it allows us to use a general
framework for sensor analysis, rather than requiring new methods for individual
sensors. This allows for additional sensors not covered in this work to be easily
examined in the future.

For analyzing the randomness of a given stream, we utilize the NIST Statistical
Test Suite for Random and Pseudorandom Number Generators for Cryptographic
Applications [91]. The NIST suite is freely available to the public, open source,
and provides a straightforward method for determining whether or not a given
stream of bits or numbers appears statistically random. We refer to a RNG under
test as an input source, while a string of random data produced by the generator
as an input stream.

For a given input source, the full NIST Suite performs a battery of 15 statis-
tical tests, each designed to evaluate a certain property of a single input stream
against how that property would manifest in a uniform random stream. For each
single run of a test, a p-value is returned which indicates whether or not the stream
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Figure 3.3: Diagram of the bitwise method used for analysis. The “Sensor Samples” block rep-
resents successive data samples from a sensor (horizontal), while the “Testing Streams” block
represents the k individual streams (vertical) formed for analysis with the NIST suite.

passes that particular test. A p-value greater than 0.05 is considered passing, in-
dicating that the stream is not significantly distinguishable from random. Running
a test on multiple streams from the same source produces a collection of p-values
which can be characterized by a distribution, on which the final reported p-value
is computed. For a source to be considered truly random, this distribution of p-
values should tend toward completely uniform, implying that some individual runs
of a test will fail.

For the purpose of our analysis, we pick a subset of 7 tests from the full NIST
suite - the frequency test, frequency test within a block, runs test, longest run of
ones within a block, discrete Fourier transform (DFT) test, binary matrix rank test,
and approximate entropy test. We specifically pick these tests to act as a simple
sanity check for good and bad bits. Each test addresses a different behavioral
aspect of randomness - for example, the rank test checks for periodicity in the
data. Complete descriptions of each test and how to interpret the results can be
found in the NIST suite documentation [91].

Entropy Data: Our main goal in analyzing the entropy counter traces is to
assess the current demand for randomness by the APRNG. We want to observe
any patterns in random data use to help guide the design for a sensor-based RNG.
The data collected takes the form of integer samples over time. Therefore we treat
each collected entropy trace as a time series for analysis and compute general
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statistics such as median, mean, and max. Furthermore, we estimate the amount
of random data used over the entire trace by summing up all the instances of a
drop in the counter value.

3.4 Data Analysis Results

This section presents our analysis and results of the data gathered by our col-
lection study. We begin with analysis of the sensors, and then cover analysis of
random data use.

3.4.1 Sensor Data

We first present analysis of the collected sensor data. We use a three tier clas-
sification to determine which bits are the best candidates for use in SensoRNG.
For a given bit to be good, it must pass at least 3 of the NIST tests at least 75%
of the time. For a bit to be considered fair, it must pass 1-2 tests at least 75% of
the time, or at least 3 tests at least 50% of the time. A bad bit is any bit that is
not good or fair. In the implementation of SensoRNG, the utilization of good bits
is preferred over the utilization of fair bits. These numbers were chosen empiri-
cally, with the intuition that while individual bit streams may not provide enough
entropy on their own, mixing together several streams will mask or eliminate any
individual deficiencies. (I.E. It should only take roughly 2-4 good bits or 4-8 fair
bits to produce approximately one usable bit of entropy)

Figure 3.4 illustrates the results of our analysis in a heat map. Note that some
sensors included in the data collection study excluded due to their inability to pro-
vide any usable bits. We note that some of the sensors that were cited as good
candidates for randomness in previous work (such as the camera) do not per-
form as well under our analysis methodology [66, 78, 93]. This is likely due to the
difference in techniques, as examining bits individually is not tailored to any par-
ticular data type. While this does not mean the particular sensor is unusable for
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Figure 3.4: Heatmap of which bits from sensor samples show sufficient randomness. A black
square indicates the bit is good, a gray square indicates a bit is fair, and an uncolored square
indicates the bit is poor. We have excluded the Magnetometer, GPS, and Camera rows as they
provided 0 good bits.

the production of random numbers, it does indicate that the computational effort
necessary to extract randomness will likely be greater.

Summary of Findings: Overall, the data suggests that the microphone is the
best candidate for extracting usable amounts of random data, producing 8 good
bits per sample at a very high rate. Following this is the accelerometer at 31 good
bits per sample, but at a lower rate. The gyroscope follows the accelerometer by
providing 27 fair bits per sample, however a gyroscope is not guaranteed to be
present in every device. The radios follow, providing only 16 fair bits per sample.
We find that the magnetometer and GPS are not considerable sources of random-
ness, though there is further room for investigation into the GPS due to a small
sample size. Similarly, we are unable to extract any usable bits from the camera,
likely due to the analysis methodology.

3.4.2 Entropy Use

This section presents analysis of the entropy counter traces. Recall that the data
collected for this part of the study consists of integer-valued time series with a
sampling rate of 4 per second. Figures 3.5a-3.5d plot histograms detailing the
distribution of values for four metrics across all traces - mean, median, minimum,
maximum. We find that each statistic roughly follows a negative exponential dis-
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Figure 3.5: Histograms of various entropy use statistics. The Y axis is measured in number of
traces. For 3.5a-3.5d, the X axis represents how full the buffer is (in percent). For 3.5e-3.5f, the
X axis is measured in bits.
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tribution, implying that either a majority of devices are actively using random data
during the sampling period, or that the pool of random data tends to only refill
gradually. Table 3.3 further summarizes the quartiles of each statistic.

Total Entropy Use: Figure 3.5e illustrates the distribution of total random data
use across all traces, while Table 3.4 summarizes basic statistics about the distri-
bution. For a 3 minute trace, we calculate approximately 10 bits of randomness
per second used on average, and less than 5.3 bits of randomness per second
being used in 50% of scenarios. However the standard deviation is rather large,
indicating that there may be rare periods of heavy demand. The observed max-
imum rate of random data use is approximately 53.5 bits per second. This rate
is easily sustainable with only a few sensors being turned on. We note that there
is a cluster of traces all using approximately 4096 bits (the size of the APRNG
buffer). However, we were unable to determine the cause of this phenomenon.

Quantile 0% 25% 50% 75% 100%
Mean 159 203 349 763 4096

Median 157 200 330 686 4096
Minimum 7 128 131 138 4096
Maximum 174 308 588 1690 4096

S. Deviation 0 39 119 384 1434

Table 3.3: Quantiles of measured statistics across all traces. Values listed are in bits.

Magnitude of Use: Figure 3.5f illustrates the average magnitude of random
data use. To calculate this, we summed up all instances where the entropy counter
dropped and divided that value by the number of instances of the counter drop-
ping across the trace. We merged together contiguous drops to count as one
instance. This represents the average size of a request for random bits. Table
3.4 summarizes the findings. We note that in a large majority of cases, the mag-
nitude of a request is less than that of 8 integers (256 bits), which indicates that
random data is typically only needed in short bursts. Only in rare cases are larger
requests made, but no request is able to drain the buffer completely.

Summary of Findings: In our investigation, we find a stratification of random
data use patterns. On one hand, half of the traces report very low values, indicat-
ing that the device is idle or experiencing light use. On the other hand, periods
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Statistic Mean Min Median Max S. Dev
Total 1873 0 961 9644 1850

Avg. Mag. 195 50 117 2922 207
Quantile 0% 25% 50% 75% 100%

Total 0 415 961 3891 9644
Avg. Mag 50 73.1 117 232 2922

Table 3.4: Statistics of total random data use across all traces. Values listed are in bits.

of random data use fall into two main categories - constant, light use or heavy,
incidental use. While roughly the same amount is used at the end of the sampling
period, the shape of these plots are vastly different. Overall, we find that the need
for random numbers is always present and experiences occasional spikes.

3.5 SensoRNG

Wenow present the framework for SensoRNG, our proof-of-concept sensor-based
RNG. Figure 3.6 presents the architecture of the algorithm. Using the assumption
that the data from sensors provides a minimum guarantee of randomness, our de-
sign of SensoRNG is kept intentionally simple. There are three main components
- the controller, the aggregation and folding function, and the reduction function,
which serve the roles of collecting samples, processing and combining samples,
and mixing entropy into the buffer respectively. We utilize two layers of mixing via
the aggregation and reduction in order to fold together randomness that is both
temporally local and temporally distant.

We implement two versions of SensoRNG for the purposes of evaluation. The
first version is a system service embedded in Android OS. Here, we instrument
the sensors directly to enable opportunistic collection of sensor data without un-
necessary polling overhead. Opportunistic collection has been utilized in other
works to minimize the energy overhead of collection [69]. The second version
is an Android application library. Instead of opportunistic collection, we instead
utilize reactionary collection, manually polling only when the internal buffer drops
beneath a threshold of 25%. We instantiate two versions to evaluate 1) the quality
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Figure 3.6: The SensoRNG Framework. Input is received from sensors via the polling controller
and then queued for processing. Processed samples are merged with values already present in
the buffer and then sent through a reduction function to further mix together temporally separate
bits.

of the output produced and the overhead in terms of power; and 2) The ease of
adapting our framework to existing applications respectively.

Polling Controller: The controller is the component that acts as the middle-
man between the hardware sensors and the SensoRNG mixing algorithm. The
duties of the controller are threefold: First, it serializes incoming sensor samples
and processes them, stripping them down to the most desired bits as determined
in section 5. Second, it monitors the amount of data available in the random
buffer, ensuring that it stays above the minimum desired capacity. Should pas-
sive collection of sensor data fail to meet the needs of the system, the controller
can briefly turn on any sensor in order to help refill the buffer to an acceptable
level. We discuss specific implementation parameters in the evaluation section.

Aggregation and Folding: This routine is called by the controller in order to
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process individual sensor samples. In this function, non-random bits are stripped
away and the remaining are compressed into a smaller stream of information
based on the results of our sensor analysis. Specifically, we split each incom-
ing sample into two sets, G and B, where G consists of all good bits, and B

consists of all ‘bad’ bits. Instead of directly using G, we take the parity of all bits
in B and reverse the order of the bits in G if the result is 1. This serves simply as
an occasional additional step in the mixing function

The next step, the aggregation step, we store the results of the previous step
(E = G1G2 . . . Gk) in a processing queue. Once enough samples have been
collected, we create a bitstring T of fixed length l for the folding step. The algorithm
then pops the top element E from the processing queue and “stripes” it across T .
Namely, let T have a position pointer p. Then for each bit i in E, we perform the
following operation

[(p+ i) mod l] = T [(p+ i) mod l]⊕ E[i] (3.1)

Where ⊕ is bitwise xor. This process is repeated for a number of samples
E1, E2 . . . En. Once this process is complete, T is sent to the reduction function.

Reduction Function: The reduction function takes input from both the inter-
nal buffer and the folding function in order to further mix together bits that are not
temporally local. We take inspiration in our design from asymmetric cryptography
algorithms which utilize a substitution table (“s-box”) to mix in key bits [24]. We
aim to make the reduction function difficult to reverse to prevent reconstruction
of input data, ensuring backwards unpredictability. This is realized by using a
many-to-one mapping, where multiple inputs map to a single output.

The reduction function operates as follows: Inputs to the function are three n

bit chunks, T , H1 and H2 corresponding to freshly processed data, and the first
two n bit chunks from the head of the buffer. We first calculate I = T ⊕ H1. I

serves as input to a substitution table in order to get output S. The length of S
in bits can vary based on the parameters used to generate the table. We then
concatenate together H2, S,¬H1 and append the result to the end of the buffer,
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x 0000 0010 0100 0110 1000 1010 1100 1110
R(x) 0 1 00 01 10 11 0 1
x 0001 0011 0101 0111 1001 1011 1101 1111

R(x) 00 01 10 11 0 1 00 01

Table 3.5: Example substitution table R(x) in the reduction function with parameters (n,m, r) =
(4, 1, 2). Note that x is a fixed length binary input while R(x) ranges from 1-2 bits in length.

shuffling the order and parity of bits that were already in the buffer.
The substitution table is generated using the following procedure. There are

three parameters - input length n, minimum output length m, and output length
range r. First, we generate a random permutation of the integer values in [0, 2n).
We then form a sorted list of bit strings between length m and length m + r −
1. Starting from a random point in the permutation, we step through both the
permutation of values and the list of bit strings, creating pairs and storing them in
a hash table.

An example substitution function R(x) is shown in Table 3.5. The function used
in the SensoRNG algorithm is randomly generated with the first few incoming bits.
Note that by this design, multiple input values can map to the same output value.
Similarly, by varying the output length, it is difficult to tell what segments in the
output map back to input segments.

Theoretical Complexity: The SensoRNG algorithm is designed to be com-
putationally lightweight with a theoretical complexity of O(n), where n is the num-
ber of bits in a given input. Consider a single input of length n. Determining the
good and bad bits of the input is performed via a bitmask and shift, which results
in two operations per bit, or at worst 2n operations. A reversing of the good bits
due to the parity of the bad bits may result in another n operations. The aggre-
gation and folding function performs an additional n bitwise xor operations to fold
together successive samples. In the reduction function, there is one bitwise xor
of two n bit strings, one negation of an n bit string, and one substitution in a hash
table for O(1). In total, this brings the theoretical complexity to 6n+O(1), or O(n).
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3.6 SensoRNG Evaluation

In this section, we evaluate our prototype implementation of SensoRNG in com-
parison with the current Android OS random number generator SecureRandom.

3.6.1 Experimental Setup

We pick two main targets to evaluate SensoRNG: quality of random numbers
provided and the power efficiency of each implementation.

Quality: To evaluate the quality of the random numbers returned by Sen-
soRNG we once again employ the NIST suite, utilizing a larger subset of tests in
order to rigorously evaluate produced bit streams. In addition to the seven tests
used for sensor analysis in section 3.3, we also include the cumulative sum, serial,
and linear complexity tests [91]. We exclude the non-overlapping template test,
the overlapping template test, Maurer’s “Universal Statistic” test, and the random
excursions test due to the large number of potential parameters.

Power Efficiency: To evaluate the power consumption of each RNG, we
investigate two scenarios by simulating the statistical average and maximum ran-
dom data usage found during our analysis in section 3.4. This is done by pe-
riodically making calls to the getRandomBytes() function at the rates that were
determined in our data collection study - 10 bits per second for the average sce-
nario and 55 bits per second at max.

To take power measurements, we utilize the Trepn power monitor for Qual-
comm Snapdragon processors [86]. For each sensor we profiled a small test-
harness application that independently polled the microphone, accelerometer,
and gyroscope at the frequencies used for SensoRNG. We also used the har-
ness to profile each device while generating random numbers. When profiling,
we used the “Profile App” feature of the Trepn power monitor with all overlays
turned off. We collected only the Power Measurement data point, with a sampling
rate of 100 ms. The Trepn Profiler has been utilized in related research for ac-
curately taking power measurements [33, 76], and it has the ability to isolate and
profile on a per application basis.
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3.6.2 SensoRNG Implementation

For our prototype implementation of SensoRNG, we utilize the three most promis-
ing sensors discussed in this paper - the microphone, gyroscope, and accelerom-
eter. Based on our analysis, these provide the most random data per sample
and have acceptable rates to cover established needs. We also note that the ac-
celerometer is constantly being polled at a low rate by Android OS, likely to detect
screen rotation. This was discovered during instrumentation of Android OS.

To implement the entropy controller we use a set of thresholds, below which
different sensors will activate. The length of the internal buffer for SensoRNG is
set to 4096 bits long, the same as the Linux PRNG. When the internal buffer falls
below 25% capacity, we manually begin polling the gyroscope and accelerometer
to compensate. If the internal buffer falls below 128 bits, we beginmanually polling
themicrophone. Should both of thesemethods fail to refresh the buffer, we choose
to block the call for data in order to provide sufficient randomness. Once the pool
has refilled beyond 95% capacity, we switch off any manual polling to save on
power. For the substitution table in the reduction function, we choose an input
length of 8 bits, and an output length ranging from 2-4 bits.

Devices: All tests are performed on a Nexus 4 and Nexus 5 running Android
OS 5.0.1 “Lollipop”. For the SecureRandom tests, we utilize the factory images
available from Google.1 For the SensoRNG tests, we utilize a modified version of
the Android 5.0.1 source compiled for each device where SecureRandom is instru-
mented to utilize SensoRNG.

To generate the streams for testing, we wrote a small testbed application that
periodically makes calls to the getRandomBytes() method for both SecureRandom
and SensoRNG. All experiments are performed with wireless turned off and the
screen at minimum brightness to minimize energy noise. Similarly, as the wireless
radios were not used in SensoRNG, the SIM card was removed. Collection of
random numbers takes place during two scenarios: an ‘idle’ scenario where the
device is sitting in a quiet office environment, and a ‘typical’ scenario where the
device is in a pocket and experiences light use during the day.

1https://developers.google.com/android/nexus/images as of July 2018
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3.6.3 Evaluation Results

We now present the results of our evaluation of SensoRNG in comparison to the
APRNG’s SecureRandom. Our evaluation hits on two key points: quality of the
numbers produced, and power overhead of the SensoRNG algorithm.

