46 research outputs found

    SLEMS : a knowledge based approach to soil loss estimation and modelling

    Get PDF
    ThesisThesis (M.Sc.E.), University of New Brunswick, 199

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Fifth Conference on Artificial Intelligence for Space Applications

    Get PDF
    The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration

    Personal Knowledge Models with Semantic Technologies

    Get PDF
    Conceptual Data Structures (CDS) is a unified meta-model for representing knowledge cues in varying degrees of granularity, structuredness, and formality. CDS consists of: (1) A simple, expressive data-model; (2) A relation ontology which unifies the relations found in cognitive models of personal knowledge management tools, e. g., documents, mind-maps, hypertext, or semantic wikis. (3) An interchange format for structured text. Implemented prototypes have been evaluated

    Third Conference on Artificial Intelligence for Space Applications, part 1

    Get PDF
    The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    A global workspace framework for combined reasoning

    No full text
    Artificial Intelligence research has produced many effective techniques for solving a wide range of problems. Practitioners tend to concentrate their efforts in one particular problem solving paradigm and, in the main, AI research describes new methods for solving particular types of problems or improvements in existing approaches. By contrast, much less research has considered how to fruitfully combine different problem solving techniques. Numerous studies have demonstrated how a combination of reasoning approaches can improve the effectiveness of one of those methods. Others have demonstrated how, by using several different reasoning techniques, a system or method can be developed to accomplish a novel task, that none of the individual techniques could perform. Combined reasoning systems, i.e., systems which apply disparate reasoning techniques in concert, can be more than the sum of their parts. In addition, they gain leverage from advances in the individual methods they encompass. However, the benefits of combined reasoning systems are not easily accessible, and systems have been hand-crafted to very specific tasks in certain domains. This approach means those systems often suffer from a lack of clarity of design and are inflexible to extension. In order for the field of combined reasoning to advance, we need to determine best practice and identify effective general approaches. By developing useful frameworks, we can empower researchers to explore the potential of combined reasoning, and AI in general. We present here a framework for developing combined reasoning systems, based upon Baars’ Global Workspace Theory. The architecture describes a collection of processes, embodying individual reasoning techniques, which communicate via a global workspace. We present, also, a software toolkit which allows users to implement systems according to the framework. We describe how, despite the restrictions of the framework, we have used it to create systems to perform a number of combined reasoning tasks. As well as being as effective as previous implementations, the simplicity of the underlying framework means they are structured in a straightforward and comprehensible manner. It also makes the systems easy to extend to new capabilities, which we demonstrate in a number of case studies. Furthermore, the framework and toolkit we describe allow developers to harness the parallel nature of the underlying theory by enabling them to readily convert their implementations into distributed systems. We have experimented with the framework in a number of application domains and, through these applications, we have contributed to constraint satisfaction problem solving and automated theory formation
    corecore