Nexus 4
Test Name SRNG (idle) SRNG (typical) S.Random
Frequency 0.3881 0.5955 0.9357

Block Frequency 0.0363 0.1718 0.5042
Cum. Sum (f) 0.5442 0.1969 0.9470
Cum. Sum (r) 0.2461 0.6838 0.4846

Runs *0.0048* 0.0303 0.5442
Longest Run 0.9868 0.9681 0.8074

Rank 0.0302 0.0117 *0.0005*
FFT 0.7548 0.8676 0.2248

Approx. Entropy 0.2248 0.5697 0.4372
Serial (f) 0.9512 0.2622 0.8741
Serial (r) 0.9178 0.4465 0.9463

Linear Complexity 0.7695 0.3504 0.2248
Nexus 5

Test Name S. Random SRNG (idle) SRNG (typical)
Frequency 0.9240 0.8255 0.7298

Block Frequency 0.3838 0.7981 0.6267
Cum. Sum (f) 0.7981 0.6786 0.2429
Cum. Sum (r) 0.6890 0.4654 0.7887

Runs *0.0043* 0.0351 0.2968
Longest Run 0.5749 0.3627 0.8074

Rank 0.1188 0.3041 0.3669
FFT 0.0205 0.0965 0.3586

Approx. Entropy 0.0104 0.2133 *0.0007*
Serial (f) 0.0689 0.2077 0.7597
Serial (r) 0.6993 0.9733 0.8165

Linear Complexity 0.7791 0.3753 0.2429

Table 3.6: Comparison of reported p-values for SensoRNG (SRNG) and SecureRandom (S.
Random) NIST suite results. A test consists of 200 runs of 40,000 bits each. α = 0.01 is significant.
(f) and (r) stand for the forward and reverse versions of a test respectively. Values of p < 0.01 are
italicized and marked by asterisks.
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3.6.3.1 Quality

Table 3.6 summarizes the results of the NIST suite for both SensoRNGand SecureRandom.
The reported p-value is calculated based on the distribution of the results of all runs
of a particular test. More information on the meaning of this value is provided in
the NIST suite documentation [91].

Overall, we find that SensoRNG performs favorably against SecureRandom.
Both implementations pass all but one test, with a typical scenario passing all tests
for SensoRNG. In terms of individual tests we find the results to be split evenly,
with SensoRNG reporting higher p-values in some instances and SecureRandom
reporting higher values in others. We note that a higher p-value in terms of the
NIST suite should be taken simply as a stronger statistical suggestion of random-
ness, not a binary comparison of better versus worse.

For some tests, SensoRNG has weaker p-values - particularly the runs test
and rank test. This is likely a side-effect of the mixing function. The runs test
checks to see how quickly a given stream oscillates between 0 and 1. Because
one of the mixing function components is a substitution table, it is likely that large
strings of 0’s or 1’s are being broken up, increasing the overall oscillation of the
bits in the output. This would also impact the reported values of the approximate
entropy test and the rank test, which both look for large and small blocks of similar
bits.

3.6.3.2 Power

Table 3.7 briefly summarizes the power draw for polling each sensor on each test
device. The numbers were computed as follows: For each sensor we take a
baseline measurement with no sensors for 3 minutes. We then turn on the sensor
for three minutes and sample at the default rate used in our data collection study,
afterward subtracting out the baseline measurement to isolate the sensor power
use. All values are in mW.

Across both test devices the accelerometer utilizes the least power of the three
chosen sensors, followed by the gyroscope and then the microphone. For the
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Figure 3.7: Power traces taken while producing random numbers. Black represents
SecureRandom while red represents SensoRNG. The first 180 seconds show the average usage
scenario (10 bits/sec), while the last 180 seconds show the max (55 bits/sec).

Device Mic. Accel. Gyro. Base Base+
Nexus 4 32.8 10.3 27.0 534.6 606.7
Nexus 5 22.0 10.8 18.7 399.1 452.9

Table 3.7: Power values for sampling sensors at the default rate, per test device. Base+ is a
baseline measurement with all sensors active. All values are reported in mW.

Nexus 5, we find that turning on all sensors uses additional 51.5mW, for a total
of 12.9%. For the Nexus 4, all sensors together only use an additional 70.1mW,
or about 13.1% in our testing scenario. Despite the microphone using the most
power, it also provides the highest sampling rate of the three sensors. This indi-
cates that even though the microphone is more expensive in terms of power, it
has a better power ratio for production of randomness.

Figures 3.7a and 3.7b show the power traces of the test devices while they
produce random numbers under two scenarios: average load (10 bits/second)
and max load (55 bits/second). SensoRNG at the OS level employs opportunistic
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collection of sensor data whenever possible. This means that even though extra
power is being drawn due to the sensors being on, SensoRNG is not responsible
for the overhead of polling. To isolate the computational overhead, we took amea-
surement - indicated as ‘Base+’ in Table 3.7 - that examines power consumption
with all sensors active. Against this adjusted baseline, we see that SensoRNG
only uses an additional 10mW in the Nexus 5 for the average case, and 28mW
extra for the Nexus 4, resulting in only a 2% and 4% increase respectively.

We also consider the worst-case for SensoRNG by considering it responsible
for all additional power overhead. For the average load scenario, we find that
the Nexus 5 uses an additional 31mW on average over SecureRandom, and the
Nexus 4 uses an additional 82mW on average. This translates to a 7% increase
in power consumption for the Nexus 5, and a 15% increase for the Nexus 4. For
the maximum rate scenario we find that the power consumption increases, with
the Nexus 5 using an additional 35mW on average and the Nexus 4 using an
additional 94mWwhen compared to the baseline. This translates to a 8% increase
in power for the Nexus 5 and a 17% increase in power for the Nexus 4. While this
is a notable increase for the worst case scenario, devices should never be in this
use state except for rare circumstances.

3.7 Applicability Study

To demonstrate the ability of the SensoRNG system to impact real world Android
applications, we implemented the framework in an Android Library called Sen-
soRNGLib and modified 5 free and open source (FOSS) applications from the
F-Droid marketplace [71], a well-maintained repository for FOSS Android apps.
Our study targets two metrics to evaluate the applicability of SensoRNG to exist-
ing apps: 1) effort involved in adopting SensoRNGLib; and 2) the computational
overhead of SensoRNGLib method calls.
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3.7.1 SensoRNGLib Implementation

An important feature unable to be implemented in SensoRNGLib is opportunis-
tic collection of sensor data, which requires hooks into the sensor data streams.
Instead, we utilize reactionary collection, where every time random data is re-
quested we check the status of the random pool. If the request would drain the
pool below a certain threshold, we activate all sensors for 3 seconds and then turn
them off. We empirically determined 3 seconds to be sufficient to both refill the
buffer and facilitate thorough mixing. While true opportunistic collection cannot be
performed, the API does provide a method for developers to pass sensor data into
the library if their application already uses said sensors. These two features allow
SensoRNGLib to operate in a similar fashion to the LPRNG, which uses simple
thresholds and allows for processes to write to /dev/(u)random.

3.7.2 Developer Effort

We extracted 5 applications from the F-Droid marketplace in order to evaluate
the programming effort required to adapt SensoRNG to real-world apps. When
choosing these applications we aimed to fulfill several criteria including: 1) Apps
that are popular or well-known (based on number of downloads or developer ac-
tivity), 2) Apps of varying size and complexity (in order to offer a broad discussion
of the programming effort required for different size apps), 3) Apps that contain
at least one call to the system-level implementation of the Random Number gen-
erator (e.g. calls to SecureRandom). Thus, as our subject applications we used:
k9 mail [56], keepassdroid [85], RandomMusicPlayer [35], Addi [12], and aagtl
[116]. For each of these applications we replaced the calls to the standard An-
droid/Linux RNG with calls to the appropriate methods in the SensoRNGLib. To
evaluate the programming effort required to adapt each application, we recorded
the total number of lines of code changed and the time required to modify each
app. Table 3.8 summarizes the results. Our experience indicates that modifica-
tion of applications to utilize SensoRNGLib is very intuitive, requiring little effort
on behalf of the developer even in more complicated applications.
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Metric RMP k9 KeePass Addi aagtl
LoC Changed 5 8 21 8 5
Time (mins) 15 20 30 30 15

Table 3.8: Developer metrics for implementing SensoRNGLib. Time (in minutes) is measured
from the start of compiling the original source successfully to compiling the instrumented version
successfully.

3.7.3 Computational Overhead

In order to evaluate the computational overhead of the SensoRNG implementa-
tion of each app to the original implementation, we profiled each application with
the Android activity manager profiler (AMP) [37] in order to collect method traces
for general uses of each application. We selected two applications (RandomMu-
sicPlayer, and Keepassdroid), for which we could reliably (e.g. deterministically)
construct GUI-based execution scenarios that trigger calls to the RNG. We then
recorded the low-level GUI-event scenarios on a Google Nexus 5 smartphone
using the getevent Android shell command [38] for each application alongside
method traces to be sure that the recorded scenarios triggered the method calls
related to the RNG. Next, we translated these low-level event traces into high level
executable scripts in the form of adb commands (e.g. adb shell input tap 507
565) using a methodology inspired by RERAN [34]. After the translation, we re-
played these event sequences for both versions (e.g. SensoRNG and original) of
each app on the Nexus 5 device while collecting normalized cpu-usage informa-
tion using the Trepn profiler [86]. When conducting these tests the phone’s net-
work connections were disabled and only the Trepn profiler and target application
were running, with the Trpen profiler only targeting the specific app-under-test.
This methodology should produce reliable results that isolate the performance
recordings of the application in question. The results of this experiment are shown
in Table 3.9. Overall, we find no significant deviation in cpu usage between the
two implementations, suggesting that the SensoRNG does not impose additional
computational overhead on applications themselves.
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KeepassDroid RandomMusicPlayer
Original 24.07% 25.74%
SensoRNG 23.65% 24.92%

Table 3.9: Average Normalized CPU Usage for both the original and SensoRNGLib implementa-
tions of KeepassDroid and RandomMusic Player.

3.8 Discussion & Future Work

Our work has demonstrated the viability of utilizing sensors as a source of ran-
domness. As the Internet of Things grows in scope, we can expect an increase in
the number of low-profile devices dedicated to sensing and monitoring. For these
devices, it may be the case that randomness can be more easily generated from
sensor data rather than traditional methods. Future work could even target the
sharing of this random data between IoT devices in local networks.

3.8.1 Limitations:

Sensor-based RNGs lack the ability to repeatedly generate a single sequence of
random numbers on demand. This capability is central to debugging and verifi-
cation as these activities require reproducible behavior, and a PRNG can simply
utilize a test seed to easily reproduce a sequence of random values. To imple-
ment such functionality, the user would have to exactly recreate all sensor inputs
in the same order - a feat that is physically improbable. A potential solution is to
introduce a test mode which accepts input by reading from a single, predictable
source, such as a file.

One current limitation of SensoRNG is that our analysis of samples is done
on a global scale across multiple devices. However, it may be the case that what
works well for one device configuration is not the ideal case for another. For exam-
ple, older devices may have a lower sensor resolution and provide fewer usable
bits per sample. In the future, it would be worth designing methods to investigate
devices on an individual basis, creating a device profile that can characterize ran-
domness from each sensor.
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While we show it is possible to passively harvest sufficient entropy from sen-
sors on mobile devices, smaller IoT devices may struggle to collect enough ran-
domness to meet their own needs. This is entirely dependent on what sensors the
device comes equipped with. Furthermore, the power cost of processing sensor
samplesmay be too high for low-end devices, or devices with batteries, to tolerate.
Because of this, future testing will target low-end devices to see if entropy needs
can still be met, and if not, whether potential hybrid options can take advantage
of the sensor as an entropy source while lessening the impact on battery.

OS Implementation App Library
* System service, will always be available * Service tied with the app process
* Opportunistic collection of sensor data * Selective, manual polling of sensors
* Heavy load impacts total system perfor-
mance

* One hungry app taxes its own buffer

* Centralized buffer for all processes * Individual buffers for each app
* One buffer size for all processes * Customizable, per-app buffer sizes
* Requires OS modification, harder to
adopt

* Easy to include in any app

* One algorithm for all processes * Can customize algorithm per app
* Available to system processes * Not available to system processes
* System can securely store buffer on
shutdown

* Apps must ensure secure buffer storage,
extra effort

Table 3.10: Comparison table for different SensoRNG implementations.

3.8.2 Implementation Considerations:

For our work, we implemented SensoRNG at two locations - in the OS as a system
service, and in the application layer as an Android library. Table 3.10 illustrates
a number of trade-offs we noticed during implementation and evaluation. We
summarize these points under three main categories.

Performance: With regards to performance and overhead, we find that im-
plementation at the OS level is more efficient. This is because there is only one
buffer to track and one processing queue for samples. At the library level, each
application gets an individual buffer to store random bits in. Similarly, each app
is responsible for processing sensor data to extract randomness, rather than just

42



the system. Consequentially, the power overhead can be slightly higher as the
app library cannot rely on opportunistic collection unless the app itself uses the
desired sensors. However, one app taxing the RNG at the OS level may impact
performance system wide, whereas one app taxing its own RNG will not.

Flexibility: With regards to flexibility, we find that the app library is much more
flexible for the needs of an app developer. Instrumenting a sensor-based RNG at
the OS level requires modifying and recompiling Android OS, which is not possible
for every device. However, an Android app library has documented support for
inclusion into any app, making the bar for adoption much lower. Similarly, as we
made the library open source, it is possible for anyone to modify the algorithm or
parameters to their needs, whereas it would be much more difficult to modify at
the OS level.

Feature Availability: With regards to feature availability, the OS implemen-
tation is slightly more robust. An RNG at the OS level can be available to all
processes, while an RNG in an app library is only available to the processes that
want to implement it. Similarly at the OS level, the buffer can be easily stored
between boots, while it is up to the developer to choose whether or not to do so
at the library level.

3.8.3 Conclusion

This chapter presented an exploratory study into the viability of a sensor-based
RNG for mobile and IoT devices. Our findings on the state of random data use
in the Android PRNG show that, in the average scenario, devices operate under
conditions of light but constant use, occasionally punctuated by short bursts of
random data consumption. Furthermore, we show which sensors on mobile and
IoT hardware are capable of meeting the demand for random data. To evaluate
these claims we implement a prototype framework SensoRNG, which exploits the
noise in sensor data for the purposes of generating random numbers. Our eval-
uation on several points compares favorably against the current Android PRNG,
utilizing small additional computational overhead when sensors are polled oppor-
tunistically, suggesting the viability of a fully optimized solution.
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Chapter 4

CADET: Investigating a

Collaborative and Distributed

Entropy Transfer Protocol

The generation of random numbers has traditionally been a task confined to the
bounds of a single piece of hardware. However, with the rapid growth and prolif-
eration of resource-constrained devices in the Internet of Things (IoT), standard
methods of generating randomness encounter barriers that can limit their effec-
tiveness. In this work, we explore the design, implementation, and efficacy of a
Collaborative and Distributed Entropy Transfer protocol (CADET), which aims to
move random number generation from an individual task to a collaborative one.
Through the sharing of excess random data, devices that are unable to meet their
own needs can be aided by contributions from other devices. We implement and
test a proof-of-concept version of CADET on a testbed of 49 Raspberry Pi 3B
single-board computers, which have been underclocked to emulate the resource
constraints of IoT devices. Through this, we evaluate and demonstrate the effi-
cacy and baseline performance of remote entropy protocols of this type, as well
as highlight remaining research questions and challenges in this area.
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4.1 Introduction

In recent years, the concept of the Internet of Things (IoT) has materialized, en-
compassing a new class of computing hardware ranging from hobbyist boards,
device prototypes, and flexible circuitry, all the way up to single board computers.
While the data produced by some of these devices may be considered benign
(e.g., a weather monitor), data from other devices may be cause for serious con-
cern if accessed by unauthorized users. Particularly around the home, technology
such as baby monitors, home security systems, home-assistants, and smart ther-
mostats provide windows into a person’s private life that a malicious entity may
see as valuable targets. While IoT devices may be set up to utilize modern algo-
rithms to protect these sources of sensitive data, the execution of these algorithms
may be hampered by the capability of low profile hardware [110, 114].

One type of potentially affected algorithm is random number generation. Ran-
domNumberGenerators (RNGs) help facilitate the execution of many tasks across
all areas of the computing hierarchy. The values produced are consumed by user-
level applications such as games of chance and scientific simulation, but are also
used in critical areas such as core OS systems, networking functionality, security
algorithms, and many more. RNGs can be broadly categorized into two types:
True Random Number Generators (TRNG) and Pseudo Random Number Gener-
ators (PRNG). A TRNG derives its values by sampling from some physical pro-
cess that exhibits random tendencies [87], while a PRNG uses a combination of
mathematical operations and initial “seed” data to produce a stream of statistically
random values [68].

As it stands, random number generation is an individualized task. Standard
computing environments typically employ a PRNG as their generator of choice
to avoid the hardware costs of a TRNG. Computers, however, are deterministic
environments, which makes finding suitable input sources for a PRNG a nontriv-
ial task. Some PRNG implementations draw entropy (i.e., randomness) from the
timing of different system events. The Linux PRNG, for example, uses disk I/O,
interrupts requests (IRQs), and user input [68] [44]. While these events are readily

46



available on a desktop computer or laptop, IoT and virtualized devices have cre-
ated spaces devoid of user interaction. Similarly, due to the resource-constrained
nature of IoT devices, the frequency of disk events is also greatly reduced or even
completely absent. This combination of factors directly impacts the ability of the
PRNG to gather sufficient entropy, which can lead to adverse affects such as
boot-time entropy weakness, or extended periods of entropy starvation [105, 46].

Ideally, all devices would be able to take advantage of a hardware-based
TRNG when needed. There has been some work in recent years to integrate
TRNG capabilities directly into CPUs, such as Intel RDRAND for x86 [51]. Sim-
ilarly, consumer devices effectively put a TRNG in a black box (e.g., USB stick,
Smart Card) to augment on-board implementations [14, 103]. However, these
newer hardware solutions are unavailable for devices without the necessary ar-
chitecture or ports to utilize them (e.g., mobile phones, IoT devices, ARM-based
devices). Similarly, purchasing new hardware for every device could be costly
and time-consuming to implement and maintain, depending on scale (e.g., an of-
fice scenario). This problem is compounded for legacy or low cost devices, where
hardware features may have been unavailable or omitted. Thus, for many devices
in the IoT space, a software solution is the only answer.

While previous work has looked into improving PRNGs by better analyzing
current sources of entropy or tapping into new ones (e.g., hardware sensors)
[28, 90, 61, 42, 109], we instead turn our attention to augmenting the amount of
data a device has access to. Specifically, we consider the idea that randomness
can be treated a shared resource, where devices can export data that they are not
using, and import additional data in times of high demand or low personal supply.
In this way, random number generation is turned into a collaborative task. This
is not the first time the idea of acquiring remote randomness has been explored.
Websites have previously offered services employing randomness, such as shuf-
fling lists or lotto drawings [87, 108]. Multiple patents discussing various mecha-
nisms for distributing entropy have been submitted [112, 27, 81]. Most notably, a
centralized entropy service was proposed by the National Institute of Standards
and Technology (NIST) [105]. However, to the best of our knowledge, a functional
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framework and evaluation thereof has not been made publicly available.
Therefore, we further explore this idea and its efficacy by designing and cre-

ating a lightweight, flexible, and collaborative framework for devices to acquire
randomness when needed. Our work is done with low profile IoT devices in mind,
and we highlight the the following design choices and tradeoffs. First, we choose
to effectively crowdsource (i.e., collect on a wide scale) the random data for this
protocol from participating devices, rather than relying on specialized hardware
located at centralized servers. This reduces the impact of individual hardware
failure while also making the protocol capable of rapid deployment. Second, the
framework is designed to be easily scaled to any scope, allowing both public and
private instances (e.g., one single office building) to exist concurrently. Finally,
we designed the protocol to be easy to access, and hardware agnostic. In this
way, devices with very limited hardware or input methods are able to tap into the
service without obtuse setup requirements or software.

In summary, the contributions of this work are as follows:

• To the the author’s knowledge, we propose the first general specification
and implementation of an open distributed entropy transfer protocol, CADET,
including details of the packet structure, device hierarchy, data flow, and core
functionality.

• We provide a thorough evaluation of CADET, including performance and
overhead. We also provide insight into the design decisions, as well as in-
vestigate their effectiveness.

• We highlight critical results from the evaluation of the protocol in its current
form, discussing its efficacy as well as paths for refinement and growth in
future work.

4.2 CADET Overview

We present the overview of our remote entropy protocol, CADET. For our proto-
type implementation in this paper, the protocol exists at the application layer of
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Figure 4.1: The CADET device topology. The server network is a collection of 1 to N devices
which host entropy data. Edge nodes (E) bridge the gap between the local network (where client
devices (D) are) and the server network.

the Internet stack. Our main goal is to offer two core functions for participants:
the ability to contribute excess random data that they do not plan to use, and
the ability for clients to request additional random data when needed. Through
these, algorithms that rely on random numbers can be ensured a healthy supply
of entropy, even on devices where harvesting randomness is a difficult task. Fur-
thermore, we implement measures to enable secure data transfer for applications
of a more sensitive nature, such as cryptographic key generation.

TheCADET protocol is structured in a tree-like arrangement, distributed across
three tiers - client, edge, and server. This style of construction takes advantage
of the device hierarchy already seen in the Internet, where local devices connect
through a gateway to access devices across the world. This topology is illustrated
in Figure 4.1. We briefly discuss the device tiers and their purpose below.

Client: The lowest tier encompasses all devices on a local network (LAN). This
is where both producers and consumers of entropy reside, including (but not
limited to) laptops, smart phones, IoT devices, and virtual clients on servers.
Devices in this tier will either upload excess data to the framework, or request
additional data to consume.

Edge: Themiddle tier serves as a communication bridge between the client and
server tiers. Logically, the edge consists of one device which serves as the
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gateway to the Internet at the edge of a LAN (e.g., a wireless access point
or router). However, it could also be one designated device in the client tier,
such as a home server.

Server: The upper tier is the network of central servers, which can range from
simple desktop computers to rack servers. This tier is responsible for the
heavy processing and bulk storage of data, as well as ensuring that requests
from edge devices are met quickly and with quality output.

Data flows in two directions: from client to server (an upload of entropy into the
service), or from server to client (a request for entropy from a client). We organize
our discussion of how CADET accomplishes these tasks according to the design
challenges for the protocol. These are data transport (how the data should flow
through the service), data quality (how do we ensure the data is good), and data
security (making the protocol robust against malicious entities). To that end, we
formulate the following research questions to motivate our design over the course
of this work:

RQ1) How can entropy data be effectively collected and distributed between pro-
ducing and consuming devices? (§4.3)

RQ2) How does the system need to react to varying entropy supply and demand
to ensure correct operation? (§4.3)

RQ3) How and where can we verify that data being exchanged is of desired
quality without sacrificing efficiency? (§4.4)

RQ4) How and where can security primitives be implemented to facilitate secure
exchange without imposing excessive overhead? (§4.5)

4.3 CADET Data Transport

Data Transport encompasses the flow of entropy data between devices in the
CADET framework. In this section, we discuss the high level design of how up-
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loads and requests are handled in the system, and introduce the various compo-
nents used throughout both processes. Figure 4.2 illustrates the data flow archi-
tecture.

4.3.1 CADET Transport Design

As discussed in Section 4.2, devices participating are organized in a distributed,
tree-like hierarchy, mimicking that of the Internet as a whole. By utilizing this
structure, we aim to distribute the points of failure while still maintaining an ordered
structure. A distributed service deals with the load balancing problem by moving
a bulk of the collection work and initial processing out of the server tier and into
the edge tier where there are more devices. The edge device for a given network
serves as a staging ground for a local cache, similar to DNS. Each edge node
keeps a small buffer of data available for local devices so that queries can resolve
without traveling to the server level. As the edge device is both closer in a network
sense and a physical sense, this reduces both transmission time of any packets,
as well as the probability of network interference.

Data Upload: The top half of Figure 4.2 illustrates the flow of entropy data from
clients to the server tier, while Figure 4.3a diagrams the corresponding packet ex-
change. Data is uploaded by client devices to their local edge node (1). Here,
incoming data packets are collected and serialized by the packet processor mod-
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Figure 4.2: The CADET protocol data flow. The top half represents the upstream flow, with data
going from client devices to the server tier. The bottom half represents the downstream flow, with
data coming from the server tier down to client devices.
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Figure 4.3: Basic packet exchange timelines for data uploads and data requests in the CADET
framework.

ule. If the client is in bad standing because of previous bad behavior, the packet
may be dropped (2), otherwise the data is checked for initial quality (3). Should the
data pass, the payload (entropy data) is added to a local upload buffer (4). After
enough entropy data has accumulated, the edge node forwards all accumulated
uploads to the server tier (5). Incoming packets at the server tier are serialized by
the packet processor in a fashion similar to the edge tier (6-7). After processing,
the data makes its way to the mixing function (8), which combines the new input
with data already in the data pool on the server. Occasionally, the nodes in the
server tier will partially exchange pool data (10, 11). This facilitates further mixing
of input from devices all across the client tier.

Data Request: The bottom half of Figure 4.2 illustrates when a client makes
a request for additional entropy, while Figure 4.3b diagrams the packet exchange
for this process. A client sends an entropy request their local edge node (1). The
request packet is processed and the edge node performs a check against its own
local entropy cache (2). If there is sufficient data, then the edge node responds
to the request immediately with a data packet (3). Otherwise, the edge node
forwards a request to the server tier to acquire data to both refill its cache and
respond to the client (4). Once data is received (5), it is mixed into the edge’s
local cache. Afterward, the edge node sends the needed data pcaket in response
to the client’s request (6).
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4.3.2 CADET Packet Structure

Version Number Reserved

REG DAT REQ ACK C-E E-S ENC URG

Variable Arguments
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Figure 4.4: The CADET protocol packet structure. Each row is one byte (eight bits) long, except
for the Data Payload section which is of a variable size.

Figure 4.4 illustrates the structure for all CADET protocol packets. The packet
header is a four byte long chunk of information that describes important aspects
about the type of action(s) instructed by the packet. There are three distinct
chunks: protocol information, packet type and flags, and additional arguments.
The first byte of the packet header is protocol information, where the first five
bits are the protocol version number, while the last three bits serve to byte-align
the header data. However, these bits could be used in future expansions of the
protocol.

The second byte of the packet header specifies the packet type and various
flags for the packet. The first two bits specify if the packet is a registration or
data packet, while the second two bits specify whether the packet is a request
or acknowledgement. The last four bits are flags which further specify the type
of communication (i.e., whether it is client-to-edge, edge-to-server), whether the
payload is encrypted, or if the packet is urgent, respectively. The third and fourth
bytes of the packet header are reserved for additional arguments related to dif-
ferent packet types. Entropy request packets use the space to specify how large
the request is (in bits), while entropy data packets use the space it to specify how
large the contained entropy payload is (in bytes).
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4.3.3 Data Availability

As the goal of CADET is to export a process that is performed on-device, care
must be taken to minimize response time. Significant delays in delivery could
impact a device’s ability to properly run algorithms relying on random values. To
address this issue, we implement a caching component (“local cache” or “edge
cache”) at the edge tier. This exploits the physical locality of edge devices (e.g.,
router) to mitigate network latency issues. Deciding on when to refill the cache
depends on the supply and demand of the local network, and could potentially be
modeled as a flow control problem. Deeper investigation of this topic has been left
outside the scope of this paper. For our implementation, we instead use simple
metrics. The maximum size of the buffer should be equal to 4096 bits (the typical
size of a client’s own randomness buffer), multiplied by the number of clients the
edge is serving. This effectively reserves one buffer worth of data for each client.
Meanwhile, the edge node should request additional data from the server tier
when the cache reaches 25% capacity. These parameters mean that an edge
node should always be ready to serve one quarter of its clients should demand
spike.

There is also the possibility that a small number of clients could temporarily
monopolize the local cache and impact the response time for other clients, causing
local degradation of service. In consideration of this scenario, we implement a
reserve-cache component for the caching mechanism at the edge tier. For this,
we set aside a portion of the cache isolated from heavy users, should the edge
not be able to adequately meet the demands of its heavier clients. To flag these
heavy users, we implement a usage score based on the Exponentially-Weighted
Moving Average (EWMA) formula. This is detailed in Equation 4.1.

USt = usaget + (decay ∗ USt−1) (4.1)

USt is a particular client’s usage score at time t, and usaget is the client’s current
usage at time t. To be flexible with the speeds of different networks, t increments
by one step every time a CADET packet is processed by the edge device. For a
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client to be considered a heavy user at time t, their current score must be above a
given threshold. Our solution is inspired by the use of EWMA in TCP for conges-
tion control [67]. Empirically, we choose a decay value of 0.96 and a threshold of
3 standard deviations above the mean usage score.

4.4 CADET Data Quality

Data quality refers to ensuring that any data transferred throughout the protocol
eventually results in usable data for clients. We address the issue of data quality
in CADET on three fronts as seen in Figure 4.2. With regards to input verification,
we perform sanity checks on incoming packet payloads at both the edge and
server tiers. For output verification, we periodically perform quality checks on the
contents of the server pools to ensure outgoing data is sufficiently random. Finally,
we ensure that data from all devices is thoroughly combined by basing the design
of our mixing function on existing PRNG algorithms.

4.4.1 Sanity Checks

Sanity checks in CADET are intended to prevent excessive poor data frommaking
it into the server pool. We introduce these checks in the packet processing phase
at the edge and server tiers. When a device sends a data packet to the next
tier, the contents are checked against a set of simple statistical properties (e.g., a
balanced number of ‘0’ bits and ‘1’ bits). Depending on the outcome of the check,
the data will either be forwarded to the internal data queue or discarded for being
too low quality.

To quantify the problem of a device attempting to bulk upload bad data, the
edge and central tiers maintain a penalty score for each uploading device. This
score is based on the idea of a driver’s license point system. Every time a driver
gets a ticket, their license is assigned a certain number of points. After accumulating
too many points (i.e., the driver is a ‘bad’ driver), their license is taken away. Sim-
ilarly, when a device in CADET uploads poor quality data, points are assigned
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against the device. We summarize the general function of this penalty system in
Figure 4.5. The number listed beneath the figure represent a user’s penalty score,
and increases left to right.

0

Drop according to 𝒅𝒓𝒐𝒑𝒑𝒆𝒓𝒄𝒆𝒏𝒕
(delinquent)

Always accept
(trusted) 

Always ignore 
(blacklisted)

dropthresh maxpenalty

Figure 4.5: The CADET protocol drop strategy for sanity checks. User penalty increases left to
right up to some threshold set at or above maxpenalty.

A device’s penalty ranges from [0,∞). Points are removed or added depending
on the quality of the data according to the penalty scheme. After a point threshold
is reached, data upload packets are randomly ignored with a certain percentage
until the device’s penalty score reduces. This is to ensure that a device must
always play fair to have points removed as they don’t know whether a good or
bad data packet will be ignored. Should the device continue to send bad data,
all incoming data packets will be ignored and the device will be effectively black-
listed from participation. For the purposes of our prototype implementation, the
values for dropthresh and maxpenalty are set to 10 and 35 respectively, while
the formula for drop_percent is listed in equation 4.2.

drop_percent = userpenalty − dropthresh

maxpenalty − dropthresh
(4.2)

Alternative equations for drop_percent, such as the sigmoid function, can also
be used in order to avoid clients gaining a 100% drop rate. The base penalty
scheme used in the prototype implementation of CADET is listed in Table 4.1,
along with other alternative strategies, as different edge nodes may have different
strictness requirements.

Num. Checks Passed 0/6 1/6 2/6 3/6 4/6 5/6 6/6
CADET Base +5 +4 +3 +2 +1 0 -1
Loose +4 +3 +2 +1 0 -1 -2
Strict +10 +6 +3 +1 0 -1 -1

Table 4.1: Alternative sanity check penalty schemes for CADET.
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To implement sanity checks in the CADET, we utilize a subset of 5 tests from
the NIST suite, plus one test that compares current data against past data. Specif-
ically, we use the frequency (Freq), runs, approximate entropy (AE), forward cu-
mulative sum (CSum(F)), and reverse cumulative sum (CSum(R)) tests [91]. Each
of these tests are computationally light, requiring only one or two passes through
the data, keeping the amount of processing per bit linear.

4.4.2 Mixing Function

In the CADET architecture, the mixing function directly impacts output quality by
how thoroughly it combines incoming bits. While any number of mixing algorithm
designs could be created and implemented, we have drawn the design of our
prototype mixing function from the Yarrow-160 PRNG [61]. Yarrow uses a two-
pool system consisting of a fast pool and a slow pool, both of which accumulate
entropy at different rates by alternating which pool is fed incoming input.

Using a similar design, we illustrate the mixing function used in CADET in
Figure 4.6. As data enters the system, it accumulates in two pools (1). A majority
of client input winds up in the fast pool, while periodically some input is diverted to
the slow pool. Once a pool is full (2), its contents are concatenated with some of
the oldest bits in the server’s data pool (3). The combined data is hashed (4), and
then reinserted at the tail of the buffer until data is requested (5). This process
combines bits that are not temporally local, which helps keep the predictability of
the pool low.

Input
0 1 1 0 1 0 0 1 0

Fast Pool

Slow Pool

HeadTail

Hash Func.
1 2

3

4
5

Server Entropy Pool

Figure 4.6: The CADET protocol mixing function, which serves to combine incoming data at the
server level before storing it for future use.
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4.4.3 Quality Checks

The goal of quality checks is to ensure that the data that passes through themixing
function and is stored in a server pool is sufficiently random to be used by clients.
To implement quality checks in CADET, we utilize a larger subset of statistical
tests from the NIST suite [91]. This quality check is performed on the contents of
the entropy pools located in the server tier to determine if the entropy eventually
delivered to clients is sufficiently random. Depending on the power of the central
server, more tests can be included in order to provide higher quality assurance,
though care must be taken to avoid excessive computation which could impact
response time.

4.5 CADET Data Security

Data security is the process of ensuring that a client’s data or service quality is not
affected by a malicious entity. This means both the contents of the data as well as
the delivery of the data itself. We focus on three main threat vectors in the scope
of this work - service degradation, quality degradation, and eavesdropping. Note
that a service degradation attack in the context of CADET simply means that a
client’s request response times are significantly longer than expected. While pre-
viously mentioned components (e.g., usage score, sanity checks, mixing function)
work together to mitigate degradation attacks, protecting against eavesdropping
mandates the creation of secure communication channels between devices in the
protocol.

To facilitate the creation of these channels, CADET implements a simple de-
vice registration component. While registration is not required for client devices to
simply request entropy in the clear, it is a necessary step should the device wish
to receive encrypted data. Both edge and client devices can register themselves,
which establishes a secure channel between the device and the tier above it (i.e.,
client to edge, and edge to server). CADET’s registration process is a hybrid
of public key and token-based authentication in order to ease entropy consump-
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Edge Server

REG REQ 
[e.pub, n] 

REG REQ+ACK 
[s.pub, E(n+1,esk)] 

REG ACK 
[E(n+2,esk)] 

(a) Edge Registration
Client Server

REG REQ 
[c.pub, n] 

REG REQ+ACK 
[s.pub, E(n+1,csk), 
E(t,csk)] 

REG ACK 
[E(n+2,csk)] 

(b) Client Initialization
Client Edge

REG REQ [h(T)]

REG ACK 
[E(x,esk), E(x,csk)] 

Server

REG REQ 
[E(h(T),esk)]

REG ACK 
[E(x),csk] 

(c) Client Reregistration

Figure 4.7: Packet exchange diagrams for the CADET registration process. c, e, s are shorthand
for client, edge, server, respectively. Brackets represent packet payloads, comma separated.
x.pub and x.priv refer to the public and private keys for a given device x. n is a nonce. t is a
token. E(d,k) refers to encrypting data d under key k. h is a secure hash function. esk, csk, cek
refer to shared keys between the two designated parties (e.g., esk is the edge-to-server key).

tion and computation on resource-constrained clients. For the purpose of our
prototype, we have adapted a basic version of the Elliptic Curve Diffie-Hellman
handshake algorithm to assist with registration.

4.5.1 Edge registration

For client devices to register to a CADET service, there must first be a registered
edge node to communicate to. Thus, edge registration is regarded as the first
step for allowing secure communication to occur. Figure 4.7a details the packet
exchange for this process.

To act as an edge node, the device generates a new public-private key pair
(e.pub, e.pri), as well as a nonce n, and sends these to a server node (Packet
1). Once received, the server generates its own key pair (s.pub, s.pri), and
then computes a shared key esk based off of the received key e.pub. The server
encrypts n+1 under esk, and sends both its own public key s.pub and the en-
crypted nonce back to the edge node (Packet 2). The edge device can now com-
pute esk and decrypt the nonce to verify the shared key. The edge node sends
an encrypted n+2 under the shared key to the server (Packet 3) which allows it to
verify the shared key.
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4.5.2 Initial Client Registration

Client registration is a less straightforward problem, as resource-constrained de-
vices may have trouble generating the necessary randomness to repeatedly exe-
cute modern key exchange algorithms, or execute the algorithms in a timely fash-
ion. Therefore, we have broken client registration into two parts - an initialization
phase and a reregistration phase. Client initialization is a one-time execution of
a key exchange algorithm to establish a shared key with a server, meaning that
there is a one-time expense of entropy by the client. This process is roughly
identical to edge registration, but also includes the exchange of a token. This reg-
istration token is used to help prove a client’s identity for future client registration
events. Figure 4.7b illustrates this packet exchange.

Similar to edge registration, a client first generates a fresh key pair (c.pub,
c.pri), a nonce n, and sends both pieces of information to a server node (Packet
1). The server generates a shared key csk from c.pub and encrypts n+1 under
csk. In addition, the server generates a token t (effectively a large chunk of ran-
dom data) for the client device to facilitate future registration with edge nodes. The
server sends its public key, encrypted nonce, and encrypted token to the client
(Packet 2), where the client can also compute csk and verify the encrypted nonce.
The client then responds to the server with an encrypted n+2 so both parties can
confirm that they have agreed on a shared key (Packet 3).

4.5.3 Client Reregistration

Once initial registration is completed, the client can register itself with the local
edge node. This utilizes the token acquired from the initial registration step to
avoid needing to do more than one key exchange. Whenever a client must reg-
ister with any edge node, it can skip directly to this process instead of having to
initialize once again. This avoids the situation where the client has to run a key
exchange algorithm again, spending more entropy. Figure 4.7c illustrates this
packet exchange.

The client takes its token t and the current time to make a tuple T, computes a
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hash h(T), and sends it to the edge node it wants to register with (Packet 1). The
edge node encrypts the token hash under its shared server key esk and forwards
the registration request to the server tier (Packet 2). The server decrypts the
hashed token and checks a local database to see if there is a match. If so, the
server generates a new shared key cek for the client and edge to use. Two copies
of this key are encrypted, one under the edge-server key esk and one under the
client-server key csk. Both encrypted keys are sent back to the edge node (Packet
3). The edge then forwards the client its version of the encrypted key, after which
both the edge and client devices decrypt their respective payloads and obtain the
shared key cek.

4.6 Experimental Evaluation

To assess the capability and viability of the CADET protocol as described in this
paper, we have implemented a prototype in Python. The following section details
our evaluation of this implementation along several axes, including response time,
overhead, performance, and security.

4.6.1 Testbed Setup

For all experiments in this paper, we utilize a testbed network of 49 Raspberry Pi
3B devices, all running theDebian-basedRaspbian Jessie Lite OS [30]. The topol-
ogy for this network is shown in Figure 4.8. For the client tier, 44 Pi devices are
split into 4 networks of 11 nodes each, where each client and edge are connected
via a single switch. The devices in each network act according to different sets
of rules. Specifically, a consumer network consists of devices that will be mainly
requesting entropy, a producer network consists of devices that will be mainly
producing entropy, and a balanced network will have an approximately equal mix
of consumers and producers. These networks attempt to model different ratios of
producing devices to consuming devices.
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Consumer 
Network

Balanced 
Network A

Balanced 
Network B

Producer 
Network

Client Layer
(20 MHz)

Edge Layer
(300 MHz)

Server Layer
(600 MHz)

Figure 4.8: The Raspberry Pi testbed topology. Each network box in the client tier represents
11 Raspberry Pi devices under a particular edge node, connected via a single switch. The clock
speed for each tier is listed beside the tier name.

We have underclocked each Pi according to the labels in Figure 4.8, with the
client tier operating at 20MHz with one core - the lowest stable speed. This is to
emulate devices with processor constraints. While this is only one type of resource
constraint, we find that thememory overhead of CADET is quite low, only requiring
space to the client to store two encryption keys, their token, and the data that they
request. Thus, the total memory footprint should stay under 4Kb for any device.
For the edge tier, we choose 200MHz to mirror that of a low-end router. The
server is at 600MHz, slightly under the speed of the original Raspberry Pi. For
some experiments in this paper, we utilize a subset of the testbed in order to show
data on one particular module. The code for CADET is written entirely in Python
in around 1400 lines of code, utilizing UDP sockets to facilitate direct exchanges
of data.
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4.6.2 Data Transport

4.6.2.1 Protocol Timing

Reg.
(Edge)

Reg. 
(Client Init)

Reg. 
(Client Rereg.)

Data Req. 
(No Cache)

Data Req.
(Cache)

Real World TimingTestbed Timing

(a) Protocol Operations Timing

Regular Client

Heavy Client

(b) Edge Response Time During Heavy Use

Figure 4.9: a) Distribution of protocol timings. The left and right boxes show the testbed
(ideal) and real world timings respectively. Registration (Reg) of Edge (E), Client Init. (CI)
and Client Rereg. (CR). Data Request (Data Req.) without (NC) and with (C) cache.
b) Response time of the edge node to clients during periods of heavy use, in a network with
six regular clients and two heavy clients.

We measure the time for a given process from the moment the first packet
leaves the source device to the moment all processing for the final packet in the
sequence has been resolved. The results of this experiment are summarized
in Figure 4.9a. In general, average response times are very quick, below 0.25
seconds in all cases. With regards to registration, edge registration overhead is
lower than client registration, likely due to the extra hop in the network and lower
processing power of the client device. However, we highlight the fact that the
average time for client reregistration is lower than that of initial client registration.
This indicates that the token registration component for clients does indeed save
time should the client device need to change edge nodes. With regards to the
edge cache, the overhead difference is much more stark. On average, a client
request experiences a 0.25 second response time when the edge node has no
cache, but a 0.12 second response time when the cache can serve the request.
These savings increase to almost a 0.3 second difference outside the testbed
scenario where general Internet traffic and travel affects response times.
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4.6.2.2 Edge Node Benefits

We generated 1000 random packets on each of the 43 client devices (43000 pack-
ets total, one device was malfunctioning) and tallied the number of packets pro-
cessed by both the edge tier and the central tier. We do this for several configura-
tions of upload payload sizes - small (4 bytes), medium (32 bytes) and large (64
bytes). Figures 4.10a and 4.10b summarize the data. As seen, introducing the
edge node causes around a 98% drop in the number of packets the central server
must process (4.10a), while the total number of packets sent within the system
only increases around 3-5% due to the extra communication between edge and
server (4.10b). These values are only expected to improve as the size of the edge
tier grows. In the same vein, as the payload size increases, the number of data
uploads from the edge tier to server tier increases as well. However, the increase
is minor at best and is overshadowed by the savings on the server tier.
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Figure 4.10: a,b) Total traffic processed by the server tier and on total network traffic sent with
and without (W/O) the edge node. Values represent packets received by the (S)erver, (E)dge, or
(C)lient. Data size (e.g., “4 Byte”) is the average data chunk size uploaded by clients.

4.6.2.3 Usage Score

We orchestrated one network of 8 Raspberry Pis to investigate how well the us-
age score can identify heavy users. We plotted the usage score over time of all
devices, two of which were intentionally tuned to be heavier users. Figure 4.11
shows the results of one data trace. While this is only one type of network, we see
that the heavy users stay above the ‘heavy user’ threshold line between 60-80%
of the time, while normal users are above the threshold only 5-15% of the time.
For heavy users, it takes about 30-60 seconds to fall back beneath the heavy
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user threshold after finishing their period of increased use. Light users are much
quicker, only taking around 5-10 seconds. This indicates that the user score does
a good job of identifying heavy users quickly, without overly applying penalties.
The decay factor and heavy user threshold can be tuned on a per-edge node ba-
sis. For example, lowering the decay factor will decrease the amount of time it
takes for a user to transition from a heavy to normal user.
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Figure 4.11: Usage score over time with a network of two heavy (dashed lines) users and six light
(solid lines) users.

4.6.3 Data Quality

4.6.3.1 Sanity Checks

We investigated how the penalty system reacts when a client intentionally uploads
a certain percentage of bad data (e.g., 5% of packets are intentionally poor). Note,
that an honest client will statistically upload 1% bad data. Figure 4.12 shows these
results. Under the default CADET penalty scheme, a client’s penalty does not
climb above the drop threshold of 10 points until 5% bad data, and clients do not
have a high probability of being blacklisted until around 9% bad data. By imple-
menting different penalty schemes (as discussed in Section 4.4), it is possible to
push these numbers higher or lower on a per-edge node basis.

Table 4.2 summarizes how well the sanity checks perform in terms of classi-
fying incoming data. Good data packets should be let through, while bad data
packets (score ≤ 3 checks passed) should be dropped. For clients who upload
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Figure 4.12: Plot of user penalty vs. time. Each entry represents the percent of uploads that are
intentionally bad data. Drop threshold is marked at 10.

less than 5% bad data, we see that the classification error (FN + FP) stays under
2%. This number stays under 6% as the client bad data percent climbs to 8%,
but quickly grows afterward. This represents a client’s penalty score growing to
the point that too many good packets are being dropped. As seen with Figure
4.12, the CADET penalty scheme tolerates up to around 8-9% bad data. This
translates to at least 94% accuracy for the sanity checks. On a machine clocked
at 300MHz, the current set of sanity checks take approximately 70-80ms to run
on a data block size of 256 bits.

Client Behavior Honest 2% 4% 6% 8% 10%
True Positive 98.76 97.44 95.42 93.08 90.16 84.54
True Negative 0 1.06 2.08 3.62 4.36 0.96
False Positive 0 0.88 1.72 2.48 4.26 8.94
False Negative 1.24 0.62 0.78 0.82 1.22 5.56
Accuracy 98.76 98.50 97.50 96.70 94.52 85.50

Table 4.2: Impact of client behavior on the performance of sanity checks.

4.6.3.2 Quality Checks

To evaluate the quality of the mixing function, we use the NIST statistical test suite
on the data that accumulates in the server pool. Specifically, we allow 50000
bits to accumulate before running the tests. This process is repeated 200 times.
The NIST suite documentation details how to calculate and interpret the p-values
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Freq. B.Freq CS(F) CS(R) Runs LROO AE
CADET 0.49 0.39 0.90 0.04 0.82 0.10 0.10
LPRNG 0.73 0.62 0.57 0.72 0.51 0.27 0.03

Table 4.3: Reported p-values for quality assurance tests, compared to the Linux PRNG.

for each test, but in general a higher value indicates a stronger suggestion of
randomness, and pmust be above 0.01 [91]. For comparison, we show our values
against those produced by running the suite on the Linux PRNG [68]. Table 4.3
summarizes the results. Overall, we find that the values returned by CADET are
comparable in quality to the LPRNG, as all tests are passed, and CADET shows
stronger values on half of the tests. However, it is recommended by NIST that any
values acquired from a remote entropy service be used to bolster the on-board
RNG for a given device, rather than used directly [105].

4.6.4 Data Security

We use this section to highlight some of the more obvious threat vectors against
CADET and how we mitigate them. We assume that all participating devices in
the protocol are not compromised - an attacker does not have control of, or the
ability to read data within a device. However, they are able to read any data mov-
ing between devices. We consider three different threat models in this section:
eavesdropping, service degradation, and randomness degradation.

4.6.4.1 Eavesdropping

An eavesdropping attack occurs when an entity listens to data flowing between
two devices. An attacker in this scenario wins if he is able to snoop on any data
that he was not intended to receive. For the sake of argument, we only focus
on encrypted data. Because of the registration process, all data flowing between
devices is encrypted on every link. Therefore, an attacker’s best chance is to
deduce the shared key between devices during the registration phase.

The edge registration and client initialization steps currently both use the curve25519
Diffie-Hellman key-exchange algorithm, which has been shown to be both fast
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and secure [9, 23]. This means our security falls to the security of the algorithm.
We therefore reasonably assume that edge-to-server communication and client-
to-server communication is as secure as curve25519. When the client attempts
to register with the edge node, their token is securely hashed before being sent.
Thus, even though the hash is sent in the clear, the security of this step is on the
strength of the hashing algorithm. Furthermore, even though an attacker can get
a client’s token hash, he does not have access to the client-server shared key,
and therefore cannot decrypt the client-edge key. All other steps of the rereg-
istration phase take place across secured lines (edge→ server, server→ client).
Therefore, we conclude that the CADET protocol is robust against eavesdropping.

4.6.4.2 Service Degradation

A Service Degradation attack occurs when an entity attempts to affect the ability of
other devices to properly participate in the CADET protocol. Proper participation,
in the view of an honest client, is the ability to receive good data in a timely fashion.
Therefore, an attack is considered successful if a client receives bad data, or if
a client is sufficiently delayed in receiving data. Note, that we do not address
what would be considered a standard “Denial of Service” attack, where an edge
or server node is overwhelmed with traffic, as that is outside the scope of this
work.

To cause a client to receive bad data, an attacker would have to upload enough
data into the system to dilute the server entropy pool. However, three factors pre-
vent the pool from being flooded. First, collecting data from many devices means
that a single malicious device is greatly outnumbered by honest devices. Second,
the mixing function at the server tier blends together data multiple sources, mask-
ing poor uploads. Finally, the sanity checks at both the edge and server tiers will
quickly catch a malicious client and prevent it from uploading poor quality data in
bulk.

To impact a client’s response time, an attacker would need to continually drain
the local cache at the targeted edge node. However, we easily address this by
implementing the usage score, separating clients into heavy and regular users
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based on their recent request volume. When an edge cache is emptied, regular
users have their requests answered by the reserved portion of the edge cache.
As seen in figure 4.9b, we are able to keep the response time within the expected
measurement average of 0.25s, even while the normal portion of the cache has
been emptied. While there are more outliers, we attribute this to the larger number
of packets being processed.

4.6.4.3 Randomness Degradation

A randomness degradation attack occurs when a large number of devices attempt
to influence the quality of the service by bulk uploading known data. The aim is to
make the eventual client output more predictable based on knowing or controlling
a large majority of the input. This is similar in style to how a bot net would operate
to negatively influence some service. While outright preventing bot net attacks is
beyond the scope of this paper, we argue that CADET is resilient to this flooding
style attack. There are two types of data that a malicious entity can upload - poor
quality data and good quality data. We have already demonstrated that poor qual-
ity data cannot be uploaded in bulk due to the sanity checks at both the edge and
server tiers. Therefore, we only worry about the scenario where a large number
of attackers are uploading known data that passes the sanity check phase

We note that all client data at a particular edge is aggregated and serialized
into a single large payload before being uploaded to a server node. This means a
single benign client uploading data will reduce the effectiveness of the attack, as
his data will be randomly added into the malicious payload. This process repeats
at the server level, as incoming payloads from all edge nodes are combined into
one main buffer. Even if we make the assumption that multiple edge nodes are
uploading predictable data, the strength of the server mixing function also comes
into play. By utilizing a two-pool design, and mixing back in data that is already in
the randomness buffer, we introduce a high degree of nonlinearity that is drawn
from the unpredictability of client request timings, which cycles data out of the
buffer.
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Some simple changes to the upload pipeline could also help further mitigate the
effectiveness of this attack. First, the edge node can require data from multiple
clients before uploading the aggregate payload. The edge (and server) could
further measure some local sources of entropy, such as CADET packet inter-
arrival times, and inject these bits between payload contributions from clients.
Finally, the mixing function can be adjusted to require contributions from multiple
edge nodes before insertion into the main buffer.

4.7 Discussion and Future Work

In this work, we have constructed a working prototype of the proposed Collabora-
tive and Distributed Entropy Transfer protocol. However, there are many features
and questions that are still open for exploration. We briefly summarize potential
areas for exploration in further research below.

First is deeper analysis of supply and demand within CADET systems. As the
number of devices within any particular instance increases, the load on the system
becomes more complex and more difficult to predict. This may necessitate nodes
in the system to adapt in a dynamic manner to ensure timely delivery of data.
This could potentially be modeled as a flow control problem, but would require
additional empirical data on the demands that a large scale system produces.

Next are questions surrounding the scope of deployment. In the current itera-
tion of the protocol, we make the assumption that the edge node is a device that
can be reasonably trusted (e.g., a home router). However, with mobile devices,
scenarios where the user cannot trust the edge node will be much more common
(e.g., public Wi-Fi at a local shop). Further investigation is needed to determine
the amount of effort required to expand the protocol to cover these scenarios
where trust may not be guaranteed.

Finally, we consider how to encourage participation in the CADET protocol. A
collaborative solution is only as good as the data provided by participants. How-
ever, clients who contribute above a certain threshold may wish to be compen-
sated for their resources. Similarly, building and maintaining a network of central

70



servers requires hardware and bandwidth. We can imagine looking to potential
incentive models from other industries, such as public utilities like electricity (e.g.
users with solar panels), or sharing economy systems (e.g. ride sharing).

4.8 Conclusion

Random numbers power a wide variety of algorithms in modern computing, rang-
ing from simulation to security. However, gathering the necessary entropy to en-
sure the correct operation of these algorithms has become a problematic task with
the surge of resource-constrained devices in the Internet of Things. To alleviate
this problem, we propose the initial designs for a Collaborative and Distributed
Entropy Transfer (CADET) protocol, whereby devices that have generated an ex-
cess of entropy can indirectly assist those that are entropy deficient. Throughout
this paper we have highlighted a number of design choices taken in order to maxi-
mize efficiency of the framework, utilizing a testbed of 49 Raspberry Pi 3B devices
to gather additional supporting evidence. The groundwork has been laid for future
work on this topic, with a number of open questions still remaining for exploration.

This work is partially supported by the U.S. Office of Naval Research under
Grant N00014-16-1-3214 and N00014-16-1-3216, and by the U.S. National Sci-
ence Foundation under grants CNS-1253506 (CAREER) and CNS-1618300.
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Chapter 5

RightNoise: Automatically Profiling

IoT Device Activity by

Characterizing RNG Usage

The Internet of Things (IoT) encompasses the pervasiveness of technology in
everyday life, with devices that sense, interact with, and control the world around
them. However, due to the generally single-purpose nature of these devices,
they often operate silently in the background, and problems that arise may go
unnoticed for much longer periods of time than acceptable. To help address this
problem, we propose a method of automatically characterizing device behavior by
profiling Random Number Generator (RNG) access activity, the first investigation
of this particular channel of information. Our work surveys and investigates the
top two devices on the market - Google Home and a security camera setup -
analyzing the behavior of the RNG while these devices are in use.

From this, we design and implement a system called RightNoise, which auto-
matically profiles the RNG activity of a device by using techniques adapted from
language modeling. First, by performing offline analysis, RightNoise is able to
mine and reconstruct the structure of different IoT device activities from raw ac-
cess logs. After recovering these patterns, the device is able to profile its own
behavior in real time. We give a thorough evaluation of the algorithms used in
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RightNoise and show that, with only five instances of each activity type per log,
RightNoise is able to reconstruct the full set of activities with over 90% accuracy.
Furthermore, classification is very quick, with an average speed of 0.1 seconds
per block. We finish our work by discussing some immediate real world applica-
tions that RightNoise could be utilized in.

5.1 Introduction

Devices comprising the Internet of Things (IoT) have been integrated into all as-
pects of life, tasked with sensing, controlling, and enriching the world around them.
A general design philosophy for IoT devices is to tailor the hardware and software
to address a specific task or set of tasks. For example, in the idea of a smart home,
some devices may sense the temperature, another may control the lighting, and a
third may automatically inform residents that a member of the household is com-
ing home from work. A byproduct of the single purpose nature of these devices
is that they are often designed to be “set and forget”. Once the device is installed
and configured, they experience almost no further interaction unless something
obviously wrong occurs. With declining costs for manufacturing and ease of dis-
tribution, the average number of these background devices one person owns has
steadily risen.

A direct consequence of the nature of these devices is that there is a higher
chance for unwanted activity to go unnoticed. While standard computing envi-
ronments like laptops and desktops often see high degrees of user interaction, it
is possible that some IoT devices may go several days or weeks without being
touched at all. Therefore, if a device is malfunctioning, there is a good chance that
it will go unnoticed for a longer period of time. Along with the growth in adoption of
IoT devices has also come the unfortunate attention of malicious entities looking
to take advantage of this new class of targets. Undesired events, such as hackers
breaking into unsecured devices [95] or infected IoT devices being used in botnet
attacks[4, 65, 3], are on the rise and have called into question the security of these
devices as a whole.
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In response to this growing spectrum of threats against an increasingly hetero-
geneous space of devices, researchers have proposed multiple solutions to better
understand when an IoT device is exhibiting unwanted behavior. Stemming from
research already present in networking, Intrusion Detection Systems (IDS) have
been extended to attempt to cover the diversity of IoT devices [55, 6, 58, 83, 88,
59, 2, 70]. Other research has attempted to better understand and classify the be-
havior of IoT devices, both internally and externally, in order to detect deviations
from expectation [6, 10, 84, 48]. As always with unwanted or malicious software,
there is never one metaphorical silver bullet for prevention.

Our work takes inspiration from previous endeavors into device behavior anal-
ysis. We present the first investigation into a novel channel for profiling IoT device
behavior by analyzing Random Number Generator (RNG) usage patterns. From
our findings, we design a system called RightNoise, which automatically profiles
the RNG access patterns of a system during a known configuration. RightNoise
borrows concepts from language modeling in order to capture the behavior of the
system under examination with over 90% accuracy. Once an activity profile is
constructed, a system can monitor and report its activities in real time.

For the purpose of this work, we formulate and answer the following research
questions.

RQ1) What IoT devices have seen the greatest adoption with consumers?

RQ2) What is the structure of RNG access patterns in IoT devices?

RQ3) How can we best capture and express the structure of RNG access
patterns?

RQ4) How well can device activities be inferred from RNG access patterns?

RQ5) How well can real time RNG access patterns be classified as according
to known structure?

To address RQ1, we conduct a user survey in which we pose questions about
device ownership. To address RQ2, we use the results of our user survey and in-
vestigate the RNG behaviors of the most popular device setups. For RQ3, we use
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the results of our device investigations to formalize a method based on language
modeling for capturing and expressing the RNG activity within a system. This
method is implemented in a tool called RightNoise, which performs offline analy-
sis to generate a grammar for an IoT device, and then conduct real time analysis
to profile the systems behavior. We analyze the performance and accuracy of
RightNoise to address RQ4 and RQ5.

Our contributions are as follows:

• We perform a targeted user survey to understand the current state of IoT
device adoption.

• We conduct the first (to the author’s knowledge) investigation of RNG access
patterns within the context of two specific devices, providing analysis of the
underlying RNG activity structure.

• We design and implement a profiling tool called RightNoise, which automat-
ically profiles the behavior of a system by analyzing RNG access patterns.

• We provide an evaluation of the various modules in RightNoise by using both
simulated data and data collected from the devices examined in this work.

We organize the rest of this chapter as follows. Section 5.2 presents our user
study, in which we investigate what IoT devices people are actively adopting and
using. Based on these results, we perform individual device studies in section 5.3
to determine the characteristics of RNG access patterns within the most popular
devices. We go on to present the design and architecture of RightNoise in section
5.4 and 5.5, and subsequent evaluation of the system in section 5.6. We discuss
potential applications of RightNoise in section 5.7 and future work in section 5.8.

5.2 User Questionnaire

To better select which consumer level devices to investigate during our study in
Section 5.3, we first aim to understand the current state of IoT device adoption.
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To do this, we conducted a user questionnaire, designed to help us better under-
stand adoption of devices in the IoT landscape, as well as consumer sentiment
towards IoT devices as whole. Answers were gathered between October 31st,
2017 and November 20th, 2017. In total we gathered responses from 203 unique
participants across a variety of demographics. This user study was approved by
the Institutional Review Board (IRB) at the author’s institution. Participants were
aware that data was being collected for research purposes, and all user data was
kept anonymous.

5.2.1 Study Design

Participants for our survey were recruited through Amazon Mechanical Turk [1].
The only requirement for any participant is that they are 18 years or older of age.
The survey consists of 15 questions asking about ownership of varying categories
of IoT devices, such as “home assistant” or “fitness tracker”. We grouped the
questions into three categories - basic demographic information, device owner-
ship information, and participant concerns. The full text of the survey questions
can be found in Table 5.1.

We designed the survey to explore and answer the following three study ques-
tions:

SQ1) What IoT devices are consumers adopting and using in their daily lives?

SQ2) Which IoT devices are likely to be adopted based on consumer trends?

SQ3) What specific concerns, if any, do consumers have about their IoT de-
vices?

By investigating these questions, we can determine a few key facts about con-
sumer adoption of IoT devices. First, we better understand which, and how many,
devices people have already adopted in their daily lives. We gain a snapshot of
what types of devices have been popular or not, and understand current inter-
est in the space of IoT as a whole. Second, by understanding trends, we get a
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Q# Full question text
1. - What is your age range? [18-24], [25-30], [31-35], [36-42], [43-50], [50+]
2. - On a scale from 1-5 (most comfortable), how would you rate your comfort level

with operating technology or electronic devices? [1], [2], [3], [4], [5]
3. - On a scale from 1-5 (very willing), how would you rate your willingness to engage

with new or unfamiliar technology or electronic devices? [1], [2], [3], [4], [5]
4. - In your own words, briefly describe your understanding of the term “Internet of

Things” (IoT) or “Smart Device”. For the purpose of this survey, we do not differ-
entiate between the two terms.

5. - Do you own any home-assistant devices such as (but not exhaustively): Google
Home, Amazon Echo, Amazon Echo Dot, Apple HomePod, etc. If so, please list
them below.

6. - Do you own any wrist devices designed for fitness tracking such as (but not
exhaustively): Fitbit, Pebble, Apple Watch, Android Wear watch, Garmin Watch,
etc. If so, please list them below.

7. - Do you own any products designed to intelligently monitor or control the environ-
ment around you, such as (but not exhaustively): Nest Thermostat, Nest Smoke
Detector, Ecobee Thermostat, Honeywell Thermostat, etc. If so, please list them
below.

8. - Do you own any Internet-connected devices designed to improve home secu-
rity, such as (but not exhaustively): Bluetooth door locks, door/window sensors,
security cameras, etc. If so, please list them below.

9. - Do you own or use any other Internet-connected IoT devices not listed in the
previous questions? If so, please list the device(s) and briefly describe their appli-
cation. Note: As Smartphones are widely owned, please exclude these device(s)
from your answer.

10. - Are there any IoT device(s) that are on the market, but you do not own, that you
wish to own or plan to purchase within the next year? If so, please briefly list the
device(s), their application, and why you wish to purchase them.

11. - Do you have any concerns about the type(s) of data being collected by any of
your IoT devices? If so, please briefly describe them.

12. - Do you have any concerns about the privacy of the data being collected by any
of your IoT devices? If so, please briefly describe them.

13. - Do you have any concerns about how secure any of your IoT devices are? If so,
please briefly describe them.

14. - Do you have any concerns about the reliability of your IoT devices? If so, please
briefly describe them.

15. - Based on your answers to the above four questions, are there any changes you
would like to make to any devices that you own to address your concerns? If so,
please list the device(s) and describe the change(s) you would make.

Table lines designate question topic groupings.

Table 5.1: Full text of the user study questionnaire.
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better idea of what devices or categories are most likely to see growth in the fu-
ture, or which devices will see diminishing interest. Third, by investigating which
concerns consumers have about their devices, we can also speculate about the
impact these issues will have on consumer purchasing behavior. Furthermore,
we can determine which devices are considered sensitive in nature, dealing with
highly personal data (e.g. payment information) or scenarios where failure can
have broader impacts (e.g. smoke detectors).

5.2.2 Study Demographics
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Figure 5.1: Distributions of participant demographic information.

Questions 1-3 asked for basic demographics about our participants. Figures
5.1a-5.1b aggregate and display these results. According to Figure 5.1a, we found
that approximately half of those who took the survey are under the age of 30,
with 75% being under the age of 35. When participants were asked to self-rate
their comfort with operating technology on a scale between 1 (uncomfortable)
and 5 (most comfortable), we found that 88% of participants replied with a value
of either 4 or 5. Similarly, when asked to self-rate their willingness to engage with
new technology on a scale from 1 (unwilling) to 5 (very willing), 84% of responses
contained a value of either 4 or 5. This indicated that our survey results are taken
from a demographic of technologically literate individuals who should be familiar
with the device landscape.
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Question 4 asked participants to give a short personal definition of the term
“Internet of Things” or “Smart Device”. To alleviate confusion, we treat the two
terms as synonymous for the survey. Overall, we find that participants are gen-
erally familiar with the concept of an IoT device, with only 16% being unfamiliar
with or having no understanding of IoT. However, the methods used to express
this understanding is widely varied. Table 5.2 summarizes common themes or
tropes that were utilized across all definitions. Overall, the most used description
is that IoT hardware is connected in some form, with many replies commenting
on the Internet connectivity or interconnectivity of these devices. In a similar vein,
21% of replies also commented on the duty of IoT devices to communicate data
in some fashion, either to a user or to another device on the network.

Count Topic Mentioned
72 Internet connection
44 Communicates data to user/other devices
42 Network of interconnected devices
26 Example device(s)
25 Example application scenario(s)
21 Devices make life easier
17 Remote controlled/accessed devices
16 Used in the home
33 Unsure/No understanding

Table 5.2: Summary of common topics in defining “Internet of Things” and “Smart Device”.

We highlight some of the responses from our participants below.

- “The Internet of Things is connected devices within a surrounding en-
vironment. It is well-used in the home to connect devices.”
- “Objects which are not typically internet-enabled or considered ‘com-
puters’ which have been redesigned to take advantage of internet/wi-fi
connections in order to interact with apps or other smart devices in or-
der to perform more efficiently”
- “All the devices that we currently use at home, but with better technol-
ogy, internet access and remote control options”
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- “IoT is network of physical devices that are enable to connect with one
another and exchange data.”

5.2.3 Device Ownership

Questions 5-9 investigated general ownership of IoT devices. With these ques-
tions, we asked participants to enumerate the devices they own across five cat-
egories: home-assistant, fitness tracking, environmental monitoring, home secu-
rity, and other. We chose these categories based on a brief investigation of the
market. Figure 5.2a illustrates device ownership across all categories. We found
that 74% of participants owned an IoT device within one of our specified cate-
gories, and by extension owned at least one IoT device. Similarly, we found that
26% of participants owned an IoT device in at least three categories. This demon-
strates that adoption of IoT devices is relatively strong and somewhat pervasive.
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Figure 5.2: Participant ownership of IoT devices.
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Home
Assistant

Fitness
Tracker

Environment Security Other

(30) Amazon
Echo

(52) Fitbit* (18) Nest
Thermostat

(44) Security
Camera*

(18) Smart
TV *

(22) Google
Home

(18) Apple
Watch

(14) Honeywell
Thermostat

(12) Door or
window sensor

(12) Tablet*

(12) Echo Dot (18) Android
Wear Watch*

(9) Nest Smoke
Detector

(7) Bluetooth
Lock*

(11) TV
Stream Box*

(126) None (103) None (151) None (140) None (143) None

Table 5.3: Top 3 owned devices per IoT device category. Ownership count is listed in parenthesis.
An asterisk (*) denotes where several similar models were combined

With regards to ownership within the categories themselves, Figure 5.2c illus-
trates the comparative rate of adoption for each device type. Overall, we found
that fitness trackers are the most popular, with a 49% ownership rate (100 own-
ers), while environmental products are the least popular at 25% (52 owners).
Home assistants fall in the middle at 38% (77 owners). While this does high-
light a degree of variance in product acquisition, it also shows that there is not
one category of device completely dominating the market, indicating that a “killer
app” may not yet exist.

We also listed the top 3 most popular devices for each category in Table 5.3.
Across all categories, we found that the most owned device is some model of the
Fitbit fitness tracker, followed by some brand of security camera, and then the
Amazon Echo home assistant. This is counter to the trend that indicated more
participants owned home assistant devices than security devices, and indicates
that home security is an important application for participants to invest in.

Question 10 asked participants to list devices that they plan to purchase in the
next year. Figure 5.2d shows an updated plot of device ownership taking these
planned purchases into account. Note, that this plot excludes those who plan on
buying devices in categories that they already own a device in. Overall, we saw
the biggest jump in home-assistant ownership, bringing the total to 53%, a gain of
15%. Fitness trackers saw the smallest potential growth from 49% to 54%, while
all other categories saw potential growth of 8-9%. This indicates to us that home
assistant style devices might be popular in concept, but have other factors (e.g.
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price, appeal, lack of usage scenarios) preventing mass adoption currently.

Conclusions Based on our findings, we conclude that fitness trackers have seen
the strongest adoption and have established a presence in the consumer IoT de-
vice space, while environmental monitoring has grown more slowly. Similarly, we
see evidence that consumers are heavily investing in home security with the popu-
larity of security cameras. Over the next year, the data suggests that consumers
will be investing in home-assistant devices, which can provide a wide range of
functionality to ease everyday life.

5.2.4 Participant Concerns

Questions 11-15 asked participants to describe any concerns theymay have about
their devices across four categories: the types of data being collected (e.g. heart
rate, voice), the privacy of the data being collected (i.e. if they think their data is
kept private), the security of their devices, and the reliability of their devices.
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Figure 5.3: Distribution of participant concern statistics.

Figures 5.3a-5.3b summarize the results for the distribution and quantity of
participant concerns. From Figure 5.3a, we find that 66% of users have concerns
about the privacy of their data, with worry for the types of data being collected
slightly behind it at 60%. Only 50% of participants voiced issues with security, and
26% voiced problems with the reliability of their devices. We similarly plotted the
number of categories each participant had a concern in with figure 5.3b. Overall,
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we found that 73% of participants remarked about at least one category, while
43% mentioned a problem in 3 or 4 (all) categories. This demonstrates that while
adoption of these devices is relatively popular, consumers are still not satisfied
with many aspects of them.

We categorized some of the common topics of concern expressed by par-
ticipants in Tables 5.4-5.6. With regards to data types, of the participants that
expressed a concern, most mentioned voice and video data, citing examples of
home assistant devices (such as the Amazon Echo) being always on and listen-
ing. Other types of data, such as location, biometric, behavioral, and financial
were mentioned, but with much lower frequency. We find that this correlates with
the projected ownership from Figure 5.2d, where home assistant devices showed
the biggest growth in ownership. Similarly, the worries about video corresponds
with the fact that security cameras were the most owned device in Table 5.3. In
short, device ownership and the number of concerns seemed to be correlated.
The exception is that, while fitness tracking devices showed the highest percent-
age of ownership across all categories, health data collection was not a large
concern.

With regards to data privacy, participants seemed to focus on five main is-
sues, the largest of which is the belief that stored data is not appropriately han-
dled. Many participants voiced the belief that companies were not responsible
in handling their data, either via weak security (#1) or by blatantly collecting and
sharing data with third parties (#2). Furthermore, participants noted that they wor-
ried about their own data being used against them in some way (#3), or that far
more data than necessary was being collected (#4). Responses noted their frus-
tration with not being able to easily see the extent of the data that their devices
collected (#5).

With regards to security, participants voiced a number of issues with their de-
vices, the biggest being their frustration with the fact that their devices do not feel
secure, or do not seem to be updated to stay ahead of new exploits (#1). Many
expressed the fear of information or identity theft, as well as the repercussions
of both (#2). We found that users questioned the always-on nature of these de-
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# Concern (data types)
32 * Voice/video
9 * Biometric & Health
9 * Location
9 * Behavioral Information
7 * Financial Information
7 * Personal Info (name/address)

Table 5.4: Most mentioned participant
concern topics on data types.

# Concern (data privacy)
34 * Breaches of stored data
26 * Sharing data with 3rd party
25 * Data Misuse/malicious use
22 * Collecting more data than

needed
17 * No control over stored data

Table 5.5: Most mentioned participant con-
cern topics on data privacy.

# Concern (security)
24 * Devices are insecure, no or in-

frequent updates
20 * Hacked device→ identity/info

theft
18 * Remote access/access to

other devices
13 * Device always on, easy hack-

ing target
11 * Servers/transmission insecure
6 * Default passwords unchanged

Table 5.6: Most mentioned participant
concern topics on IoT security.

# Concern (reliability)
15 * Slow responsiveness/poor or

buggy software
12 * Poor hardware, device is

quickly obsolete
10 * Doesn’t function without

power or Internet
7 * Malfunctions cause other

problems
5 * Needs repairing,

accumulating hidden costs

Table 5.7: Most mentioned participant
concern topics on IoT reliability.

vices. This makes them an easy target that’s hard to diagnose if hacked (#4), and
a convenient entry point into a user’s personal network should a hack be success-
ful (#3). Fewer participants worried about the actual transmission of data between
devices and the company servers, while even fewer felt that the default security
levels of these devices were low, indicating that default passwords were difficult
or frustrating to change (#6).

With regards to device reliability, participants had fewer concerns overall. Per-
formance was the biggest concern, with mentions of these devices being slow, or
the software being low quality and buggy (#1). Participants also voiced frustration
with “planned obsolescence” of hardware, citing low shelf lives of newer gadgets
as an issue (#2). Fewer noted that these devices simply cannot function with-
out power or Internet, where an outage would be crippling to functionality (#3).
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Less troubling is the thought of a malfunctioning device directly resulting in other
problems (#4) or cheap devices having hidden costs, such as requiring frequent
repairing or subscription services for proprietary software(#5).

Conclusions We found that, overall 73% of participants concerned with some
aspect of their IoT devices. Concerns about the methods in which personal infor-
mation is handled outweighs how secure the devices are, but not by much. The
reliability of these devices tends to be of the least importance. However, several
participants voiced their concern about “planned obsolescence” - devices that are
not built to last, or are released and then never maintained. We note that the
apparent lack of participant issue with malfunctioning devices suggests that, in
general, users are either not aware of the broader impacts a misbehaving device
could have on other devices.

5.2.5 Study Conclusions

Based on the responses to the survey, we have uncovered the following answers
to our research questions.

SQ1 What IoT devices are consumers adopting and using in their daily lives? We
found that users currently have the most interest in fitness tracking devices,
while the least interest is in environmental monitoring devices. The most
adopted devices on the market are Fitbit, security cameras, and Amazon
Echo.

SQ2 Which IoT devices are likely to be adopted based on consumer trends? We
found that users are currently most interested in adopting home assistant
style devices, like Amazon Echo or Google Home, followed by security cam-
eras.

SQ3 What specific concerns, if any, do consumers have about their IoT devices?
We found that users are most concerned about the privacy of their data, both
on device and in the cloud. Users are least concerned about the reliability of
these devices.
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5.3 Device Studies

This section presents our investigation into two specific IoT devices to observe
what patterns are reflected by RNG use. Specifically, we have chosen to investi-
gate Google Home, and a security camera setup based on open-source Motion-
Eye software [19]. We explain our rationale for choosing these devices below.

5.3.1 Device Selection

First, we note once more that a majority of users who had a concern about data
types collected by IoT devices mentioned either voice and/or video data. Voice
data naturally points toward home-assistant style products, where the primary
method of interacting with the device is through vocal queries. Similarly, video
data points us toward products that are related more toward security, such as
security cameras or home monitoring systems. While fitness tracking devices
exhibit the greatest adoption among participants, the data they produce (primarily
health data) is not considered as sensitive as voice or video.

With regards to adoption, Figure 5.2d suggests home assistant devices will see
increased ownership within the next year, matching the popularity of fitness track-
ers. Furthermore, some of the top concerns with regard to security (#2) and data
privacy (#1) surround leakage of private data to third parties, or theft of sensitive
information. Home assistants store sensitive information such as voice searches,
payment information, purchase histories, etc. Furthermore, they have the ability
to act on these data as well (e.g., purchase items online), leading to potential data
misuse (data privacy concern #3). Based on these results, we feel that a home
assistant IoT device provides a suitable platform for deeper investigation.

With regards to security-related IoT devices, amajority of participants responded
that they owned or planned to own some form of security camera. Additionally,
Table 5.3 shows that security cameras are the second most owned device across
all categories. Security monitors and cameras also deal with data of a sensitive
nature (e.g., video into private property), necessitating the use of strong encryp-
tion to prevent unauthorized access. Because of this, they have been the target of
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large scale hacks in previous years [95]. This correlates with the privacy concern
of data breaches (#1) and security concern of remote access (#3).

5.3.2 Study Setup

In order to facilitate more robust control over the instrumentation of our test de-
vices, we constructed both setups utilizing a Raspberry Pi 3 as the base [30]. Prior
research has shown that modifying consumer devices is a difficult task, as the
hardware is very isolated and difficult to access [45, 16, 104]. However, Google
has provided a hardware and software kit allowing users to assemble a Home
Assistant device from commodity parts [40]. Likewise, there are multiple open
source security camera software implementations that offer functionality similar
to that of closed-source systems [117, 19, 52]. As these software packages run
on top of Debian Linux, this allows us to fully monitor random number use at the
kernel level.

(1)

(2)

(3)

(5)(6)
(a) Google Home

(1)

(4) (5) (6)

(b) Security Camera

Figure 5.4: Hardware setups for the devices used in this study.

Figures 5.4a and 5.4b show the physical setups for our devices, where we label
each major hardware component with a number. Both instrumentation setups
are built on top of a Raspberry Pi 3B board (1). For the Google Home setup,
we use one USB microphone (2) and one pair of stereo speakers (3). For the
security camera setup, we use the official Raspberry Pi camera module (4). Both
setups are powered via Micro-USB (6) and have an attached HDMI cable (5) for
debugging when necessary. We install Raspbian Stretch OS on two separate SD
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cards and install the necessary software for each setup [30]. Both setups have
SSH tunneling enabled to facilitate remote monitoring. Second, as Debian utilizes
the Linux PRNG (LPRNG) to produce random numbers, we instrument the kernel
source (version 4.9.75-v7) [102] with debugging statements to log when requests
for random data are made. Specifically, we log the time since boot, request size,
remaining entropy pool size, and process name. Third, in order to mimic the
resource constraints of an IoT device, we modify the LPRNG to not accept two
of the standard sources that it utilizes: user input (e.g., keyboard and mouse) or
disk reads/writes. This mirrors the fact that we expect IoT devices to sit in the
background, as well as have limited storage and modes for interaction. Finally,
we modify the speed of the Raspberry Pi to match the clock speed of Google
Home hardware, which is a Marvell 88DE3006 Armada 1500 Mini Plus dual core
processor with 1.3GHz speed [49].

For each device, we empirically determined the scope of distinct activities they
can undergo during regular use. In this case, the Home Assistant is our simplest
device with one potential activity - listening to and responding to voice queries.
The security camera serves as our richer device, performing four main classes of
activities: 1) modifying camera settings by utilizing the web interface; 2) triggering
the motion detection threshold; 3) taking a still image photograph; 4) recording a
video. Given each device and category of event, we perform the necessary steps
to trigger the event and record the resulting RNG activity. In total, we perform 100
trials to gather data for each distinct event.

5.3.3 Event Analysis

We present our analysis of the events for each device below. To visualize how the
sequence of calls fit together for each event, we utilize a block diagram timeline.
Each individual box represents one logged call to request random data. For each
potential event we transform the raw log data into its corresponding diagram. This
process is shown in Figures 5.5a-5.5b. Note that for the source column in the raw
logs there are three possible options: Kernel RNG (KRNG), the non-blocking RNG
/dev/urandom (URNG) and the blocking RNG /dev/random (BRNG).
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5.3.3.1 Google Home Event

In the Google Home setup, we have exactly one event of interest - performing
a voice query to the device. Figure 5.5a shows the raw log, while Figure 5.5b
shows the corresponding visual block diagram. In total, there are 9 calls to the
non-blocking RNG (URNG), which amounts to 192 bytes of randomness con-
sumed per query. Each individual call in the event is performed by the process
ActivityManager, which is likely related to the similarly-named Activity Manager
class found in Android OS.

[Timestamp] Source: Req. Size, Process

[2674.864953] URNG:  8, ActivityManager

[2674.864965] URNG:  8, ActivityManager

[2674.888127] URNG: 32, ActivityManager

[2674.888148] URNG: 32, ActivityManager

[2674.888159] URNG: 32, ActivityManager

[2674.965328] URNG: 32, ActivityManager

[2675.000360] URNG: 32, ActivityManager

[2675.024043] URNG:  8, ActivityManager

[2675.024055] URNG:  8, ActivityManager

(a) Sample Google Home voice query log.

TimeAM “ActivityManager” processVoice Query (192 bytes total)

AM AM AM AM AM AM AM AM AM

Bytes Used8 8 32 32 32 32 32 8 8

(b) Corresponding Google Home voice query execution diagram.

Figure 5.5: (a) Sample kernel log for a Google Home voice query. Data from left to right: Time
since boot(s), request source (KRNG, URNG, BRNG), request size (bytes), and requesting pro-
cess name. (b) Visual execution timeline of a Google Home voice query. The entropy cost of each
call (in bytes) is shown beneath the box.

5.3.3.2 Camera Events

Compared to the single event found in Google Home, the security camera setup
provides four main categories of events: changing camera settings, motion detec-
tion, photo capture, and video recording. Some of these categories have settings
which, when changed, will alter the behavior of the RNG. Common to all events is
the relayevent.sh script (abbreviated as relay from here on). Figure 5.6 shows
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Time

sh .sh cat cut grep cat cutgrep cat cutgrep cat cut grep sed sha1sum cut curl curl

Non-Blocking RNG 
(1 byte each)

Kernel RNG 
(16 bytes each)

relayevent.sh (289 bytes total) Mixed RNG Sources

Figure 5.6: Visual execution timeline of the relayevent.sh script. Each block refers to one pro-
cess (or process group) making a request for random data. Kernel RNG and Non-Blocking RNG
refer to calling get_random_bytes and reading /dev/urandom, respectively. Colors also apply to
Figures 5.7-5.11.

the block diagram for relay. In total, relay requests 289 bytes across 19 calls
each time it is invoked. Note that the coloring legend for Figure 5.6 applies to
Figures 5.7-5.11 as well. We now briefly describe the behavior of each camera
event.

motion

TimeChange Settings (595 bytes total)

relayevent.sh

relayevent.sh
motion

Figure 5.7: Security Camera settings change visual execution diagram.

TimeMotion Detection (578 bytes total)

relayevent.sh relayevent.sh

Motion detected Motion ends
Variable length 

time period

Figure 5.8: Security Camera motion detection visual execution diagram.

Settings and Motion Modifying any camera settings via the web GUI (Figure 5.7)
results in two simultaneous calls to relay, followed by two calls to the motion pro-
cess. Note that the motion process does not specifically handle motion detection,
but instead acts as the underlying daemon for the MotionEye software. A motion
detection event (Figure 5.8) results in one call when the camera’s motion tracking
threshold is exceeded for a certain number of frames, followed by a second call
once there have been a certain number of still frames. Both values are static and
can be specified in the GUI settings menu. The camera will attempt to actively
highlight the object of interest during the motion period.
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TimePhoto Capture (289 bytes per image)

relayevent.sh relayevent.sh

Optional fixed 
length period

Figure 5.9: Security Camera still image visual execution diagram.

Pictures There are several modes of operation for taking a picture (Figure 5.9).
First, manually taking a single photo is enabled by the web GUI. Clicking the photo
button on a given camera window will result in one call to relay. This is similar to
when the photo is triggered by motion detection - a single photo will be taken at
the start of the motion period which results in one call to relay. Photos can also
be set to be taken regularly on an interval. This results in one call to relay every
time the fixed-length waiting period elapses. In general, one photo results in one
call to relay no matter what the capture scheme is.

TimeVideo: Motion Triggered (901 bytes per video)

relayevent.sh relayevent.sh

Motion Start
relayevent.sh

ffmpeg ffmpeg ffmpeg ffmpeg

Motion Stop

Figure 5.10: Security Camera motion triggered video visual execution diagram.

TimeVideo: Continuous Recording (901 bytes per video)

relayevent.sh relayevent.sh

relayevent.sh

ffmpeg ffmpeg

Maximum video segment length

re…

Figure 5.11: Security Camera continuous video execution diagram.

Video There are two modes of operation for recording a video - motion triggered
and continuous. When video recording is motion triggered (Figure 5.10), we see
an initial call to relay when motion is detected, followed by two simultaneous calls
to relay triggering when motion detection ceases. This is followed by four calls to
ffmpeg, which deal with encoding the video. When video recording is continuous
(Figure 5.11), the following behavior occurs on loop. First, there is a single call
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to relay. A number of seconds after this first call, there are two calls to ffmpeg.
Finally, a fixed-length period of time after the first call, there are two simultaneous
calls to relay. The time between the first set of relay calls and second set is a
fixed time interval and can be set in the GUI. Immediately after the final two calls
complete, the loop begins again with the single call to relay.

5.3.4 Event Timing

Figures 5.12a and 5.12b plot the total amount of entropy used over the course
of a single RNG event against the timing of each call in the event. For simplicity,
we look at the voice query event in Google Home, and single picture event in
the security camera (which amounts to one call to relay). Both figures plot 100
individual traces, where the first call begins at time t = 0.
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Figure 5.12: Entropy use over time for different RNG events.

Wemake some observations about the variation in total execution length. First,
from a total time perspective, a Google Home query occurs over an average of
0.16s, with a range of 0.072s. Similarly, one call of relay takes on average 0.08s,
with a range of 0.048s. This indicates that, temporally, RNG events are densely
clustered. With respect to individual call variance, the relative standard deviation
for Google Home is 7.7%, while for the camera it is 6.6%. If we consider the
variation in timing between calls, there is less consistency, with relative standard
deviations ranging from 8% to 312%. However, the much higher variance val-
ues are a byproduct of the underlying data being close to zero (< 10−5 in some
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cases). If we instead consider the normal standard deviation, we find on aver-
age it is 0.0036s for Google Home and 0.0016s for the security camera. Overall,
this indicates while there may be larger degrees of inter-call variance, the overall
variance of an entire execution trace is relatively steady. This is best visualized
by Figure 5.12b, where the individual traces appear to be very tightly tangled to-
gether.

5.3.5 Study Summary

Based on our investigation above, we highlight the following conclusions with re-
spect to RNG access behavior:

• Events that trigger RNG activity are highly structured and consistent between
executions. An event consists of groups of different sequences of calls to the
RNG.

• The space of potential events in Internet of Things devices is likely to be
restricted to a specific, small set, corresponding to different behaviors for
that device. This is a byproduct of the generally single-purpose nature of
these devices.

• The timing between calls in an RNG event will show some variance, but the
overall execution time will be relatively consistent. Furthermore, calls tend
to be tightly clustered.
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Calls to 
RNG
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Random 
Numbers
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Figure 5.13: The RightNoise architecture. The bottom box represents all modules present on the
IoT device, while the top box represents all offline processing steps. The results of profiling are
displayed through an external device (e.g. Smartphone).

5.4 RightNoise Architecture

Based on our findings from Section 5.3, we present the architecture of our RNG
profiling system called RightNoise. At a high level, RightNoise has three main
stages - logging, pattern analysis, and live profiling. The pattern analysis stage
is performed offline, where aggregated RNG logs are processed to extract mean-
ingful structure in the form of a context free grammar (CFG). Once a grammar is
obtained, the IoT device can use it to further characterize its own RNG activity.
To facilitate data collection, we modify the kernel with hooks to intercept and log
whenever a process requests random data. The whole architecture of RightNoise
is shown in Figure 5.13. We discuss the overall flow of data in the system through
the rest of this section.

5.4.1 Logging

The first step in the RightNoise pipeline is to extract raw activity data from the
RNG. On a Linux system, this is done by instrumenting the random.c file in three
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locations, each corresponding to a different interface that a process can request
entropy from (i.e. kernel, /dev/urandom, and /dev/random). Implementation of
this logging hook will need to be done on a per-device basis, depending on what
OS the device is running. We record each instance of an RNG access to a file
in /var/log, logging the time since boot, size of the request (in bytes), targeted
interface source, and process name. The log file acts as a buffer for the two
different data processing loops.

To minimize the amount of potentially identifying information sent for exter-
nal processing, the log parser module is also responsible for sanitizing the data.
Specifically, it replaces all process names andRNG interfaces with generic strings,
where each name is uniquely associated with exactly one string. Once the device
being profiled receives the generated grammar back from external analysis, it can
perform a reverse substitution to restore the appropriate context.

5.4.2 Offline Pattern Analysis

Pattern analysis of activity logs is done offline before the target IoT device can
perform any profiling. We offload the processing of these logs to an external de-
vice to remove the impact of resource-intensive algorithms on the device’s normal
operation. The needed computation for this step can come from many sources.
If a user would like to integrate RightNoise according to their own wants, a local
edge-computing device, such as an IoT hub (running software such as Mozilla IoT
Gateway or openHAB [79, 29, 7]), or a desktop computer on the local network can
be used. If the user does not have access to an edge computing device, services
in the cloud may be used instead. These computing resources could be provided
by the manufacturer of the device as part of their service agreement, or by a third
party company offering a device management service.

Our strategy for pattern analysis is derived from our findings in Section 5.3.
At a high level, this module takes in raw access logs to the RNG, and outputs
the behavior of the RNG in terms of a context-free grammar. We choose a CFG
as our representation as they are well researched tools in the field of language
modeling [53, 13, 92], and are generally very quick to query once constructed. An
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Figure 5.14: Relationship between device activities (left), visual call patterns (center), and gram-
mar rules (right) for the security camera setup. Each row represents one possible activity and
the associated RNG access behavior. t represents the minimum significant time unit, which is a
byproduct of discretization. In total, the language has 4 terminal characters.

intuitive analogy linking RNG activity to natural language is as follows: individual
calls to the RNG are ‘characters’, blocks of calls (such as scripts) are ‘words’, and
valid ‘sentences’ are the different RNG activities we wish to construct grammar
rules for. We cover the algorithms utilized for pattern analysis in greater detail in
Section 5.5

We illustrate a concrete example of this natural language concept in Figure
5.14 by hand-crafting a CFG for the security camera setup. Each row in the figure
describes one possible device activity (e.g. changing camera settings), the visual
representation of the call pattern for that event (middle), and a set of CFG grammar
rules that describe that particular event (right). For example, to describe a settings
change, the execution diagram shows two simultaneous calls to relay, followed
by two sequential calls to motion. We represent the calls to relay with the symbol
R2, and combine the two calls tomotion as one symbol,M , leading to the grammar
rule E → R2M . In total, we collect six meaningfully different activities determined
via our device study.

To describe the camera activities, the language has four blocks (words) which
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wind up being the terminals for the CFG. Three of these blocks correspond to the
relayevent.sh, pair of calls to motion, and pair of calls to ffmpeg processes. The
remaining block is the minimum significant time delay represented by the terminal
t. The value of t is empirically determined during the pattern analysis algorithm.
We note that a fixed time delay T (e.g. taking a picture every 10 seconds) can be
represented by a corresponding fixed number of instances of the terminal t.

5.4.3 Event Detection

Once a set of grammar rules for an IoT device has been created, RightNoise
then analyzes the behavior of the RNG while it is running. Intuitively, we compare
this problem to understanding a sentence being spoken in real time, where the
RNG is the ‘speaker’ and the event detection module is the ‘listener’. As the RNG
produces activity, the event detection module determines what language blocks
are produced and if the pattern of blocks fits any known grammar rules. If it does,
then this segment of activity is labeled accordingly and reported to the GUI.

As requests are made to the RNG, RightNoise aggregates these calls until a
significant period of time with no activity occurs. This gap is determined during
the offline pattern analysis phase. As the blocks and grammar rules are already
known, it can apply the same block substitution algorithm as seen in the grammar
construction phase of offline pattern analysis. In addition to substituting language
blocks, it also substitutes tokens for time gaps. For data that does not match
any known blocks (i.e. noise generated by the system from infrequently running
processes), we simply label that data as unknown, and ignore when performing
pattern matching.

After processing the most recent activity, we attempt to see if it fits into any
known grammar rules. If so, we label the relevant blocks of activity accordingly.
Because of the nature of online matching, the algorithm may only produce partial
matches. For example, the continuous video recording rule in our security camera
setup contains two time-gaps. However, the data for only the first, or first and
second nontime-gap blocks may have been generated by the device. Therefore,
when performing matching against rules, the algorithm also considers the context
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of the previous k matched blocks, where k is the longest series of nontime-gap
blocks across any rule. This may result in reclassification of previous blocks as
more context is added. Once a classified block has lapsed out of the recent activity
window, the results can be displayed to the GUI. The final reporting of the data can
be done on a case-by-case basis. For example, if the device comes with a screen
that can be interacted with, the manufacturers may include an app to summarize
and display the information right on the device. If the device does not have any
meaningful way to display data, the results could be organized and exported to
a different device on the network, such as a smartphone, that can interpret the
results.

5.5 Offline Pattern Analysis

The offline pattern analysis module is responsible for taking raw RNG access
logs and outputting a CFG that describes the RNG’s behavior. This module ac-
complishes that goal in two steps: 1) from raw data, learn what the blocks in the
language are; and 2) after knowing what the blocks are, attempt to parse out the
most sensible grammar rules. We present our approach to solving this problem
over the course of the rest of this section. The top half of Figure 5.13 outlines this
process.

5.5.1 Block Mining

Block mining is the process of transforming raw RNG activity (the “letters”) and
determining what the best candidates for distinct call blocks (the “words”) are.
This is done as a three stage process: log segmentation, segment comparison,
and candidate deduplication.

5.5.1.1 Log Segmentation

In terms of RNG activity, blocks can consist of multiple individual calls that are
shared among different events (e.g. the relayevent.sh script). As input, it takes
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an RNG log file containing multiple instances of each different event. The first step
is to break up the full RNG log into initial chunks, such that the chunks do not break
up any blocks of calls. We do so by computing the distribution of inter-call timings
and splitting the log file between calls that are at least 3 standard deviations above
the average. We liken this process to taking a word document that has all spaces
removed and splitting the word document where any punctuation occurs.

5.5.1.2 Segment Comparison

While the initial splitting algorithm handles obvious breaks between blocks, there
are still two problems that need to be addressed. First, it is possible that a chunk
which is produced by the log segmentation process could contain multiple valid
blocks. For example, the security camera setup has blocks where two instances of
relay are called simultaneously. To address this, we chose to log one additional
piece of data - the process group id or PGID, and sort the entries in a single
chunk by PGID and then time stamp. This has the effect of keeping calls that
are similar together (for example, all the calls in one relay script), but also in
chronological order.

Once sorting is complete, the segment comparison algorithm can then begin.
This algorithm examines all pairs of segments from the segmentation step, look-
ing for shared execution sequences. For example, if one segment contains one
execution of a script, and another contains two, we would pull out one execution.
Our method for this is seen in Algorithm 1. At a high level, the algorithm iterates
through all pairs of segments in the input (lines 3-6), finds the set of common calls
between two pairs (line 8), and then computes the Kendall-Tau rank correlation
(or permutation distance) metric (lines 10-12) on the common sequences [74]. If
the distance is below a certain threshold, we consider the two sequences to be the
same and set the common sequence aside (lines 13-14). After all comparisons,
the algorithm returns the set of common sequences (line 19).
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Algorithm 1 Segment Comparison Algorithm
Require: List of segments S
Ensure: List of block candidates C
1: C ← empty list
2: {Assume each segment in S is pre-sorted by PGID and timestamp}
3: while length(S) > 1 do
4: {Compare the first entry in S against all others}
5: segment1← = pop front entry off of S
6: for segment2 in S do
7: {Find set of common symbols between two segments}
8: CS ← commonSymbols(segment1, segment2)
9: if length(CS) > 2 then
10: list1← CS ∩ segment1 {Overlapping calls from segment1}
11: list2← CS ∩ segment2 {Overlapping calls from segment2}
12: KT ← KendallTau(list1, list2)
13: if KT/length(CS) < DifferenceThreshold) then
14: add list1 to C {Two sequences are similar enough}
15: end if
16: end if
17: end for
18: end while
19: return C

5.5.1.3 Candidate Deduplication

The segment comparison algorithm produces a list of candidate blocks for the
RNG grammar. However, because of the nature of the input data, it is very likely
that there will be multiple copies of each candidate in the produced data set.
Therefore, we perform a deduplication step to remove these copies and reduce
the size of the output set. One final problem that needs to be addressed is the
possibility that one candidate block could be a subset of another. For example,
with the security camera, it could be possible that one candidate represents one
call to relay, while another candidate represents two simultaneous calls to relay.
Therefore, we iterate the segment comparison and deduplication steps again until
the size of the final candidate list no longer changes. This final candidate list then
becomes the block list for the RNG grammar.
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5.5.2 Grammar Construction

Once the list of blocks has been determined, the next step is to determine what
the valid grammar rules which describe the RNG events are. This is a two step
process consisting of block substitution, then pattern discovery.

5.5.2.1 Block Substitution

Block substitution transforms the raw RNG log into a language string by substitut-
ing each occurrence of a block with a representative token, thereby reducing the
size of the input. In addition to substituting the grammar blocks, we also tokenize
time gaps corresponding to the splits determined in step 1 of the block mining
process. We note that RightNoise does not currently differentiate between vari-
able and static time gaps with this tokenization process as the pattern discovery
module is unable to properly capture their structure.

5.5.2.2 Pattern Discovery

Once block substitution is complete, pattern analysis is performed on the substi-
tuted string where it attempts to determine what themost likely valid sentences are
in the input. To do this, we formalize the pattern recognition goal as an optimiza-
tion problem, where the aim is to find the best non-overlapping string covering set.
We formalize the problem as follows

ProblemDefinition: Given an input string S over a fixed alphabetA, with |A| =
k and |S| = N , we want to find a set of unique substrings P = {p1, p2, . . . , pm},
such that:

a) All strings in P are substrings of S

b) S can be reconstructed by concatenating elements of P with replacement

c) The cost of P is minimized according to some cost function Cost(P )

We impose a cost function on this problem in order to avoid two trivial solu-
tions. These are the the cases where P = {S} and P = {A1, A2, . . . , Ak}, where
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Ai is the ith block in the input alphabet. To build our cost function we formulate
two metrics which we refer to as coverage and triviality. Formal definitions
for these metrics can be found in equations 5.1-5.3. Coverage is a measure of
how well the input string S can be reconstructed by the elements of P . If every
character in S is contained in some element of P , then coverage is maximized.
Triviality is a metric that attempts to lower the cost of more ‘interesting’ solutions.
That is to say, solutions where elements of P are used more than once, but el-
ements of P are also longer than one or two blocks. Triviality is a value that we
wish to minimize. Our cost function is simply the weighted ratiow between triviality
(something we wish to minimize) and coverage (something we wish to maximize).
Based on empirical data, we find w to be 2.5.

Coverage : CP =
m∑
i=1

|pi| ∗ ni (5.1)

Triviality : TP =
m∑
i=1

(|pi|+ ni + 1) (5.2)

Cost : Cost(P ) =
TP

(CP )w
(5.3)

With a cost metric defined, we are able to frame the problem as an optimization
problem and attempt to iterate through the solution space. We note that the prob-
lem appears to be NP-Hard, so computing an exact solution would be prohibitively
expensive. Our approach modifies the technique proposed by B. Stephenson to
find an answer to a similar problem - finding the most contributory substring (MCS)
of a string [97]. The MCS problem attempts to find a single string p such that the
number of occurrences of p times the length of p is maximized within an input
string S, or a set of input strings {S1, S2, . . . , Sj}. This is similar to our problem
as it attempts find a substring that best meets a certain metric, but it restricts the
size of the solution set to 1. For our problem, we instead want to find a set of
substrings P = {p1, . . . , pk} such that our cost function is minimized.

To be considered a valid solution, the set P must cover S such that all remain-
ing uncovered substrings in S are unique (i.e. there exists no pattern that can
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be used more than once). Based on empirical testing, we also modify the MCS
scoring algorithm to use the notion of how compressive a substring is instead of
simply raw coverage. Compressiveness quantifies how much a given substring
will reduce the length of a string, while also factoring in the storage cost of that
particular substring. This particular scoring function improved accuracy as it fa-
vors selecting shorter substrings that are used multiple times over longer ones,
which prevents different language blocks from fusing together in the solution set.

Our solution searching algorithm is described in Algorithm 2. At a high level, it
recursively builds up a solution by looking at the most ‘promising’ strings first. For
each stage of the recursion, it performs an MCS search (line 7) and orders the
results from greatest to least, truncating the list after the top k entries to restrict the
recursion width. For each entry in the list (line 8), we create a new set of strings
Snew by removing all instances of the chosen entry from the input (line 9), and then
recursively perform a search on Snew (line 10). Once the recursion reaches the
base case of having all remaining substrings being unique (line 4), we calculate
the cost of the current running solution P (line 5). As the recursion comes back
up, it merges all found solutions beneath the current recursion depth, sorts them
by cost, and then truncates by the top k (lines 2,13), which is accomplished by
using a priority queue of fixed length k. The end result is then transformed into a
set of words and grammar rules that can be used by the event detection module
on the profiled the IoT device.

5.6 RightNoise Evaluation

In this section, we present our evaluation of RightNoise. We utilize a combination
of simulation and real device testing to assess the accuracy and efficacy of the
pattern analysis and classification algorithms.
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Algorithm 2 Grammar solution searching algorithm
Require: List of strings S, current running solution P
Ensure: Top k lowest cost solutions
1: function SolutionSearch(S, P )
2: Solutions← empty PriorityQueue with capacity k
3: {Trivial means all substrings in S are unique}
4: if S is empty OR S is trivial then
5: return (cost(P), P)
6: end if
7: Candidates← MCS(S,k) {top k MCS results, sorted by score}
8: for entry in Candidates do
9: Snew ← removeInstances(entry, S) {Remove all instances of entry from S}
10: results← SolutionSearch(Snew, P ∪ entry)
11: Solutions← Solutions ∪ results {Add new solutions into current solutions}
12: end for
13: return Solutions

5.6.1 Evaluation Setup

We focus our evaluation on the two main processing loops of RightNoise - the
offline pattern analysis, and the real time event classification. In the context of
the offline pattern analysis module, we focus our analysis on the accuracy of the
algorithms used, as this portion of RightNoise is meant to be performed on devices
capable of handling large amounts of computation. For the online classification
module, we target both speed and accuracy, as the algorithm is meant to run in
real time. For implementation, both the offline pattern analysis and online event
detection modules are written in Python, with the former being just under 1000
lines of code and the latter being just over 600 lines of code. For the purpose
of executing our simulation study, we use a 40 core server with an Intel Xeon
E7-L8867 CPU with 30,720kB cache and 160GB of memory. To get an idea of
real-world performance, we implement and test RightNoise on both device setups
seen in Section 5.3 - the Google Home and security camera running Motioneye.

The data for our evaluation consists of simulated data, where we randomly
construct fictional devices without noise, and real data gathered directly from the
devices studied in this paper. The simulated devices are meant to get a broader
sense of howwell our algorithm performs by simulating other resource constrained
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devices, such as a smart thermostat, Bluetooth door lock, or smart wristband. In
addition, we also gather data from the Google Home and security camera de-
vices used in this paper to show results in the context of the real world. We fix
several parameters of our simulated data sets for the sake of comparison to our
test devices. The exact parameters are discussed further into the evaluation.

Top 1 Top 3 Top 5

18 Events 24 Events 30 Events

(a) Correctness

Top 1 Top 3 Top 5

18 Events 24 Events 30 Events

(b) Accuracy

Figure 5.15: Top 1, 3, and 5 correctness (a) and accuracy (b) for the pattern recognition module
on simulated devices, with input sizes of 18, 24, and 30 events. Note that correctness is measured
out of 100, and accuracy is measured in percent.

5.6.2 Pattern Analysis

We focus our evaluation of the offline pattern analysis algorithm on the accuracy of
the pattern discovery module. We fix several parameters when creating devices
for our simulated data set. Specifically, we set the number of language blocks
in a grammar to 4, and the number of events to 6, matching that of the security
camera setup. We vary the length of the training data by randomly generating
event sequences that are 18, 24, and 30 events long, respectively corresponding
to an average of 3, 4, and 5 instances of each event type. We allow the length of
a particular event to vary between 2 and 8 blocks. In total, we create 50 simulated
devices, and generate 100 example traces for each. For the solution searching
algorithm, we fix the recursion width to 3 (i.e. we consider the top 3 best substrings
returned by the MCS algorithm at each recursion step). For results, we present
how many times the exact correct answer is returned (labeled correct), as well as
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Figure 5.16: Distribution of the most accurate grammars returned across all runs and input sizes.
Each color value represents the number of runs with a given amount of correct grammar rules. 6
correct rules indicates the algorithm was able to fully recover the grammar.

the overall accuracy of the best answer in the solution set (labeled accuracy). We
do this for the top-1, top-3, and top-5 answers returned by the algorithm.

Simulated Data: Figures 5.15a-5.15b summarize the results of the grammar
construction algorithm on simulated devices. Given an input length of 30 events
(an average of 5 instances of each event per input), our search algorithm is able
to find the correct grammar representation an average of 53% of the time if we
consider only the top 1 answer returned. This improves to just under 59% when
we allow the top 5. According to the median, over 50% of the time, the correct
grammar is found 61% of the time, improving to 64% of the time if we allow the top
5. While these numbers may initially seem low, this is a very black and white view
of accuracy. If we consider overall accuracy where an answer can be partially
correct, we find that, on average, the best returned answer is 89.5% accurate,
jumping up to 91.5% accurate if we consider the top 5. This indicates to us that
our algorithm is able to find all, or all but one of the events in a grammar a vast
majority of the time.

This claim is bolstered in Figure 5.16, where we show a stacked histogram of
the solution accuracy across all runs. In total, we find that 88% of the time the
the, top solution is expected to have at most one language block incorrect. With
smaller input sizes, we see that the accuracy suffers slightly, but the correctness is
much lower. Thus, we see that input length has a significant impact on recognition
accuracy, but longer input requires more computational time to process.

We investigate the causes of incorrect solutions by comparing the known so-
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lution (the oracle) to solutions that were returned in the top 5. Overall, we find
three interesting patterns with regard to irregularities. First, in some instances
our searching algorithm actually does find a lower cost solution than the correct
solution. This is usually caused by the algorithm finding a slightly similar or lower
coverage solution that greatly reduces the triviality (e.g. by fusing two language
blocks together). However, in general, the oracle solution is the lowest cost solu-
tion if it is found. Second, we find that the algorithm tends toward overestimating
the size of the solution by one or two blocks. In many instances, this is caused by
the splitting of one language block into two separate blocks. This effect is likely
derived from the fact that we chose to use compressiveness instead of cover-
age as the scoring function during the MCS search, which tends to favor slightly
smaller blocks. However, using the latter metric often resulted in the algorithm
underestimating the size of the solution set, which greatly impacted accuracy. Fi-
nally, there are the instances where the algorithm simply does not return a lower
cost solution than the correct solution, indicating that the recursive search never
even considered the option. While this can be addressed by simply increasing
the recursion width, this also greatly increases the computation time, a tradeoff
which should be carefully considered by the provider of computation.

Device Data: We now evaluate the grammar construction module in terms of
two real devices - the Google Home and security camera. We first briefly sum-
marize the results of running the grammar construction algorithm on the Google
Home. As the number of grammar rules is limited to two (one rule representing de-
vice initialization, and one rule representing a device query), this device prevents
any variance in usage patterns other than number of queries per log. Neverthe-
less, no matter how large the input log grows, our algorithm was always able to
recover the correct grammar rules.

We test the security camera setup in a similar fashion to how we tested our
simulated device. We collect 100 traces of a particular event length and take the
top 1, top 3, and top 5 accuracy of the lowest cost solutions for each. As we are
only testing one device in this instance, we also vary the length of the input logs
between 30 and 100 events. We summarize our findings in Figures 5.17a-5.17b.
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Figure 5.17: Top 1, 3, and 5 correctness (a) and accuracy (b) for the pattern recognition module
with data from the security camera setup. Note that correctness is measured out of 100, and
accuracy is measured in percent. Different colors correspond to different input lengths.

Overall, as the average number of camera events per log goes up, the accuracy of
the algorithm goes up as well, mirroring our findings in the simulated devices. With
30 total events per log (average 5 events), the accuracy is below the average at
78%, even for top 5. However this greatly improves when there are 50 total events
per log (average 8.3 events), bringing the accuracy above 80% even for the top
1. As we increase the size of the input logs, the correctness and accuracy of the
algorithm continue to improve to above 50/100 for correctness and over 90% for
accuracy.

We note that reaching this level of accuracy required more data than expected
when compared to the simulated devices, which had over 90% accuracy with
an average of 5 of each event type. This is likely due to the structure of the
events in the camera themselves. There is a high degree of similarity between the
‘motion detection’ and ‘picture’ events. Specifically, motion detection is structured
as two copies of the language blocks Rt, while a picture is only one instance of
the block Rt. This overlap causes confusion in the pattern discovery algorithm
when multiple instances of the language block Rt show up in sequence.

5.6.3 Event Classification

To evaluate the event classification module, we instrument both the Google Home
and security camera setups with the RightNoise real time profiling module. To
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SC MD P(M) P(I) V(MD) V(C)

SC 1 0 0 0 0 0
MD 0 1 0 0 0 0

P(M) 0 0.27 0.52 0.21 0 0
P(I) 0 0.32 0.21 0.47 0 0

V(MD) 0 0 0 0 1 0
V(C) 0 0 0 0 0 1

Figure 5.18: Confusion matrix for each event in the security camera setup. From top to bottom,
the labels represent the ‘settings change’, ‘motion detection’, ‘picture (manual)’, ‘picture (interval)’,
‘video (motion detected)’, and ‘video (continuous)’ events, respectively.

control for any solution noise from the offline pattern analysis module, we encode
the grammar discussed in Section 5.4 by hand for each device. For Google Home,
the grammar consists of two events (initialization and query). For the security
camera, there are six events - settings change, motion detection, manual picture,
interval picture, motion triggered video, and continuous video. We proceed to use
both devices to generate realistic usage scenarios, producing mixed sequences
of 100 events on the Google Home and 400 events on the security camera.

We first discuss the results for the Google Home. The grammar for this de-
vice consists of two events - device initialization, and voice query. Both of these
events have a distinct structure, represented by the strings QI,t and Q,t respec-
tively. Because of this fact, recognition accuracy is 100% for all instances of both
events. With regards to individual event recognition speed, the module is able to
correctly identify each event in just under 0.1 seconds. This duration is measured
from the point that the last call in the event is made to the point where the event
is successfully labeled by the event detection module. Overall, this indicates that
even in devices that may have a reduced activity space, such as a weather mon-
itor, event detection can still achieve high accuracy.

We now discuss the results in the context of the security camera. Again,
the grammar for this device consists of six events, with string representations of
their structure as follows: settings change (RR,M,t), motion detection (R,t,R,t),
manual picture (R,t), interval picture (R,T), motion triggered video (R,t,RR,F,t),
and continuous video (R,T,F,T,RR). First, with regards to recognition speed, we
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find that each event is able to be classified on average in just over 0.1 seconds,
demonstrating that the recognition module is very quick. A response time this low
facilitates effectively real time communication of a device’s behavior to the user.
With regards to accuracy, Figure 5.18 shows the confusion matrix for the events
generated on the camera. Overall, we see that with the events that have distinct
structures - in this case, changing camera settings, motion triggered video, and
continuous video - RightNoise is able to achieve perfect identification accuracy.
For example, even though the two modes of video capture share the same set of
underlying language blocks, there is enough nuance in their ordering that Right-
Noise is able to easily differentiate. This indicates that when the structure of each
activity in a device is diverse enough, RightNoise is able to quickly and easily give
meaningful results.

However, with events that are more similar in structure - in this case, motion
detection, manual picture taking, and interval picture taking - RightNoise shows
much more confusion between the three. For example, we find that all instances
where exactly two pictures are taken get classified as motion detection, due to
the fact that the number of language blocks in a motion detection event is fixed.
Understandably, there is even more confusion between the two modes of picture
capture as their structure differs only by the type of time delay. This stems from
the fact that RightNoise does not accurately discern the difference between two
types of time gaps in our pattern discovery module. However, addressing this
problem is left for future work.

5.6.4 Evaluation Summary

In summary, we highlight the following conclusions about RightNoise:

• The offline pattern analysis module is able to achieve high reconstruction
accuracy - over 90% when the input data contains on average 5 instances
of each distinct activity.

• The real time profiling module is also able to achieve high accuracy, but only
in instances where structure between events is sufficiently different.
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• The profiling module is able to classify different events, on average, in 0.1
seconds after event completion.

5.7 Future Applications of RightNoise

With the construction and demonstration of the capabilities of RightNoise, we take
this section to discuss possible directions for future research in this area, both to
improve upon the current architecture or applications of the tool itself.

Detection of Botnet Infection In August 2016, devices across the Internet of
Things were infected by a botnet called Mirai, spreading to an estimated 600,000
devices [4]. This virtual army was used to carry out several DDoS attacks over
the next fewmonths, targeting several key web infrastructure points and rendering
access to major websites impossible for several hours at a time [65]. While Mirai
is by no means the first infection to spread through the space of IoT devices[10],
the sheer size of the DDoS attacks triggered research on understanding how it
spread and how to best address these problems. However, while preventing the
spread of malicious code in the future is an important goal, being able to quickly
detect when a device is infected is crucial for helping stop the spread of newer
Malware that relies on unknown exploits.

A common behavior that Malware uses to spread is a scan and brute force
loop. First, an infected device will randomly randomly scan the IP space on the
local network to try and find a new target that will respond to it. Once it gets a
response, it will use a myriad of methods to get in, including brute forcing default
passwords, checking for low quality passwords, checking for known manufacturer
vulnerabilities, and spending a large amount of computation to try and gain access
to the targeted device. In doing so, however, these behaviors have the potential
to generate a lot of unique activity on the infected device, potentially in the RNG.

If an infected device comes with RightNoise integrated, it would be relatively
easy to notice a change in behavior given that device had been profiled during
a known good state (e.g., immediately after device setup is completed). The ex-
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tra RNG activity generated by the malicious programs would be categorized as
“unclassified”. If enough activity is generated, RightNoise could raise an alert that
there is an influx of new activity on the device, giving the user a message to ensure
that their device is functioning correctly.

User Activity Chronicling Certain classes of IoT devices depend on user inter-
action as part of their utility. For example, a home assistant device requires the
user to put forth a voice query to receive desired information. Similarly, a security
camera setup has several actions, where a user can view a remote feed, take
a picture, or record a video, among others. However, depending on the device
and the implementation, logs of these activities may not be available for device
owners to view or access, which is a barrier to understanding the behavior of a
device. As we show in this paper, RightNoise is able to implicitly draw parallels
between calls to the RNG and device activities by building a model to associate
these behaviors.

However, as this link is only implicit, the resulting data displayed lacks any rel-
evant labels that describe the detected activities in the device. This results in a
knowledge gap between the user and device for non-experts. However, there are
several ways this gap can be addressed. First, RightNoise could offer a super-
vised labeling mode in the GUI, wherein the user triggers an event in the device,
RightNoise returns the resulting relevant data, and the user can then apply a label
to the data for future use. This would require extra manual effort from the owner of
the device. An alternative is that the device manufacturer could ship their product
with a pre-labeled set of activities. Similarly, enthusiasts could maintain an open
source repository to catalog label sets for different types of devices, along with
instructions for users to easily install them.

With activity labeling in place, further information could potentially be gleaned
by the user about the state of their device. For instance, if a picture is scheduled
to be taken every hour in a security camera setup, but there is no corresponding
activity in the RNG log, the user might suspect something has gone wrong. Simi-
larly, if a malicious entity has gained unauthorized access to a device, and there
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are periods of activity at unusual times (e.g. changing the camera settings while
the user is usually asleep), then this could also be considered unusual behavior
and alert the user.

5.8 Future Work

The current pattern mining algorithm of RightNoise makes a few key assumptions
that allow it to function within the context of an IoT device. First, we expect that the
volume of activity will be rather low, to the point that there should be no overlap
between any two events a vast majority of the time. While this generally holds
true for resource-constrained, single purpose devices, it does not extend to more
traditional computer or server environments where the chance for simultaneous
activity is much higher. In this case, it is likely that the block mining algorithm for
RightNoise will break down and have difficulty pulling apart any events that are
intertwined. Therefore, research into more robust pattern mining algorithms will
increase the applicable domain of the system.

Second, RightNoise currently has no sufficient way to detect and differentiate
between the two types of time gaps - fixed-length and variable-length. This in
turn reduces the granularity of the rules that it is able to generate. For example,
in the security camera setup, it is difficult for RightNoise to differentiate between
two pictures being taken manually, and two pictures being taken on a timer. This
shortcoming would need to be solved on two fronts - the pattern mining algorithm
would need to perform extra analysis to determine what category each time gap
likely falls under, and the profiling algorithm needs to take previous context into
account to accurately identify the types of time gaps as they happen.

In a similar vein, RightNoise struggles to differentiate between two events when
their associated rules are very close in structure. For example, detecting motion
in the security camera always generates exactly two instances of relay. However,
this is indistinguishable from two pictures being takenmanually. Without additional
contextual information, this problem may be difficult to address with strictly RNG
activity alone.
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Finally, the method used to get the RNG activity data currently involves modi-
fying and recompiling the kernel. While the modifications are not overly complex,
this puts a high barrier to adoption for devices that have restrictions on if the kernel
can be modified or not (e.g. mobile phones). In the future, alternative methods for
logging RNG activity will be needed to lower the cost of adoption. Alternatively,
a standardized implementation for a kernel module could be agreed upon and
integrated into the source, mitigating the need to recompile the kernel for every
device.

5.9 Conclusion

Due to the nature of the Internet of Things, devices are often left unattended or
unmonitored, often causing unwanted behavior to go unnoticed for longer peri-
ods of time. This paper presents the first investigation into characterizing device
behavior from RNG activity logs. From this investigation, we build a tool called
RightNoise, which utilizes a combination of grammar-based offline pattern analy-
sis and real time event detection to profile and report the behavior of an IoT device
with over 90% accuracy. With the ability to differentiate between known and un-
known behavior, RightNoise can be leveraged in detecting problems in the future,
such as widespread botnet infections.
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Chapter 6

Conclusion

This dissertation presents three projects designed to increase the understanding
of and enrich the quality of randomness within the context of resource-constrained
devices.

First, we present an exploratory study into the viability of a sensor-based RNG
for mobile and IoT devices. Our findings on the state of random data use in the
Android PRNG show that, in the average scenario, devices operate under condi-
tions of light, but constant use. Furthermore, we show which sensors on modern
hardware are capable of meeting the demand for random data. To evaluate these
claims we present a prototype framework SensoRNG, which exploits the noise
in sensor data for the purposes of generating random numbers. Our evaluation
on several points compares favorably against the current Android PRNG, with
only a small computational overhead, suggesting the viability of a fully optimized
solution.

Second, we alleviate the problem of entropy stagnation within the context of
resource-constrained devices by proposing the initial designs for a Collaborative
and Distributed Entropy Transfer (CADET) protocol. With this protocol, devices
that have generated an excess of entropy can indirectly assist those that are en-
tropy deficient. Throughout this paper we have highlighted a number of design
choices taken in order to maximize efficiency of the framework, utilizing a testbed
of 49 Raspberry Pi 3B devices to gather additional supporting evidence. The
groundwork has been laid for future work on this topic, with a number of open
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questions still remaining for exploration.
Finally, due to the nature of the Internet of Things, devices are often left unat-

tended or unmonitored, causing unwanted behavior to go unnoticed for longer pe-
riods of time. We present the first investigation into characterizing device behavior
from RNG activity logs. From this investigation, we build a tool called RightNoise,
which utilizes a combination of grammar-based offline pattern analysis and real
time event detection to profile and report the behavior of an IoT device with over
90% accuracy. With the ability to differentiate between known and unknown be-
havior, RightNoise can be leveraged in detecting problems in the future, such as
widespread botnet infections.
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